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Human behavior recognition plays a crucial role in the field of smart education.

It o�ers a nuanced understanding of teaching and learning dynamics by

revealing the behaviors of both teachers and students. In this study, to

address the exigencies of teaching behavior analysis in smart education,

we first constructed a teaching behavior analysis dataset called EuClass.

EuClass contains 13 types of teacher/student behavior categories and provides

multi-view, multi-scale video data for the research and practical applications

of teacher/student behavior recognition. We also provide a teaching behavior

analysis network containing an attention-based network and an intra-class

di�erential representation learning module. The attention mechanism uses a

two-level attention module encompassing spatial and channel dimensions. The

intra-class di�erential representation learning module utilized a unified loss

function to reduce the distance between features. Experiments conducted on

the EuClass dataset and a widely used action/gesture recognition dataset, IsoGD,

demonstrate the e�ectiveness of our method in comparison to current state-of-

the-art methods, with the recognition accuracy increased by 1–2% on average.

KEYWORDS

teaching behavior analysis, attention mechanism, intra-class di�erential representation

learning, human behavior, behavior recognition

1. Introduction

Human behavior recognition technology encompasses the analysis and identification

of human body postures, movements, and specific actions ultimately leading to the

recognition of human behaviors. Currently, human-body recognition techniques are

applied in smart education, smart security, human-computer interaction, and health

monitoring, among other fields. Various behavior recognition methods have emerged as

technologies have continued to advance. Commonly employed human behavior recognition

methods include machine learning methods based on feature extraction and classifier

training. Early on, probabilistic and statistical methods (Yamato et al., 1992; Natarajan

et al., 2010; Shi et al., 2011) were often utilized for behavior identification. Many

innovative methods have since surfaced with the advent of deep learning, such as

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) (Xu et al.,

2014; Muhammad et al., 2021; Shi et al., 2023a,b; Tian et al., 2023; Zhaowei et al.,

2023), which have been extended to teaching behavior analysis tasks (Li et al., 2021;

Lin et al., 2021; Xie et al., 2021; Zhao et al., 2021; Gu and Li, 2022; Guo, 2022).
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Despite the successes of these methods, certain challenges

remain. Many approaches rely on datasets for training and

testing purposes, but most widely used datasets are confined

to controlled laboratory settings. These settings have limited

environmental variability, allow for only negligible changes in

perspective and scale, and do not reflect the difficulty of discerning

behaviors from intricate backgrounds or low-light conditions.

The environmental conditions within which actual teaching and

learning behaviors are performed often entail greater complexity

and dynamic shifts than a laboratory. There is a need to curate

datasets that mirror these real-world fluctuations, more closely

approximating authentic classroom conditions to ensure optimal

recognition outcomes.

Furthermore, given that classroom teaching behavior

constitutes a continuous sequence of actions, it is imperative not

only to comprehend spatial attributes within individual frames of

video data but also to capture temporal patterns. In this context,

employing the attention mechanism to grasp both temporal

and spatial fluctuations within actions is crucial. Additionally,

disparities exist among distinct feature maps within the same layer

of the network architecture. Certain feature maps may encapsulate

more informative content while others do not. Accordingly, it is

essential to account for the correlation between different feature

maps to enhance the efficacy of feature representation.

It is worth noting that there is a substantial difference

between classroom teaching behavior and general behavior.

Classroom settings inherently impose constraints, so teaching

behavior analyses primarily focus on the upper body while

excluding movements of the lower body and other regions.

Consequently, developing a unified feature representation

model is essential to mitigate feature differences arising

from differing distances and viewing angles within the same

class of samples, as well as to prevent interference from

environmental variables.

We constructed a dedicated teaching behavior dataset in

this study in an effort to resolve the problems described above.

We also developed a teaching behavior analysis network which

contains an attention-based network and an intra-class differential

representation learning module. The attention mechanism uses

a two-level attention module spanning spatial and channel

dimensions, while the intra-class differential representation

learning module uses a unified loss function to reduce the distance

between features.

