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Leukemia cells prevent immune system from clearing tumor cells by inducing the

immunosuppression of the bone marrow (BM) microenvironment. In recent

years, further understanding of the BM microenvironment and immune

landscape of leukemia has resulted in the introduction of several

immunotherapies, including checkpoint inhibitors, T-cell engager, antibody

drug conjugates, and cellular therapies in clinical trials. Among them, the

programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1)

axis is a significant checkpoint for controlling immune responses, the PD-1

receptor on tumor-infiltrating T cells is bound by PD-L1 on leukemia cells.

Consequently, the activation of tumor reactive T cells is inhibited and their

apoptosis is promoted, preventing the rejection of the tumor by immune system

and thus resulting in the occurrence of immune tolerance. The PD-1/PD-L1 axis

serves as a significant mechanism by which tumor cells evade immune

surveillance, and PD-1/PD-L1 checkpoint inhibitors have been approved for

the treatment of lymphomas and varieties of solid tumors. However, the

development of drugs targeting PD-1/PD-L1 in leukemia remains in the

clinical-trial stage. In this review, we tally up the basic research and clinical

trials on PD-1/PD-L1 inhibitors in leukemia, as well as discuss the relevant toxicity

and impacts of PD-1/PD-L1 on other immunotherapies such as hematopoietic

stem cell transplantation, bi-specific T-cell engager, chimeric antigen receptor

T-cell immunotherapy.
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1 Introduction

The current standard clinical treatment for leukemia, as a non-solid malignant tumor,

mainly includes chemotherapy and hematopoietic stem cell transplantation (HSCT).

However, the treatment process faces a series of problems such as chemotherapy

insensitivity, chemoresistance, post-transplant relapse, and intolerance in elderly patients

(1–4), thereby greatly limiting the progress of treatment for patients with leukemia.
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Therefore, developing effective methods with low adverse reactions

is currently imperative to ameliorate the prognoses of leukemia

patients. The immune milieu of bone marrow (BM) is dramatically

altered in patients with leukemia, where tumor cells prevent

themselves from being cleared by immune system by affecting

suppressive immune responses (5–8). Moreover, tumor cells in

the blood, BM, and lymphoid tissue are also more accessible to

immune cells than solid tumors. Furthermore, the efficacy of

allogeneic HSCT (allo-HSCT) demonstrates that leukemia is a

typical immune-responsive tumor type (9). Thus, immunotherapy

is an obvious choice for treating hematological malignant tumors.

In hematologic tumors, currently used immunotherapies include

allo-HSCT, bi-specific T-cell engager (BiTE), chimeric antigen

receptor (CAR) T-cell immunotherapy (CAR-T), immune-

checkpoint inhibitors (ICIs), and other monoclonal antibodies

(mAbs) targeting tumor-cell surface antigens (10–13). In recent

years, the role of immune escape in leukemia progression and

development of immunotherapy have been elucidated, employing

ICIs to block suppressor molecules on the surface of T cells, thereby

reversing the “exhausted” state of T cells to an “activated” one to kill

tumor cells, has proved to be a promising option.

Immune checkpoint (IC) is a signal regulating T-cell receptor

(TCR) antigen recognition during immune response. Programmed

cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) as

an important IC modulating immune response. PD-1 (CD279), a

type I transmembrane protein inhibitory checkpoint molecule is

expressed on various immune cells, such as naive and activated B

cells, effector T cells, regulatory T cells (Tregs), dendritic cells

(DCs), activated monocytes, macrophages, natural killer (NK),

and immature Langerhans cells (14). PD-1 receptors bind two

ligands of the B7 family, PD-L1 and programmed death-ligand 2

(PD-L2). PD-L1 (CD274) is expressed on the surface of

hematopoietic cells, such as DCs, macrophages, T cells, and B

cells (15, 16). PD-L2 (PDCD1LG2) is expressed on monocytes,

myeloid DCs, and activated CD4+ or CD8+ T-cell subsets (17). PD-

L1 and PD-L2 differ in expression patterns but have the same effect,

and binding of PD-1 to either ligand leads to T-cell dysfunction or

exhaustion, resulting in diminished intensity of antigen-specific T-

cell response in tumor tissues (18–21). In hematological malignant

tumors, the expression rate of PD-L1 in malignant cells is 37%–58%

(22). Leukemia cells highly express checkpoint-inhibitor receptors

for sharing an immune-cell lineage (9, 23), making them potential

targets for this therapy. This review centers around PD-1 signaling,

summarizes its molecular functions in hematological malignant

tumors and the achievements of ICIs in preclinical development

and clinical settings.
2 Mechanisms involved in tumor
immune escape through PD-1/PD-L1

As a pair of co-stimulatory signals, PD-1 and PD-L1 jointly

constitute PD-1/PD-L1 signaling pathway. Under physiological

conditions, the binding of PD-L1 on cell surface to PD-1 on

lymphocyte surface inhibits lymphocyte function and induces the
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apoptosis of activated lymphocytes. The activation of the PD-1/PD-

L1 pathway reduces the damage of immunoreactions to

surrounding tissues and prevents the progression of autoimmune

diseases (24). However, the activation of this pathway causes the

binding of PD-L1 expressed on tumor cells to PD-1 on tumor

infiltrating lymphocytes, decreasing the immune effect of T cells in

the local tumor microenvironment (TME), thereby mediating

tumor immune escape and promoting cancer progression (25–

27). Researches have shown that PD-L1 expression is upregulated

in tumor cells, which activates PD-1/PD-L1 downstream pathways

by specifically binding to PD-1 on the surface of cytotoxic T

lymphocytes (CTLs) to deliver negative regulatory signals. In

turn, it induces the exhaustion of activated T cells and the loss of

immunoreactivity, leading to a diminished intensity of antigen-

specific CTL responses in tumor tissues (18–21). Besides, Tregs as

important suppressive immune cells in TME contribute to cancer

initiation and progression. The PD-1/PD-L1 pathway promotes

Tregs transformation and enhances their immunosuppressive

capacity (28–30). In addition to T cells, other immune cells are

implicated in the regulation of immune tolerance induced by the

PD-1/PD-L1 pathway. Tumor-associated macrophages (TAMs)

upregulate PD-L1 expression of tumor cells (31), whereas tumor

cell-secreted versican and derived exosomes induce upregulation of

PD-L1 expression in TAMs, which is associated with M2

polarization of TAMs. TAMs with high expression of PD-L1

more significantly inhibit effector T cells and promote tumor

growth and metastasis (32–34). Tumor cells increase PD-1

expression on B cells (35, 36), and PD-1+ B cells significantly

suppress the proliferation and reduce the viability of CD4+ and

CD8+ T cells via the PD-1/PD-L1-dependent pathway (37). NK

cells can obtain PD-1 from leukemia cells by endocytosis in tumor

cells, and PD-L1 in tumor cells interacts with PD-1 of NK cells to

reduce NK cell responses and produce more aggressive tumors (38–

40) (Figure 1).

PD-1 signaling is a pivotal molecule mediating immune escape

in TME. Blocking PD-1 signaling attenuates tumor cell suppression

of immune cells and improves immune system recognition and

cytotoxicity of tumor cells. The increasing understanding of

immune function and immune escape mechanisms has led to

exploitation of therapeutic mAbs targeting PD-1 signaling (25).

Up to now, FDA has successively approved four mAbs

(pembrolizumab, nivolumab, cemiplimab, and dostarlimba)

targeting PD-1 and three mAbs (atezolizumab, avelumab, and

durvalumab) targeting PD-L1 for the treatment of solid and

hematological malignancies (15, 16, 41–46), as presented in Table 1.
3 Role of PD-1/PD-L1 in the
development of leukemia

Leukemia can be divided four major clinical categories: acute

myeloid leukemia (AML), chronic myeloid leukemia (CML), acute

lymphoblastic leukemia (ALL), and chronic lymphocytic leukemia

(CLL). This review provides a theoretical basis for drug discovery

and clinical application of PD-1/PD-L1 pathway by summarizing
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and analyzing the role of PD-1 signaling in various types

of leukemia.
3.1 AML

AML is a heterogeneous disease with various genetic and

epigenetic alterations. Its pathogenesis is the accumulation and

expansion of immature myeloid cells in the peripheral blood (PB)

and BM, resulting in hematopoietic dysfunction. Historically, AML

has been regarded as an immunoreactive malignancy and remains

the most common indication to receive allo-HSCT (7). PD-1

expression is generally high on T cells in AML patients with de
Frontiers in Immunology 03
novo and relapsed/refractory (R/R) after chemotherapy, and partial

recovery is achieved in patients with complete remission (47–49).

Moreover, the level of PD-1 on NK cells and PD-L1 on regulatory B

cells (Bregs) increases in AML patients (47, 48, 50, 51). High

expression of PD-1 coincides with the T-cell exhaustion (52–54).

The overexpression of PD-1 signaling is relevant to poor overall

survival of AML patients (55). Above studies suggest PD-1 signaling

may influence the development and poor prognosis of AML by

increasing T-cell exhaustion. Contrary to this conclusion, Schnorfeil

et al. (56) found the level of PD-1 expression on PB CD4+ and CD8

+ T cells of AML patients at diagnosis was similar to that of healthy

controls, but significantly increased in relapse after stem cell

transplantation. T-cell function is not impaired during this
TABLE 1 FDA approves mAbs for PD-1/PD-L1.

Drugs Target Timeline and cancer type

Pembrolizumab PD-1 2014: Melanoma; 2015: NSCLC; 2016: HNSCC; 2017: Hodgkins Lymphoma, MSI-H or dMMR cancer, Gastric cancer, Bladder Cancer;
2018 Merkel cell carcinoma, Hepatocellular carcinoma, Cervical cancer, PMBCL; 2019: RCC, SCLC, Esophagus cancer; 2020: Colorectal
cancer, Cutaneous squamous-cell carcinoma, TMB-high cancers; 2021: Breast cancer, Endometrial Carcinoma

Nivolumab PD-1 2014: Melanoma; 2015: NSCLC, RCC; 2016: Hodgkins Lymphoma, HNSCC; 2017: Colorectal cancer; Hepatocellular carcinoma, Bladder
Cancer; 2018: SCLC; 2020: Esophagus cancer, Malignant Pleural Mesothelioma; 2021: Gastric cancer

Cemiplimab PD-1 2018: Cutaneous squamous-cell carcinoma;2021: NSCLC, Basal Cell Carcinoma

Dostarlimab PD-1 2021: dMMR solid cancers, Endometrial Carcinoma

Atezolizumab PD-L1 2016: NSCLC, Bladder Cancer; 2019: SCLC, Breast cancer; 2020: Melanoma, Hepatocellular carcinoma; 2022: ASPS

Durvalumab PD-L1 2017: Bladder Cancer; 2018: NSCLC; 2020: SCLC; 2022: Hepatocellular carcinoma, Billiary track

Avelumab PD-L1 2017: Merkel cell carcinoma, Bladder Cancer; 2019 RCC
FDA, Food and Drug Administration; mAbs, monoclonal antibodies; PD-1, programmed cell death protein 1; PD-L1, programmed cell death-ligand 1; NSCLC, non-small cell lung cancer;
HNSCC, head and neck squamous cell carcinoma; MSI-H, high microsatellite instability; dMMR, deficient mismatch repair; PMBCL, Primary mediastinal large B-cell lymphoma; RCC, renal cell
carcinoma; SCLC, small cell lung cancer; TMB, tumor mutational burden; ASPS, Alveolar soft part sarcoma.
FIGURE 1

Mechanisms involved in tumor immune escape through the PD-1/PD-L1 (inhibition marked with -, enhancement marked with+), PD-1, programmed
cell death protein 1; PD-L1, programmed death-ligand 1; TAMs, tumor associated macrophages; Tregs, regulatory T cells; NK, natural killer.
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process. They thought that this pattern is associated with a shift

toward effector memory cells in patients with recurrent AML and

T-cell exhaustion does not play a major role in AML. Besides, AML

cells induce generation and expansion of Tregs by PD-1 signaling,

and Tregs promote the proliferation of AML cells by secreting IL-10

and IL-35 (57, 58). In addition to regulating immune cells, PD-1/

PD-L1 drives AML progression by regulating tumor-associated

proteins, for example, the expression of PI3K and p-AKT

decreases after PD-L1 knockdown, which induces G2/M cell cycle

arrest and apoptosis, and the upregulation of PD-L1 increases the

expression of PI3K/AKT and enhances the proliferation of tumor

cells (59). PD-L1 is overexpressed in AML leukemia-initiating cells,

where it increases cyclin D2 expression by enhancing JNK

phosphorylation, ultimately promoting the entry of leukemia-

initiating cells into cell cycle and proliferation (60). Epigenetic

therapy (EGT), particularly with hypomethylating agents (HMAs)

either alone or in combination, continues to be successfully used in

treating elderly AML, although resistance is a frequent and

ultimately near universal outcome (61). Liu et al. (62) found that

EGT treatment induces the expression of PD-L1 mRNA and PD-L1

induces the occurrence of EGT resistance. To sum up, PD-1

signaling can promote AML progression by regulating immune

cells, oncoproteins, and the occurrence of drug resistance,

inhibition of PD-1 signaling can be a breakthrough for successful

treatment of AML.
3.2 CML

CML is a myeloproliferative disorder characterized by BCR-

ABL oncoprotein with high tyrosine kinase activity, which

promotes the proliferation and inhibits the apoptosis of cancer

cells (63). PD-1 signaling on specific T cells leads to T-cell

exhaustion, and leukemia cells inhibit effector T-cell proliferation

through PD-1/PD-L1 interactions, blocking PD-1 signaling

contributes to improved CML control in pre-clinical mouse

models by restoring the function of CML-specific CTLs (64). The

quantity of bcr-abl fusion gene, as the initiation and core factor of

CML pathogenesis, is positively correlated with the PD-1 expression

level on CD8+ T cells. When CML is treated with tyrosine kinase

inhibitors (TKIs), a target drug for bcr-abl, the PD-1 expression

level of CD8+ T cells in the complete hematological response group

is significantly lower than that in the control group, chronic phase,

and blast phase (22). However, leukemia stem cells (LSCs) are

resistant to specific TKIs and cause disease relapse after drug

discontinuation in CML, besides, CTL transfer therapy leads to

upregulation of PD-L1 on LSCs, which protects LSCs from CTL-

mediated elimination. In contrast, PD-1 blockade during CTL

transfer results in long-term survival of CML mice, suggesting

that LSCs were either eliminated or effectively controlled by PD-1

blockade (65, 66). The Tregs are also increased in CML patients at

diagnosis and in patients refractory to TKI treatment, and these

Tregs have higher levels of PD-1 expression (67, 68). Which
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suggests PD-1-blocking antibodies given directly prior to and

temporarily after TKI discontinuation may block the immune

inhibitory effects of Tregs on CD4+/CD8+T-cells, blocking

aberrant PD-1 signaling may result in greater success in TKI

cessation studies.
3.3 ALL

ALL results from a clonal expansion of abnormal lymphoid

progenitors of B cell (BCP-ALL) or T cell (T-ALL) origin that

invades BM, PB, and extramedullary sites (69). Similar to other

types of leukemia, PD-1 expression increases on T-cell subsets in B-

ALL patients and is more prominent at relapse, PD-L1/L2

expression increases on LSCs (70). PD-1+ LSCs are used for T-

ALL initiation and relapse, they can upregulate genes related to the

MYC pathway, leukemic stemness, and early T-cell progenitor

development, and downregulate genes related to apoptosis, cell

cycle, and PI3K/AKT signal pathway (71). To determine whether

PD-L1 expression on ALL cells inhibits T-cell responses, Blaeschke

et al. (72) co-cultured second-generation anti-CD19 CAR-T cells

with CD19+ and CD19+/PD-L1+ target cells. Result shows that

CAR-T cells co-cultured with PD-L1+ target cells decrease the levels

of Th1 cytokine secretion. Which indicates that PD-1 signaling

mediates T-cell inhibition after/during T cells against BCP-ALL. In

summary, above studies suggest that enhancing T-cell response by

inhibiting PD-L1/L2 is a promising therapeutic option.
3.4 CLL

CLL is characterized by the accumulation and clonal

proliferation of mature and typically CD5+CD23+ B-cells within

PB, BM, lymph nodes, and spleen (73). Several studies have shown

that PD-1 signaling is significantly upregulated in CLL patients, and

the high level of PD-1/PD-L1 is closely related to disease grade and

poor prognosis (74–78). Epstein–Barr virus (EBV) is one of the

human tumor viruses, it can transform B-cells into tumor cells. In

CLL patients, EBV load is positively correlated with the expression

of PD-1 signaling on CD4+ and CD8+ T cells. In EBV (+) patients,

the higher the level of PD-1 signaling on T cells, the higher the risk

of lymphocyte doubling and treatment initiation (79). Gassner et al.

(80) found that inhibiting the interaction of PD-1/PD-L1 can

reactivate the cytotoxic effect of exhausted T cells in CLL mouse

model. To study the mechanism of PD-1 signaling in CLL, Qorraj

et al. (81) collected PB mononuclear cells from CLL patients. They

found that triggering PD-1 on monocytes hampers phagocytosis,

glycolysis, and Bruton’s tyrosine kinase (BTK)-signaling.