The contributions of this work can be summarized as follows:

1. We compile a classroom teaching behavior dataset

that encompasses both student and teacher actions. A

comprehensive set of classroom teaching data is curated to

meticulously capture intricate classroom behavior dynamics,

through the utilization of different perspectives and scales.

The dataset will be publicly available.

2. A multi-view and multi-scale behavior recognition method

based on the attention mechanism is proposed. This method

comprises an attention mechanism module coupled with an

intra-class differential representation learning module. The

modules collectively mitigate the impact of environmental

variables on recognition outcomes, enhancing the model’s

adaptability to real-world scenarios.

3. The proposed approach is empirically validated through

experiments on our EuClass dataset and the widely used

public IsoGD dataset. The results indicate that our method

outperforms other state-of-the-art methods.

The rest of the paper is organized as follows. Section 2 reviews

previous work relevant to the present study. Section 3 outlines the

proposed method in detail. Section 4 introduces the new collected

dataset and Section 5 presents the evaluation results. Section 6

provides a summary and conclusion.

2. Related works

2.1. Behavior recognition method

In recent years, behavior recognition has emerged as a pivotal

subject in the field of computer vision research. There have been

numerous studies on classroom teaching behavior recognition. Li

et al. (2021), for instance, used a support vector machine (SVM)

and CNN to obtain characteristic data for classroom teaching

behavior, achieving heterogeneous support vector samples for

online learning behavior. They significantly enhanced recognition

accuracy, with an evaluation error of 1.9% with 20 iterations.

In another study, Xie et al. (2021) used feature engineering

in conjunction with k-means clustering (KMC) on classroom

surveillance videos to perform cluster analysis on different student

groups, effectively identifying abnormal behavior among college

students. Lin et al. (2021) used continuous frames captured by

classroom cameras as input images for their system coupled with

skeleton data collected from the OpenPose framework. Feature

extraction was performed to represent feature vectors of human

poses, including normalized joint positions, joint distances, and

bone angles to ultimately identify student behaviors. The approach

exhibited a 15.15% increase in average precision and a 12.15% surge

in average recall compared to skeleton-based methodologies.

Guo (2022) used a database containing 2,500 images of five

behaviors (e.g., raising hands, sitting up, writing, sleeping, and

mobile phone usage) for object detection; they extracted frames

from classroom screen recording videos using the OpenCV library,

then transformed the virtual network into MobileNet to complete

the fusion function. Compared with the traditional single-shot

detector (SSD) method, their model more accurately recognized

small objects with no significant decrease in recognition speed.

Gu and Li (2022) proposed a fast target detection method based

on FFmpeg CODEC and MHI-HOG joint features, establishing

a behavior recognition model through a joint back propagation

(BP) neural network-SVM joint classifier based on a lookup table.

Their classifiers effectively facilitated the establishment of smart

classrooms. Zhao et al. (2021) and other researchers pioneered the

concept of a “teacher set” within extensive teaching videos. Building

upon this concept, they developed a teacher-set identification and

extraction algorithm, the teacher-set IE algorithm. An advanced

3D bilinear pooling-based behavior recognition network (3D BP-

TBR) was proposed to categorize teacher behaviors. Experimental

results demonstrated the superior performance of 3D BP-TBR

across public and self-built datasets (TAD-08).
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2.2. Attention mechanism

The attention mechanism is based on the findings of cognitive

researchers. The human brain prioritizes important information

and disregards unimportant information during information

processing. This concept has been applied to computer vision

technology, where its incorporation has bolstered the performance

of network models, making it a popular tool in many computer

vision tasks (Li et al., 2019a; Chen et al., 2022). In the context of

behavior recognition, the presence of occluders and background

interference can affect recognition accuracy. Some researchers have

used the attention mechanism to guide their networks’ focus on the

behavior being analyzed.

To enhance the quality of spatio-temporal features extracted

from sparse skeleton data, Xia et al. (2022) introduced two

attention modules: Motion-guided Channel Attention Module

(MGCAM) and Spatio-Temporal Attention Module (STAM).