Conversely, the immune metabolic dysfunctions and antitumor

activity of monocytes can be reversed by disrupting PD-1

signaling. In conclusion, PD-1 signaling inhibits immune cell

activity and interferes with immune metabolic processes. The

blockade of PD-1 signaling may improve the prognosis of CLL.
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4 Regulation of the PD-1/PD-L1
pathway in leukemia

In addition to PD-1 and PD-L1 antibodies directly acting on

PD-1 signaling, other proteins, genes, and drugs affect the level of

PD-1/PD-L1. When mAbs are insensitive or patients are intolerant

to adverse reactions, we may consider indirectly inhibiting immune

escape of tumor cells by regulating related proteins and genes or

applying relevant drugs (Figure 2).
4.1 AML

In AML patients, B lymphocyte-induced maturation protein 1

(Blimp-1) directly binds to the promoter of PD-1 and impairs T-cell

activity by upregulating PD-1. The knockdown of Blimp-1 can reverse

the T-cell functional defect (82). IFN-g induces PD-L1 expression in

myeloid precursor cells and primary cells (57, 83). Stattic, a small
Frontiers in Immunology 05
molecule inhibitor of STAT3, interferes with IFN-g-induced PD-L1

expression in AML (84). PD-1 level decreases after the initial HMA/

ventoclax (Bcl-2 inhibitor) treatment on all CD4+ T-cell

subpopulations except naïve in AML patients (48). In an

immunocompetent murine leukemia model, guadecitabine (a

second-generation HMA) negatively regulates inhibitory accessory

cells in TME by reducing PD-1+ T cells and the AML-mediated

expansion of myeloid-derived suppressor cells. Consequently,

functionally active leukemia specific T cells increase (85). NA-AML

(NrasG12D/-; Asxl-/–AML) cells overexpress PD-L1/PD-L2, and the level

of PD-L1 is associated with the upregulation of AP-1 transcription

factor (TF). AP-1 inhibitor or short-hairpin RNAs against AP-1 TF Jun

decreases PD-L1 expression (86). The overexpression of miR-200c and

miR-34a causes the significant downregulation of PD-L1 level. MUC1

attenuates the interference of miR-34a and miR-200c on PD-L1

translation by negatively regulating the expression of miR-34a and

miR-200c, and silencing of MUC1 leads to increased miR-34a and

miR-200c. In turn, PD-L1 expression is reduced (87).
FIGURE 2

The regulation of the PD-1/PD-L1 pathway. PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; AML, acute myeloid
leukemia; ALL, acute lymphoblastic leukemia; CML, chronic myeloid leukemia; CLL, chronic lymphocytic leukemia; Blimp-1, B lymphocyte-induced
maturation protein 1; HMA, hypomethylating agents; TKIs, tyrosine kinase inhibitors; GD-NAIs, Gynura divaricate-non-alkaline ingredients; Mj,
monocytes/macrophages; A2A, Adenosine A2A receptor.
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4.2 CML

Myeloid leukemia cells induce PD-L1 expression on NK cells

via PI3K/AKT/NF-kB pathway (88), thus, inhibiting this pathway

may block PD-L1 expression. The level of PD-1 on CD8+ T cells is

reduced in CML patients treated with TKIs dasatinib and imatinib

(22). Gynura divaricata (L.) DC. is a widely used herbal medicine,

whose non-alkaline ingredients regulate PD-1 signaling,

significantly inducing apoptosis and inhibiting proliferation of

CML cells (89).
4.3 ALL

A leukemic microenvironment supports the survival of ALL

cells and their immune evasion through multiple interactions (69).

In an ALL mouse model, inhibition of MERTK significantly

decreases the expression PD-L1/L2 on CD11b+ monocytes/

macrophages and PD-1 on CD4+ and CD8+ T cells in the

leukemic microenvironment, reducing the incidence of splenic

FOXP3+ Tregs at sites of leukemic infiltration. Consequently, T-

cell activation increases, and immune-mediated ALL clearance is

promoted (90). Murine models of AML and T-ALL reveal that

VIPhyb, a peptide antagonist of VIP signaling, enhances IFN-g
secretion and suppresses PD-1 expression in CD4+ and CD8+ T

cells (91).
4.4 CLL

CD84-mediated intercellular interactions upregulate the level of

PD-1 on T cells and PD-L1 on CLL-cells via the Akt-mTOR

pathway, resulting in T-cell exhaustion. Conversely, the

downregulation of CD84 expression reverses these phenomena

and reduces the expression level of other exhaustion markers

(92). The activation of Adenosine A2A receptor (A2A) induces

immune tolerance and is closely associated with immune escape of

tumor cells (93). In CLL cells, hypoxia causes the emergence of a

population of PD-1+ and IL-10–secreting T cells, and adding A2A

antagonists attenuates Tregs generation, TGF-b induction, PD-1

expression, and IL-10 synthesis and secretion. Thus, leukemia cells

become more susceptible to pharmacological agents while restoring

immune competence and T-cell proliferation (94). Ibrutinib, a

covalent inhibitor of BTK, is approved for treatment of patients

with R/R or treatment-naive CLL (95). Cubillos et al. (96) found

that ibrutinib can decrease PD-1 and PD-L1 expression by driving

Th1-selective pressure in T cells. Kondo et al. (95) suggested that

ibrutinib enhances antitumor immune responses by inhibiting

STAT3-induced selective and persistent downregulation of PD-L1

on CLL cells and PD-1 in CD4+ and CD8+ T cells. In a venetoclax

(VEN)–ibrutinib combination treatment, the number of PD-1

+CD8+ T cells, Tregs, and follicular helper T cells decreases more

than fivefold, thereby reducing the immunosuppressive

characteristics of CLL (97). The SYK inhibitor entospletinib in

combination with obinutuzumab downregulates the expression of
Frontiers in Immunology 06
PD-1 in CD4+ and CD8+ T-cell subsets of CLL patients, partially

reversing the T-cell exhausted phenotype (98).
5 PD-1/PD-L1 and allo-HSCT

Allo-HSCT is a potentially curative therapy for various

hematologic malignancies. It relies on the graft-versus-leukemia

(GVL) effect mediated by donor-derived alloreactive T cells.

However, graft-versus-host disease (GVHD) is also mediated by

the same T cells and remains a major clinical problem related to

considerable morbidity and mortality (99, 100). The occurrence of

GVHD and T-cell suppression is positively correlated with the

expression level of PD-L1 (101). The loss of GVL effect is relevant to

PD-1 overexpression in allograft recipients, and blocking PD-L1

largely restores GVL efficacy without triggering GVHD (102).

Besides, HSCT leads to differential upregulation of PD-1 ligands

in tissues, which compartmentalizes CTL activity and thus creates

niches for tumor escape. PD-1 blockage can restore CTL sensitivity

to antigens and homogenize the effect of graft against tumor (103).

These suggest that improving GVL and reducing GVHD by

blocking PD-1 signaling can yield considerable results. Ni et al.

(100) found that the exhaustion of CD4+ T cells leads to PD-L1

upregulation in donor CD8+ T cells and recipient tissues. which

increased PD-L1/PD-1 interplay between donor CD8+ T cells and

recipient tissues contributes to preventing GVHD by promoting the

apoptosis and exhaustion of T-cell in GVHD target tissues, and

enhanced PD-L1/CD80 interplay between CD8+ T cells contributes

to retaining GVL responses by improving T-cell expansion and

survival. Accordingly, the influence of the PD-L1-mediated effect on

HSCT depends on the tissue microenvironment, the existence of

CD4+ T cells, and the natural interacting partner expressed by CD8

+ T cells. This suggests that we can enhance the PD-1 signaling-

mediated GVL effect and reduce the PD-1 signaling-mediated

GVHD by changing the above conditions. Besides, VIPhyb also

increases the anti-leukemic effect after allogeneic BM

transplantation by downregulating PD-1 and PD-L1 expression

on donor immune cells (104). In clinical trial, Tschernia et al. (105)

found that the use of pembrolizumab before allo-SCT reduced 100-

day mortality in AML patients (17% vs 0%) and did not increase

grade III-IV acute GVHD. The chronic GVHD is not found in

patients who have received pembrolizumab before allo-SCT and

cyclophosphamide after transplantation. This suggests that ICI

treatment prior to allo-SCT is effective and safe, and post-

transplant cyclophosphamide can eliminate the GVHD risk and

severity. The above studies provide an empirical and theoretical

basis for ICIs combined with HSCT in the treatment of leukemia.

In addition to utilizing the GVL effect of hematopoietic stem

cells (HSCs), Hu et al. (106) enhanced the delivery of checkpoint

inhibitors by using the in situ activation of platelets and the homing

ability of HSCs. They constructed HSC-platelet-aPD-1 conjugates

and then injected them into mice bearing AML cells, the therapeutic

effect of checkpoint blocking is significantly enhanced. With regard

to the drug-delivery mode of PD-1/PD-L1, Chen et al. (107)

introduced a transdermal cold atmospheric plasma (CAP)-
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mediated IC blockade (ICB) therapy. The ICB delivered via

microneedles enhanced the immune response mediated by T cells.