MGCAM calculates temporal frame-level motion to establish

interdependence between feature channels. STAM, conversely,

orchestrates context-aware collaboration across space and time

at the sequence level, extracting attention features that account

for long-range dependencies. The fusion of MGCAM and STAM

resulted in LAGA-Net, an architecture that extracts discriminative

features by integrating local and global representations of

skeleton sequences.

In the realm of video saliency detection, Xu et al. (2021)

deconstructed spatio-temporal feature learning into distinct

stages. They innovatively combined several attention models

into each stage to concentrate on information from different

representation subspaces at varying points. This approach

significantly enhances the efficacy of saliency detection, resulting

in improved overall performance.

2.3. Feature representation optimization

Feature representation optimization involves refining the way

data is represented to enhance its compatibility with machine

learning algorithms. This is done by transforming raw data into

sets of feature vectors suitable for algorithmic input. A well-

crafted feature representation assists algorithms in uncovering data

patterns and regularities more effectively, thereby improving the

performance and generalization ability of the model. Currently,

feature representation optimization is widely applied in the fields

of machine learning and deep learning.

Ding et al. (2021) introduced a method called channel

multiplexing to economize memory usage and model parameters.

Channel multiplexing involves using different convolution kernels

to generate multiple feature maps within the same convolutional

layer. The feature maps are then combined and input to

the subsequent convolutional layer, imbuing the network with

variations by integrating diverse depths and widths into a

single convolutional layer. Gomez et al. (2017) proposed a new

self-supervised learning framework, CMP, to optimize feature

representation by learning the spatial relationship between different

objects in videos. This method has achieved excellent performance

across various vision tasks.

Xue et al. (2021) proposed a multi-objective feature selection

method based on reinforcement learning, which guides the

model to select optimal features according to a reward function.

Their model achieved better results than traditional feature

selection methods. Qian et al. (2021) introduced a multi-

level feature optimization framework tailored to enhancing the

generalization and temporal modeling capabilities of learned

video representations. The process involves leveraging high-level

features derived from original and prototype contrastive learning

to construct distribution maps. These maps, in turn, guide the

acquisition of low-level and mid-level features. Zotin et al. (2018)

used classifiers based on fuzzy logic in order to capture all

the nuances of uncertainty encountered. Versaci et al. (2022)

proposed an innovative data classification procedure based on

fuzzy similarity cumulations capable of classifying data by grouping

them according to similarity, in a fuzzy sense, by extracting for

each class a reduced set of data representing that particular class. Li

et al. (2023a) leveraged the idea of information bottleneck to refine

the gesture feature and avoided the influence of environmental

interference like the illumination and background.

3. Proposed method

3.1. Overview

As shown in Figure 1, we developed a novel method for

recognizing actions in classroom behavior videos. This method

uses a multi-view and multi-scale framework coupled with an

attention mechanism. The process begins by extracting video

features using the I3D model and then implementing a two-layer

attentionmechanismmodel to focus on the spatiotemporal features

of the behaviors. The spatiotemporal attention module deploys a

self-attention mechanism to identify spatial location information

within the human area of the video. Concurrently, the channel

attention mechanism prioritizes channels that are more relevant to

the recognition task and have richer information. This refinement

improves the feature representation capability.

Acknowledging the variability introduced by real-world

classroom settings where the camera captures students and teachers

from various distances and angles we designed ourmodel to include

an intra-class differential representation learning module. This was

achieved by constructing two weight-sharing networks, facilitating

the learning of target representation differences across different

scales and perspectives. By unifying the loss function to mitigate

intra-class differences, this module assists in learning behavioral

features that are robust and representable.

3.2. Attention mechanism

The position and posture of the human body captured in a

video change over time, and the convolution operation creates

issues in the local receptive field, so establishing consistent

features linked to the human body area across a temporal

range is challenging. To address this, we developed a two-level

spatiotemporal attention module comprised of a spatial attention
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FIGURE 1

Structural diagram of multi-view and multi-scale behavior recognition method based on attention mechanism.