Han et al. (108) used HEK293T-derived vesicles with PD-1

receptors on their surface to destroy PD-1 signaling, while the

internal space of the vesicle allows for the packaging of an

indoleamine 2,3-dioxygenase inhibitor, which further enhanced

the antitumor effect. This suggests that in addition to drug

development for ICIs, new technologies for applying ICIs are also

of interest worthy of attention.
6 Efficacy of PD-1/PD-L1 mAbs
treating leukemia alone or
in combination

Studies on leukemia treatment with PD-1/PD-L1 mAbs are

rapidly increasing in number. They are primarily divided into basic

research and clinical stages. Herein, we provide guidance and

rationale for subsequent clinical applications by analyzing their

pooled data.
6.1 PD-1/PD-L1 mAbs for AML

Current clinical treatments for AML are primarily

chemotherapy and allo-HSCT. However, due to the emergence of

resistance to chemotherapy and GVHD, more effective and safer

drugs to treat AML need to be developed (109, 110). Nivolumab, a

PD-1 mAbs, is applied in an index case of recurrent

myeloproliferative neoplasms after HSCT. Before infusion of

nivolumab, AML blasts show high expression of chemokines,

whereas T cells are characterized by the expression of interferon-

responsive genes. This baseline inflammatory signature disappears

after infusion of nivolumab, and the clinical responses are

characterized by the temporary expansion of polyclonal CD4+ T-

cell populations, the contraction of AML subsets exhibiting

megakaryocytic characteristics, and elevated PD-L1 expression

(111). Several studies show that the combination of PD-1/PD-L1

mAbs is promising research, for instance, the combined blockade of

PD-1 signaling and Tim-3 have an additive effect on inhibiting

tumor growth in advanced AML mouse models (112). The

combination of IL-15 and PD-1 blockers activates AML-NK cells

and enhances the killing ability of NK by increasing the release of

perforin, granzyme, and IFN-g (113). In addition, inhibiting the

effects of other therapies on PD-1 expression can also yield

considerable results, for instance, exogenous short 5′-
triphosphate-modified RNA (ppp-RNA) can direct the immune

response toward tumor cells. However, ppp-RNA treatment

induces PD-L1 expression on AML cells and establishes

therapeutic sensitivity to anti-PD-1 in vivo, the combination of

anti-PD-1 and ppp-RNA is superior to either regimen alone in the

survival rate of a mouse model (114). The DAC/VEN therapy

(HMA decitabine combined with BCL‐2 inhibitor venetoclax)

effectively targets leukemia cells while upregulating PD-1

expression in AML patients. Nivolumab combined with DAC/
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VEN can enhance antitumor effect and eliminate circulating

blasts and LSCs/progenitor cells (115). The above studies indicate

that considering PD-1/PD-L1 antibodies as an adjuvant treatment

scheme for AML can effectively enhance the sensitivity of cell

therapy and chemotherapeutic agents, which is a promising

combination-chemotherapy option. A number of clinical studies

have been conducted on PD-1 mAbs combined with other

chemotherapeutic drugs in the treatment of AML, such as

cytarabine (116), azacytidine (117), decitabine (118), and these

treatment regimens are clinically feasible and have shown

encouraging results.

Tumor progression leads to increased Tregs and elevated PD-1

expression on CD8+ CTLs in AML mouse model, which reduces

the recognition and activation of tumor-specific CTLs (58). PD-L1

siRNA-mediated silencing augments the expression of T cell

activation markers (CD69 and CD137) and improves CTL

degranulation (CD107a) (119). CTL infusion combined with PD-

1 blockade suppresses Tregs (120). PD-1 blockade in combination

with Tregs exhaustion or CTL infusion induces significantly more

AML tumor reduction than either treatment alone (58, 120).

Additionally, combining DC-based immunotherapy with PD-1

blockade might be a promising approach to eliminating LSCs

(121). In sum, PD-1/PD-L1 blockade combined with cell therapy

represents a significant new approach that can be easily translated

into clinical applications to enhance T cell-mediated

cytotoxic responses.
6.2 PD-1/PD-L1 mAbs for CML

TKIs and HSCT are the mainstay of treatment for CML (122,

123), and immune mechanisms may help maintain treatment-free

remission. The direct interplay between NK cells and K562 myeloid

leukemia cells induces the PD-L1 expression of NK cells. Compared

with PD-L1-NK cells, PD-L1+ NK cells are activated effector cells

with strong killing activity against tumor cells in vitro. The binding

of the PD-L1 mAbs atezolizumab to PD-L1 upregulates PD-L1

expression on the surface of NK cells and provides more binding

sites for PD-L1 mAbs, resulting in continuous activation of p38.

This phenomenon further propagates strong activation signals

toward NK cells to maintain their cytotoxic and cytokine-

secretion features. In vivo, the combination of PD-L1 mAbs and

NK cell-activating cytokines significantly enhances the antitumor

activity of NK cells against myeloid leukemia lacking PD-L1

expression (88). This finding suggests that PD-L1 mAbs have a

unique therapeutic effect on PD-L1- tumors, this is independent of

PD-1. Dasatinib, a second-generation TKI, upregulates PD-1

expression on CD56dimNK cells and increases dysfunctional

CD56negNK cells that highly express PD-1. Nivolumab enhances

the cytotoxic activity of both subsets but more efficiently in the

CD56dim subset compared with the CD56neg subset (39). Which

suggests the combination of TKIs and PD-1/PD-L1 mAbs may be

an approach for the successful treatment of CML patients. Recent

evidence shows PD-1 expression on CD4+ and CD8+ T-cells,

including on CML-reactive PR1-CTL in TKI-naive but also TKI-

treated remission CML patients (124–126), which suggests T-cell
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exhaustion also in deep molecular remission, this provides a

rationale for the treatment with checkpoint blocking antibodies to

PD-1/PD-L1. However, a clinical trial of the combination of

dasatinib and nivolumab for the treatment of CML showed that

this approach did not show meaningful clinical activity in patients

with CML in chronic phase or accelerated phase who received ≥2

prior TKIs with progression, resistance, or suboptimal response to

most recent therapy (127). A phase II trial of the effectiveness of

pembrolizumab and dasatinib, imatinib mesylate, or nilotinib in

treating patients with CML and consistently detecting minimal

residual disease (defined as the level of a gene product called bcr-abl

in the blood) is currently underway (www.clinicaltrials.gov as

# NCT03516279).
6.3 PD-1/PD-L1 mAbs for ALL

ALL has genetic heterogeneity, and the incidence is much higher in

children. The current therapies for ALL are primarily multidrug

chemotherapy, which has a high response rate but also has a high

recurrence rate, leaving much room for improvement (128, 129). The

phenotypic exhaustion of CD4+ T-cells predicts recurrence and poor

overall survival in B-ALL. In a Ph+ B-ALL mouse model, the

application of PD-L1 antibody clonally expands leukemia-specific

CD4+ T-cells with helper/cytotoxic phenotype and reduces the

expression of exhaustion markers. The combination of PD-L1 mAbs

and TKI nilotinib also significantly improves the efficacy of nilotinib

against BCR-ABL+ B-ALL (130). Axl ablation in macrophages can

elicit the susceptibility of PD-1 refractory treatment naive B-ALL to

PD-1 checkpoint blockade and promote antileukemia immunity (131).

A new peptide, nABPD1, is designed to specifically bind PD-1. It

enhances cytokine-induced killer (ICIK) cell-mediated antitumor

activity by protecting ICIK cells through blockade of PD-1 signaling

(44). There is a lack of clinical studies on the use of PD-1/PD-L1 mAbs

in ALL, especially in young people, and as far as the current studies are

concerned, they show unsatisfactory results for MRD in adults(median

age is 52.5y) with ALL (132). Two studies of PD-1 mAbs for the

treatment of ALL in children, adolescents, and young adults are

c u r r e n t l y und e rwa y (www . c l i n i c a l t r i a l s . g o v a s #

NCT05310591, NCT04546399).
6.4 PD-1/PD-L1 mAbs for CLL

Chemotherapy and anti-CD20 mAbs therapy are the standard

of care for patients with CLL (133–135). Currently, it is prominent

to improve the complete remission rate and reduce chemotherapy-

induced immunosuppression. Studies suggest that early blockade of

PD-L1 effectively prevents the immune dysfunction induced by

tumor cells and thus avoids CLL development in mice. This

includes the prevention of exhaustion-like and aberrant T-cell

phenotypes, and the restoration of MHC class II-expressing

dendritic cells and mature macrophages (108, 136). Ioannou et al.