FIGURE 2

Behavior recognition based on a two-level attention mechanism.

module (SATT) and a channel attention module (CATT), as shown

in Figure 2.

As depicted in Figure 3, the SATT architecture captures

the features of the spatial dimension, then the input features

are embedded through a convolution operation. The dimension

transformation operation of the matrix generates a query matrix

Q, key matrix K, and value matrix in the attention mechanism

V. Matrix multiplication is performed on the Q and K matrices

to model the spatial relationship between any two positions of

the feature. Softmax is then applied for normalization processing,

generating a spatial distribution matrix of attention weights. The

calculation process of matrix s is:

sij =
exp (QiKj)∑N
j=1 exp (QiKj)

(1)

where Q ∈ R N×C , K, V ∈ R C×N (N = H × W) represent the

embedding matrix of A. The coefficients H, W, and C denote the

height, width, and channel of the feature map; sij is an element of

the spatial attention weight distribution matrix that represents the

similarity between position i and position j. The output of SATT

can be expressed as follows:

Ei = α

N∑

j=1

(sijVj)+Ai (2)

where E is the spatial attention result, which is multiplied by

S and V, then multiplied by the learnable parameter α for

element-wise summation with feature A. Each location in E is the

result of a weighted and selective aggregation of features from
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FIGURE 3

Spatial attention module structure. This module is designed to capture the relations between features in the spatial domain. It leverages a

self-attention structure with the features from I3D as Q, K, and V, respectively. Then the output feature is yielded via a weighted sum.

all locations with the original features. Therefore, each location

contains information from the global context.

The feature map of each channel can be viewed as a high-level

semantically specific response to the current task. It is associated

with different semantic responses. The channel attention module

explicitly models the interdependencies between channels and

captures contextual information in the channel dimension. The

channel attention module operates similarly to the spatial attention

module, as shown in Figure 4. The input features A ∈ RC×H×W

are generated by matrix reconstruction Q ∈ RC×N , K,V ∈ RN×C,

and N = H×W. The channel attention weight distribution matrix

X ∈ RC×C is then obtained bymatrix multiplication ofQ andK and

Softmax normalization (Equations 3, 4). After multiplying matrices

X and V , the result is applied to A and multiplied by a learnable

parameter β .

xij =
exp (QiKj)∑C
j=1 exp (QiKj)

(3)

Ei = β

C∑

j=1

(xijVj)+Ai (4)

Similar to SATT, after the feature map of each channel is

established, the feature is processed by the spatio-temporal channel

attention module. This is the result of the selective aggregation of

features on all channels, which is the weighted sum of the original

features. The processed feature maps capture long-term semantics

among channels accordingly.

3.3. Di�erentiated representation learning
for similar behaviors

As shown in Figure 5, for the same type of classroom

teaching behavior videos, the visual presentation may vary

due to differences in performers’ distances from the camera

and varying viewing angles. This issue is prevalent in real-

world classroom teaching behavior videos. Importantly, these

factors unrelated to behavior recognition significantly influence

the recognition algorithm’s performance. This impact becomes

particularly pronounced when performers are distant from

the camera, making behavior identification challenging. The

overemphasizing distance information can lead to overfitting

problems, ultimately undermining the recognition accuracy of

videos captured from long distances.

Figure 1 illustrates the proposed intra-class differential

representation learning module, which was designed to learn

representations for action videos within the same category. The

module consists of a two-level feature learning network. One level

randomly inputs a certain type of action video. After determining

the input of this level, the other level makes selections according

to the similarity and selects a type of video similar to it. The video

with the smallest difference degree is used as the input of the
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FIGURE 4

Channel attention module structure. Similar to the spatial attention module structure, it also employs a self-attention structure but learns attention

from the features in di�erent channels.

FIGURE 5

Images of di�erent shooting angles of raising hands.

intra-class differentiation representation. The similarity selection

is realized by the following cosine similarity function:

cossim(u, v) =
u · v

‖u‖ · ‖v‖
(5)

where u and v are the vectors composed of two respective videos.