(137) concluded that although PD-L1 mAbs are superior to PD-1

mAbs in inducing anti-CLL T-cell activity, PD-1 mAbs and PD-L1

mAbs monotherapies are largely ineffective in overcoming T-cell
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tolerance in CLL. Avadomide is a cereblon E3 ligase modulator drug

that stimulates T-cell immune synapse while increasing PD-L1

expression, it triggers IFN-driven T-cell responses and converts

noninflamed CLL tumors into CD8+ T cell-inflamed ones, making

CLL sensitive to PD-1/PD-L1 immunotherapy. The combination of

avadomide and PD-1/PD-L1 blockade effectively reinvigorates

previously exhausted patient T cells and contributes to more T

cell killing in CLL. HDAC6 gene silencing or inhibition decreases

PD-L1 expression on B cells of Eμ-TCL1 mice model, and the

combination of HDAC6 inhibitor ACY738 and anti-PD-1/anti-PD-

L1 further enhances the cytotoxicity of T cells (138). Rivas et al.

(139) found that the treatment of CLL with anti-PD-L1 in

combination with IL-10 produces more IFN-g+, memory CD8+

T-cells, and cytotoxic effector KLRG1+, and fewer exhausted T-cells

than anti-PD-L1 alone. CLL animal experiments show that PD-1/

PD-L1 antibody as a combination chemotherapy regimen definitely

affects tumor inhibition. However, according to the results of the

current clinical study, PD-1 mAbs have limited efficacy in CLL

patients, but reassuringly they show a promising therapeutic option

in patients with Richter’s transformation (140–142).
6.5 PD-1/PD-L1 mAbs and CAR-T

CAR-T cell therapy has contributed to a revolution in the

therapy of patients with hematological malignancies (143).

However, the activation of CAR-T cells can lead to persistently

high levels of PD−1 and eventually cause the exhaustion of T cells

(144). Several studies have shown that the integration of PD-1-

mediated inhibitory signaling into CAR-T significantly improves

the function of conventional CAR-T, and it even may have an

almost equivalent or better anti-tumor effect and a lower side effect

compared with the CAR-T plus PD-1 antibody (72, 145, 146). More

studies on PD-1 signaling with CAR-T are shown in Table 2. These

studies suggest that PD-1 signaling blockade combined with CAR-T

can enhance the efficacy of CAR-T. To date, a variety of CAR-T

with PD-1 inhibition have been designed, and they have achieved

gratifying results in preclinical studies. PD-1 signal blocking

combined with CAR-T may produce greater benefits compared

with chemotherapeutic drugs. However, there is a lack of clinical

studies in this area, and the clinical effects and adverse effects

are unclear.
6.6 PD-1/PD-L1 mAbs and BiTE

Blinatumomab (BiTE antibody) is a novel immunotherapy that

recruits the forces of T cells and guides them against lymphoblastic

cells by binding CD3 expressed on the surface of T cells and CD19

expressed on the surface of B cell lines (151, 152). It was approved

by FDA in 2014 for the treatment of Ph-negative R/R precursor B-

ALL. However, approximately 50% of R/R B-ALL patients do not

respond to blinatumomab. Non-responders consistently express

higher levels of PD-1 during blinatumomab treatment, and the

levels of PD-L1 and PD-L2 increase on residual tumor cells in BM

after treatment. The T-cell responses of blinatumomab against
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leukemia are potentiated by blocking CTLA-4 and PD-L1 signaling

pathways (153, 154). This finding illustrates that the response of

blinatumomab is correlated with the molecular level of IC.

Wunderlich et al. (155) reported that pembrolizumab combined

with blinatumomab increases the clearance of B-ALL in mice and

reverses T-cell lymphopenia induced by blinatumomab. PD-1

inhibition also enhances the efficacy of blinatumomab in a UCB/

PDX model of recurrent pediatric B-ALL. Krupka et al. (156)

constructed the CD33/CD3 BiTE antibody AMG 330. They found

that PD-L1 on primary AML cells is strongly upregulated after

adding AMG 330 in the ex vivo culture, and blocking PD-1/PD-L1

axis enhances the AMG 330-induced lysis of AML cells by reversing

T-cell-induced immune escape. Herrmann et al. (157) fused the

extracellular domain of PD-1 (PD-1ex), which naturally holds a low

affinity to PD-L1, with an aCD3.aCD33 BiTE®-like scaffold to

form a bifunctional checkpoint inhibitory T-cell-binding (CiTE)

antibody. The CiTE antibody is more potent in binding to AML

cells and T cells, thereby increasing the function of T-cell effectors,

and minimizing iRAEs associated with the systemic application of

ICB. From the above several ex vivo studies and animal

experiments, we can conclude that BiTE and PD-1 signaling

blockade have good synergy in leukemia treatment. Nevertheless,

there are few completed clinical studies on the combination therapy

of blinatumomab and PD-1/PD-L1 mAbs for leukemia. A large

sample phase II trial comparing blinatumomab alone to
Frontiers in Immunology 09
blinatumomab with nivolumab in patients with relapsed B-ALL is

currently underway (www.clinicaltrials. as # gov NCT04546399).
6.7 Clinical trials of PD-1/PD-L1 mAbs
in leukemia

A number of clinical trials on leukemia treatment with PD-1/

PD-L1 mAbs have been performed nowadays. The overall response

rate (ORR) of pembrolizumab alone is 0% in eight patients with

AML (158). When combined with cytarabine, the ORR is 46%

(116); the former grade 3–4 iRAEs are 25% (158), and the latter

grade ≥3 iRAEs are 14% and self-limiting (116). The median

recurrence-free survival (RFS) of AML patients treated with

nivolumab alone is 8.48 months (159). When combined with

cytarabine–idarubicin, the RFS is 18.54 months (160); the former

grade 3–4 iRAEs are 27% (159), and the latter are 13.6% (160).

From the above data, we assume that the efficacy of pembrolizumab

and nivolumab alone is significantly lower than that of the

combination, and the incidence of iRAEs is also higher with the

single agent than with the combination. The median overall survival

(mOS) is 11.1 months for AML with 200 mg of pembrolizumab in

combination with 1.5–2 g/m2 cytarabine (116), 21 months when

combined with 1.5–2 mg/m2 cytarabine (105), and 10.8 months

when combined with decitabine (118). Regarding the data from the
TABLE 2 CAR-T combined with PD-1/PD-L1 for leukemia treatment.

Condition CAR-T
product

Design Phase Outcome

(72) ALL CD19
CAR-T,
CD22
CAR-T

Anti-CD19 and anti-CD22 CAR T cells combined with
PD-1-CD28 fusion protein

Preclinical
trial

Increase function of CAR-T cells against leukemia and
protect CAR-T cells from leukemia-induced suppression

(147) CLL CD19
CAR-T

- Clinical
trial

The percentage of CAR-T cells with CD8+PD-1+ phenotype
is significantly lower in complete-remission patients
compared with partially responding and nonresponding
patients.

(146) CML CD19/
△PD-1
CAR-T

Integrate PD-1 shRNA into a third-generation CAR
plasmid

Preclinical
trial

Suppress the immunosuppression of TME and prolong the
activation time of CAR-T cells

(145) CML aPDL1-
CART

Integrate a PD-L1-targeted scFv fusion protein into a
CAR

Preclinical
trial

Successfully prevent the development of PD-L1-expressing
leukemia xenografts in immunocompromised mice

(144) AML CLL-1
CAR-T

Silence the expression of PD-1 in CLL-1 CAR-T Preclinical
trial

The killing ability of CLL-1 CAR-T is further enhanced

(148) AML CD19-
CAR-T,
CD123-
CAR-T

CAR-T treated with JQ1 [JQ1(BET inhibitors) can
suppress PD-1 expression in T cell]

Preclinical
trial

The antileukemia potency and anti-exhaustion ability of
CAR-T cells are enhanced

(149) R/R
AML

CLL-1
CAR-T

CLL-1 CAR-T cells with PD-1 knockdown in 2 patients Clinical
trial

Both patients achieved molecular complete remission with
incomplete hematologic recovery at 28 days

(150) ALL PD-1-
CD28 IFP
CAR-T

Fuse different variants of the extracellular domain of PD-
1 to the intracellular domain of CD28 to create multiple
variants in the protein length of the PD-1-CD28 IFP

Preclinical
trial

IFP variants with physiological PD-1 length ameliorate CAR
T cell effector function and proliferation in response to PD-
L1+ tumor cells in vitro and prolonged survival in vivo
CAR-T, chimeric antigen receptor T-cell immunotherapy; ALL, acute lymphoblastic leukemia; PD-1, programmed cell death protein 1; CLL, chronic lymphocytic leukemia; CML, chronic
myeloid leukemia; shRNA, short hair RNA; TME, tumor microenvironment; PD-L1, programmed death-ligand 1; CLL-1, C-type lectin-like molecule-1; BET, bromodomain and extra terminal
domain BET; IFP, immunostimulatory fusion protein.
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current sample, the efficacy of pembrolizumab combined with low-

dose cytarabine is superior to that of the high-dose one, and the

efficacy of pembrolizumab combined with decitabine or high-dose

cytarabine is similar. The iRAEs are 42% in AML patients treated

with pembrolizumab alone, the grade 3–4 iRAEs are 25% (158), the

iRAEs are 40% when treated with nivolumab alone, the grade 3–4

iRAEs are 27% (159), and the incidence of adverse events is similar

for both drugs. The mOS for AML treated with avelumab–

azacitidine combination is 4.8 months (161), and that with

durvalumab–azacitidine combination is 13.0 months (162). The

ORR for AML treated with avelumab–azacitidine combination is

10.5% (161), that with nivolumab–azacitidine combination is 33%

(117), and that with durvalumab–azacitidine combination is 31.3%

(162). However, the grade 3–4 iRAEs in the avelumab combination

are less than 7.7% (163). Based on the current sample alone,

avelumab is less effective than pembrolizumab, nivolumab, and

durvalumab, but its incidence of iRAEs is much lower. Due to

differences in sample size and patient disease status among studies,

comparisons of efficacy and adverse effect assessments of PD-1/PD-

L1 mAbs among studies are subject to large errors. Regarding the

current sample, PD-1/PD-L1 mAbs are effective in the treatment of

leukemia, but the effect of single drug therapy is weak, and the effect

of combination is more considerable. The occurrence of iRAEs is

also not negligible, and large sample data are required to clarify the

curative effects and adverse effects of PD-1/PD-L1 mAbs. Studies on

PD-1/PD-L1 mAbs in CML, ALL, and CLL are few, and more

details about clinical trials on PD-1/PD-L1 mAbs in the treatment

of leukemia are shown in Table 3.
6.8 Future clinical scenarios of PD-L1/PD-1
inhibitors in AML

In sum, setting of either consolidation or maintenance where, in

the presence of PD-L1/PD-1 inhibitors at least partially restored

immune system, they could promote measurable residual disease

negativity. A very interesting therapeutic application, albeit of

limited use, of checkpoint inhibitors in AML, could be in the post

allo-HSCT setting, where, in the presence of AML relapse/

progression, these agents might be useful in augmenting the

immune reactivity of the graft, boosting the GVL effect, at the

expense of also enhancing iRAEs, in combination with other

chemotherapeutic drugs might improve drug sensitivity in

patients with R/R AML, and in combination with other T-cell

based immunotherapies such as CAR-T, BiTE, and Treg exhaustion

might enhance cytotoxic responses.
7 Limitations of ICB in the treatment
of leukemia

7.1 Limited efficacy of ICB treatment

Different from other preclinical studies, co-blockade of PD-1

with Tim-3 or PD-1 with TIGIT fails to restore the proliferation and
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degranulation of CD8+ T-cells from CLL patients (173, 174). There

are many other suppressive checkpoint molecules in T cells such as

A2A receptor, CD276, B7-H4, CD272, CTLA-4, LAG-3, etc. (16),

and they may also play an important role in exhaustion of CD8+ T-

cells. Besides, Radpour et al. (175) suggest that CD8+ T cells in

AML are dysfunctional mainly due to epigenetic silencing of

activating IC receptors rather than signaling by immune

inhibitory IC receptors. Kalinin et al. (176) block PD-1/PD-L1

signaling in CD19 CAR-T cells by co-expression of CD19-CAR and

PD-1-specific VHH domain of anti-PD-1 nanobody. Results show

that although the activation of CAR-T cells with low PD-1 level

increases, the survival and cytotoxicity of these cells are diminished.

Functional impairment caused by disrupted PD-1 signaling is

accompanied by faster maturation and upregulation of exhaustion

marker TIGIT in CAR-T cells. This result proves that for prolonged

CAR-T activity and successful target cell killing, the strength of

activation signal provided by CAR should be balanced by negative

signal from IC. It suggests simply eliminating/knocking out PD-1 is

not enough if one wants to optimize CAR-T cells by disposing of

negative co-stimulation. Moreover, AML is an aggressive, rapid

progressive disease, which does not allow the immune system to

develop a proper antileukemic response. A study shows robust

antigen-specific T cell responses are generated against AML cells

after localized implantation (subcutaneous), but not a systemic

(intravenous) route, the latter generates a tolerant state towards

the malignant cells. Which suggests the ideal scenario for

promoting a leukemia-specific T cell response will likely be in the

minimal residual disease setting (177). Furthermore, AML has a low

mutational burden and the newly formed antigens are expressed in

different other tissues of the host (16). In conclusion, there are some

experiments that have not found the exact effect of PD-1 signal

blocking, and the reasons for poor PD-1 efficacy are complex. This

may explain why PD-1 mAbs have suboptimal clinical efficacy.
7.2 Adverse reactions of ICB treatment

Additionally, the application of PD-1/PD-L1 mAbs is greatly

limited by adverse drug reactions during the clinical treatment of

leukemia patients. Godfrey et al. (158) concluded from a prospective

study that treatment with pembrolizumab after allo-SCT is feasible,

but it may be associated with serious iRAEs. A case study has reported

the combined use of azacitidine and tislelizumab (an PD-1 mAbs) to

treat relapsed AML posttransplantation. AML patients achieve

complete remission, but the patients successively develop serious

iRAEs and GVHD, eventually dying from GVHD complications

(178). Significant ICI-related toxicity can occur in multiple tissues

and organs, such as pneumonia, glomerulonephritis, hepatitis,

gastroenteritis, dermatitis, neurotoxicity, and others. Fortunately,

these symptoms are usually alleviated with the prompt use of

steroids (179). However, among the 75 R/R AML patients treated

with nivolumab, 85% develop infections during the study period, and

they are mostly severe. R/R AML patients treated with nivolumab are

more likely to develop infections when treated with corticosteroids

than those who are not (164). More adverse events during leukemia
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TABLE 3 Clinical trials of PD-1/PD-L1 mAbs in leukemia.

Study
population

Number
(n)

ICIs Target Study
design

Therapy regimen Clinical
benefits

iRAE

(116)R/R AML 37 Pembrolizumab PD-1 Phase II, open-
label, single-
arm,

Pembrolizumab 200 mg after 1.5–2 g/m2

cytarabine
ORR 46%
CRc rate 38%
mOS 11.1
months

Grade ≥3
iRAEs are 14%
and self-
limiting

(118)R/R AML 10 Pembrolizumab PD-1 Open-label,
single-arm,
single-
institution

Pembrolizumab 200 mg on day 1 of
every 3-week cycle, with decitabine 20
mg/m2 on days 8–12 and 15–19 of
alternative cycles starting with cycle 1.

mOS 10.8
months

iRAEs are 30%

(105)R/R AML 9 Pembrolizumab PD-1 Phase II,
retrospective
matched cohort

Cytarabine 1.5–2 mg/m2 every 12 hours
days 1–5 followed by pembrolizumab 200
mg on day 14, every 3 weeks for up to 2
years

mOS 21 months
1-year RFS 44%
1-year OS 67%

NR

(158)AML,
MRD, and
lymphoma
relapsed after
SCT

12 Pembrolizumab PD-1 Prospective
study

Pembrolizumab 200 mg every 3 weeks
for up to 2 years

AML ORR 0% iRAEs are 42%
Grade 3–4
iRAEs are 25%

(159)High-risk
AML

15 Nivolumab PD-1 Phase II, open-
label, single-
arm,

Nivolumab 3 mg/kg every 2 weeks for
cycle 6, then nivolumab every 4 weeks for
cycle 12, finally, nivolumab every 3
months until disease relapse

6-month RFS
57.1%
median RFS 8.48
months

iRAEs are 40%;
Grade 3–4
iRAEs are 27%

(164)R/R AML 75 Nivolumab PD-1 Single-center
retrospective
cohort study

Azacitidine with nivolumab or azacitidine
with nivolumab plus ipilimumab

All but 2
patients are
withdrawn from
the CPI trial
before
completion

53% experience
one or more
iRAEs and
grade 2–3
iRAEs are the
most common

(117)R/R AML 70 Nivolumab PD-1 Phase, open-
label, non-
randomized

Azacitidine 75mg/m2 days 1–7 with
nivolumab 3mg/kg on day 1 and 14,
every 4–6 weeks

ORR 33%
CR/CRi 22%

Grade 3–4
iRAEs are 11%

(160)AML or
High-risk MDS

44 Nivolumab PD-1 Phase, single-
arm

Cytarabine 1.5 g/m² on days 1–4 and
idarubicin 12 mg/m² on days 1–3.
Nivolumab 3 mg/kg is started on day 24
and continues every 2 weeks for up to a
year in responders

Median RFS
18.54 months
mOS 18.54
months.

Grade 3–4
iRAEs are
13.6%

(161)R/R AML 19 Avelumab PD-L1 Phase Ib/II,
open-label,
single-center,
non-
randomized

Azacitidine 75 mg/m2 on days 1–7 and
avelumab 3 mg/kg or 10 mg/kg on days 1
and 14, every 28-day

ORR 10.5%
mOS 4.8 months

Two patients
experience
iRAEs of grade
2 and grade 3
pneumonitis

(163)R/R AML 7 Avelumab PD-L1 Phase Ib/II,
open-label,
parallel cohort

Azacitidine 75 mg/m2 on days 1–7,
Avelumab 10 mg/kg (max dose: 2000
mg) on day 1 and day 14, gemtuzumab
ozogamicin 3 mg/m2 (max dose: 4.5 mg)
on day 8

CR 14% Grade ≥3
iRAEs are 0%

(163)R/R AML 13 Avelumab PD-L1 Phase Ib/II,
open-label,
parallel cohort

Azacitidine 75 mg/m2 on days 1–7,
venetoclax 400 mg on days 1–28 (cycle
1)/days 1–21 (cycles 2+), avelumab 10
mg/kg (max dose: 2000 mg) on day 1
and day 14

CRi 15%
mOS 4.8 months

One patient
experience
grade 3 iRAE

(165)AML 7 Avelumab PD-L1 Phase I, open-
label, single-
arm

Decitabine 20mg/m2 days 1–5, every 28-
day, avelumab 10mg/kg day 1, every 14-
day

CR 20%
mOS 3.2 months

NR

(162) Elderly
AML

64 Durvalumab PD-L1 Phase, open-
label,
randomized

Azacitidine 75 mg/m2 on days 1–7 with
durvalumab 1500 mg on day 1 every 4
weeks

ORR 31.3%
OS 13.0 months
DOR 24.6 weeks

iRAEs. are
28.1%

(Continued)
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TABLE 3 Continued

Study
population

Number
(n)

ICIs Target Study
design

Therapy regimen Clinical
benefits

iRAE

(166)AML 16 Atezolizumab PD-L1 Phase Ib, open-
label, non-
randomized,
multicenter

Guadecitabine 60 mg/m2 on days 1–5
and atezolizumab 840 mg on day 8 and
day 22 in 28-day cycles

87.5% patients
die during the
trial period due
to disease
progression or
AEs

Grade 3–4
TRAEs of
Atezolizumab
are 18.8%

(167)R/R AML 11 Atezolizumab PD-L1 Phase Ib. open-
label,
multicenter,
non-
randomized

Atezolizumab (840 mg) on day 22 of
cycle 1, in subsequent 28-day cycles,
atezolizumab on days 8 and 22.
Magrolimab two priming doses of 1 mg/
kg on days 1 and 4 of cycle 1, then 15
mg/kg on day 8, and 30 mg/kg on day 11
of cycle 1, starting on day 15,
magrolimab maintenance 30 mg/kg/week.

18.2% patients
withdraw from
the study, and
81.8% patients
die

AEs related to
atezolizumab
are 36.4%

(168)R/R AML 27 Tislelizumab PD-1 Phase II, open-
label, single-
arm,
nonrandomized

Azacitidine 75 mg/m2 daily, day 1–7 or
decitabine 20 mg/m2 daily, day 1–5 plus
CAG regimen (cytarabine 100 mg every
12h, day 1–5; aclarubicin 20 mg daily,
day 1–5 or idarubicin 10 mg day 1, 3 and
5; and G-CSF 5 mg/kg/day, from day 0 to
end) with tislelizumab 200 mg day 6 or
day 8

ORR 63%
CR 44%
CRi 7%
mOS 9.7 months
EFS 9.2 months

Grade 2–3
iRAEs are
14.8%

(127)CML 31 Nivolumab PD-1 Phase Ib Dasatinib 100 mg (CP) or 140 mg (AP)
once daily and nivolumab 0.3 mg/kg, 1
mg/kg, or 3 mg/kg every 2 weeks for ≤2
years followed by ≤1 year of dasatinib
only

26% patient
achieve MMR at
months 12
29% patient
achieve MMR at
months 24

Only 2 serious
AEs (both
grade 2) are
considered
drug-related

(169)MDS and
CMML

33 Atezolizumab PD-L1 Phase I/II,
multicenter

Guadecitabine 30 mg/m2 and escalating
to 60 mg/m2 days 1–5, atezolizumab
840mg days 8 and 22 of a 28-day cycle.

ORR 33%
mOS 15.1
months
Median PFS 7.2
months

iRAEs are 36%
(4 grade 3, 3
grade 2, 5
grade1)

(132) ALL and
MRD

12 Pembrolizumab PD-1 Phase Pembrolizumab 200 mg every 3 weeks mOS 12.7
months
8% experience a
complete MRD
response, which
last 3 weeks

iRAEs are 8%
(grade 3
Stevens-
Johnson
syndrome)

(140) R/R CLL 17 Pembrolizumab PD-1 Phase Ib Pembrolizumab 200 mg every 3 weeks
plus dinaciclib 7 mg/m2 on day 1 and 10
mg/m2 on day 8 of cycle 1 and 14 mg/m2

on days 1 and 8 of cycles 2 and later

ORRs 29.4%
median PFS 5.2
month
median DOR
10.3 months
mOS 21.7
months

TRAEs, any
grades are
76.5%, grade
3–4 are 52.9%

(141)CLL and
SLL

36 Nivolumab PD-1 Phase I/IIa,
open-label;
two-part

Ibrutinib (420 mg or 560 mg) in
combination with nivolumab (3 mg/kg
every 2 weeks)

ORRs 61%
median DOR
19.2 months
The median
duration of
stable disease or
better is 19.7
months

The most
common grade
3–4 iRAEs are
rash (8%) and
increased ALT
(2%)

(142)CLL and
SLL

10 Nivolumab PD-1 Phase II Nivolumab 3 mg/kg every 2 weeks each
4-week cycle, starting cycle 1 day 1 for a
total of 24 cycles, ibrutinib 420 mg once
daily starting cycle 2 day 1

CR/CRi 30% One patient
experiences a
grade 2
immunological
toxicity

(Continued)
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TABLE 3 Continued

Study
population

Number
(n)

ICIs Target Study
design

Therapy regimen Clinical
benefits

iRAE

(170)AML
relapsed after
SCT

1 Tislelizumab PD-1 Case report Tislelizumab 100 mg on day 1 and
azacitidine 100 mg on days 1–7

Achieve CR Patient
experience
moderate
GVHD and
iRAEs

(171)AML
relapsed after
SCT

1 Pembrolizumab PD-1 Case report Pembrolizumab 100 mg CR lasting 10
months or more

NR

(171)AML
relapsed after
SCT

1 Nivolumab PD-1 Case report Nivolumab 0.3–1 mg/kg, 5 times a week Achieve
molecular
disease
stabilization

NR

(171)AML
relapsed after
SCT

1 Nivolumab PD-1 Case report Nivolumab 100 mg No objective
response

NR

(172)ALL
relapsed after
SCT

1 Nivolumab PD-1 Case report Nivolumab 40 mg every 2 weeks PET-CT show
near complete
resolution of
pre-existing
lesions, with
residual low-
grade metabolic
uptake in the
renal lesion

Owing to
hepatic
derangement,
nivolumab is
suspended

(172)ALL
relapsed after
SCT

1 Nivolumab PD-1 Case report Nivolumab 40 mg every 2 weeks for two
cycles, then 80 mg every 2 weeks

Blast counts
remain static for
9 weeks, but
increase after the
fifth dose of
nivolumab

LDH and
serum
phosphate
increase, and
generalized
bone pain
F
rontiers in Immun
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ICIs, immune checkpoint inhibitors; iRAE, immune-related adverse events; R/R, relapsed/refractory; AML, acute myeloid leukemia; PD-1, programmed cell death protein 1; ORR, overall
response rate; CR, complete remission; CRc, composite complete remission; OS, overall survival; mOS, median overall survival; RFS, recurrence-free survival; NR, not report; MRD, measurable
residual disease; SCT, stem cell transplantation; CPI, checkpoint inhibitor; CRi CR with incomplete recovery; MDS, myelodysplastic syndrome; PD-L1, programmed death-ligand 1; DOR,
duration of response; AE, adverse events; TRAE, treatment-related adverse event; G-CSF, granulocyte-colony-stimulating factor; EFS, event-free survival; CML, chronic myeloid leukemia; CP,
chronic Phase; AP, accelerated Phase; MMR, major molecular response; CMML, chronic myelomonocytic leukemia; PFS, progression-free survival; ALL, acute lymphoblastic leukemia; MRD,
measurable residual disease; CLL, chronic lymphocytic leukemia; SLL, small lymphocytic lymphoma; ALT, alanine aminotransferase; LDH, lactate dehydrogenase.
TABLE 4 Adverse events after PD-1/PD-L1 blockade.

Study
population

Antibody Participants
(n)

grade ≥3
hematological
adverse events

grade ≥3 Nonhematological
adverse events

solutions

(116)R/R AML Pembrolizumab 37 Febrile neutropenia
62%; Hemolytic
anemia 3%

Hypokalemia 3%; ALT increase 5%; AST
increase 5%; Alkaline phosphatase increase
5%; Lymphocytic infiltration of liver 3%;
Catheter-related infection 8%; Clostridium
difficile colitis 3%; Hepatic infection 3%;
Lung infection 26%; Typhlitis 3%;
Pulmonary edema 3%; Maculopapular rash
5%

Median time to administration of
systemic steroids after
pembrolizumab and total duration
of steroids is 15 (range, 5–23) and
14 (range, 1–35) days, respectively.
iRAEs are self-limiting and fully
resolve after administration of
systemic steroids.

(158)AML,
MRD and
Lymphoma
relapsed after
SCT

Pembrolizumab 12 Hemolytic anemia
8%; Idiopathic
thrombocytopenic
purpura 8%

Fatigue 8%; Fever 17%; Pneumonitis 17%;
Hyperthyroidism 8%; Secondary
malignancy 8%

Steroid therapy/discontinue
pembrolizumab therapy

(Continued)
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TABLE 4 Continued

Study
population

Antibody Participants
(n)

grade ≥3
hematological
adverse events

grade ≥3 Nonhematological
adverse events

solutions

(171)AML
relapsed after
SCT

Pembrolizumab 1 NR Skin GVHD Complete remission after 30 days
with topical corticosteroids

(159)High-risk
AML

Nivolumab 15 Febrile neutropenia
7%; Hemolysis 7%

ALT increase 13%; Pneumonitis 13%;
Hypotension 7%; Abdominal pain 7%;
Vomiting 7%; Sepsis 7%; AST increase 7%

Steroid therapy/discontinue
nivolumab therapy

(160)AML or
High-risk MDS

Nivolumab 44 Febrile neutropenia
32%

Nausea 2%; Diarrhoea 16%; Muscle
weakness 2%; Syncope 2%; Elevated
transaminases 2%; Elevated bilirubin 2%;
Rash 5%; Colitis 4%; Pancreatitis 2%;
Cholecystitis 2%; Small bowel obstruction
2%

All patients are treated with steroids
and nivolumab interruption and are
successfully re-challenged with
nivolumab

(164)R/R AML Nivolumab 75 Neutropenia 84%;
Lymphopenia 79%;
Combined cytopenia
71%

85% patients develop an infection during
the study period, with bacterial (72%),
fungal (16%), viral (11%), and parasitic (<
1%)

Infliximab/steroid therapy/
antimicrobials/antibacterial

(161)R/R AML Avelumab 19 Anemia 10.5%;
Neutropenia 10.5%;
Lymphopenia 5.3%

Diarrhea 5.3%; Fatigue 5.3%; Nausea 5.3%;
Anorexia 5.3%; Pneumonitis 5.3%

Self-resolved/steroid therapy/anti-
infective therapy/antiviral

(163)R/R AML Avelumab 13 Febrile neutropenia
23%

Fatigue 8%; Gastrointestinal hemorrhage
8%; ALT/AST increase 8%; Increased
bilirubin 8%; Infection 46%; Pericarditis
8%; Syncope 8%

NR

(165)AML Avelumab 7 Febrile neutropenia
86%

Fatigue 14%; Weight 14%; Hypertension
57%; Edema 14%; Hypoxia 57%; Acute
kidney injury 14%; Hypokalemia 29%; Oral
mucositis14%; Pneumonitis 29%; Heart
failure 29%

NR

(166)AML Atezolizumab 16 Febrile neutropenia
56.3%; Anemia
18.8%;
Thrombocytopenia
18.8%; Neutrophil
count decrease 12.5%

Pneumonia 31.3%; Sepsis 18.8%;
Hypokalemia 18.8%; Hypophosphatemia
18.8%; Failure to thrive 12.5%; Pneumonia
aspiration 12.5%

NR

(167)R/R AML Atezolizumab 11 Anemia 36.4% Pneumonia 36.4%; Fatigue 18.2%;
Hypokalemia 36.4%; Hypertension 18.2%

NR

(162)Elderly
AML

Durvalumab 64 TEAEs:
Thrombocytopenia
42.2%; Anemia 30%;
Neutropenia 36%

TEAEs: Constipation 57.8%;
imAEs: Pneumonitis 6.25%; Dermatitis
1.5%; Enteritis 1.5%; Arthritis 1.5%;
Myocarditis 1.5%; Hepatitis 1.5%;
Thyroiditis 1.5%; Bullous pemphigoid 1.5%;
Colitis 1.5%; Progressive multifocal
leukoencephalopathy 1.5%

NR

(127)CML Nivolumab 31 Anemia 13%;
Thrombocytopenia
16%; Neutropenia
16%; Febrile
neutropenia 6%

Diarrhea 13%; Rash 6%; Nausea 3%;
Vomiting 3%; Pyrexia 3%; Asthenia 3%

NR

(132)ALL and
MRD

Pembrolizumab 12 Neutrophil count
decrease 8%

Hypertension 25%; Stevens-Johnson
syndrome 8%

After initiation of prednisone, all
lesions resolve within days for
Stevens-Johnson syndrome.

(141)CLL and
SLL

Nivolumab 36 Neutropenia 53%;
Anemia 25%;
Thrombocytopenia
14%; Febrile
neutropenia 11%

Rash 6%; Pneumonia 14%; Increased lipase
14%; Hypokalemia 8%; Increased amylase
8%; ALT increase 3%; Hypertension 6%

NR

(Continued)
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treatment with ICIs are shown in Table 4. Chemotherapy intolerance

is an important cause of treatment discontinuation in leukemia

patients, and reducing adverse effects during ICI therapy while

aiming to improve their efficacy is equally important. Accordingly,

the development of well-tolerated ICIs and the exploration of clinical

protocols with few adverse effects of ICIs are the keys to solving the

problem. However, given the insufficient data on the clinical

application of ICIs for leukemia, further exploration is required to

optimize ICI therapy.
8 Conclusion

Blocking PD-1/PD-L1 achieves encouraging outcomes as

shown by ex vivo studies and animal models, but clinical trials on

PD-1/PD-L1 mAbs as single-agent in leukemia treatment show

suboptimal results and varying degrees of adverse drug reactions.

Fortunately, combinations of PD-1/PD-L1mAbs with other

immunotherapies have shown quite promising, including the

enhancement of GVL effect and reduction of GVHD in HSCT,

the improvement of T-cell response in BiTE or CAR-T, and the

application to multidrug chemotherapy to enhance drug sensitivity.

In conclusion, ICB therapy opens new horizons for tumor

immunotherapy, and future research will focus on refining

combination regimens of ICIs to modulate the immune

environment so that leukemia patients can maximize the benefits

of ICB therapy.
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TABLE 4 Continued

Study
population

Antibody Participants
(n)

grade ≥3
hematological
adverse events

grade ≥3 Nonhematological
adverse events

solutions

(180)AML Nivolumab 1 NR PD-1 inhibitor-associated vitiligo-like
depigmentation

Routine skin surveillance and no
additional treatment

(181)AML
relapsed after
allo-SCT.

Pembrolizumab 2 NR Pembrolizumab induce acute corneal
toxicity after allo-SCT

Topical steroids, artificial tears and
therapeutic soft contact lens/Topical
steroids, topical serum eye drops,
therapeutic soft contact lens and
punctal plugs, bilateral temporary
tarsorrhaphy

(182)CLL Pembrolizumab 1 Autoimmune
hemolytic anemia

NR Prednisone/Rituximab/Ibrutinib
R/R, relapsed/refractory; AML, acute myeloid leukemia; ALT, alanine aminotransferase; AST, aspartate aminotransferase; iRAEs, immune-related adverse events; MRD, measurable residual
disease; SCT, stem cell transplantation; NR, not reported; GVHD, graft versus host disease; MDS myelodysplastic syndromes; TEAEs, treatment-emergent adverse events; imAEs, immune-
mediated adverse events; CML, chronic myeloid leukemia; ALL, acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; SLL, small lymphocytic lymphoma; allo-PBSCT, allogeneic
peripheral blood stem cell transplantation.
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