After determining the inputs for both levels, features are

extracted using a shared weight network. Considering that videos

of the same action type may exhibit considerable differences in

low-level representations, their high-level features should remain

consistent in the semantic space to ensure precise recognition

outcomes. Following feature extraction, it is necessary to ensure

feature consistency among differentially represented videos by

employing the following similarity function (James et al., 2013):

MSE=
1

n

n∑

i=1

(ŷi−yi)
2 (6)
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where n, yi, and ŷi represent the number of samples, actual value,

and predicted value, respectively.

4. Dataset construction for classroom
teaching analysis

In an analysis of classroom teaching behavior,Wen et al. (Zhang

et al., 2020) constructed a new dataset called SICAU-Classroom

Teaching Behavior which includes 584 images and 31,380

annotated objects. They integrated the CBAMattentionmechanism

module in YOLO3, enhancing the target behavior detection

rate. Fu et al. (2019) constructed a classroom learning behavior

dataset called ActRec-Classroom, which includes behaviors such

as listening, fatigue, raising hands, and reading/writing over a

total of 5,126 images. They employed OpenPose to extract human

skeletal, facial, and finger key point features, then applied a

CNN-based classifier to reach a behavior recognition accuracy

of 92.86%.

Sun et al. (2021) collected 128 videos from different subjects

across 11 different classroom settings. Their dataset consists

of a detection part, a recognition part, and a subtitle part.

The detection part incorporates a temporal detection data

module (4,542 samples) and an action detection data module

(3,343 samples), the recognition part contains 4,276 samples,

and the subtitle part contains 4,296 samples. They analyzed

classroom scenario characteristics and the technical intricacies

of each module (task), offering baseline comparisons with

mainstream datasets. Tang et al. (2022) manually constructed

a classroom teaching behavior detection dataset based on

real classroom videos. Their dataset includes four behavior

types: listening, looking down, lying down, and standing.

Fan (2023) developed a public behavioral dataset that focuses

on raising hands, which is directly drawn from genuine in-

class recordings.

Existing classroom teaching behavior datasets were

mainly constructed based on classroom recordings. This

approach has limitations in terms of data and source

variety, however, making it difficult to comprehensively

represent the intricate micro-behaviors taking place in

actual classrooms. Furthermore, given the involvement of a

significant number of teachers and students in these datasets,

safeguarding their personal information is crucial to prevent any

potential misuse.

Considering these concerns, we adopted a meticulous

approach by closely observing classroom dynamics. We

engaged a single teacher and a single student to partake in

isolated classroom teaching behavior recordings. We used the

recordings to formulate the EuClass dataset, which contains

1,456 video samples of 13 classroom behaviors. Different

perspectives and video scales can affect the accuracy of behavior

recognition, so when constructing the EuClass dataset, we

captured images of teachers’ teaching behaviors and students’

learning behaviors from different perspectives and different

scales as a targeted strategy to enhance recognition accuracy

(Table 1).

The human body is roughly symmetrical, so the angle of

view can be divided into three main types. When the body

TABLE 1 Basic information for the EuClass dataset.

Superclass Class Description

Sit Sitting upright Standing upright with feet flat on the

ground

Half-crossed legs Resting the sole of one foot on the

thigh of the other leg

Cross-legged sitting Crossing feet under the chair and

leaning forward slightly

Legs swinging Feet hanging in the air, rocking back

and forth

Stand Upright Feet flat on the ground, body upright

Bent over Lowering upper body toward the

floor

Walk Walking on one

side

Alternating feet to move the body

forward

Pacing Walking back and forth in a certain

area at a moderate step frequency

Write Sitting to write Sitting in front of a desk to write or

use a computer

Standing to write Standing in front of a desk to write or

use a computer

Look Looking straight

forward

Gazing directly at a target near the

eyeline

Looking up Looking up toward the ceiling or

otherwise above the eyeline

Looking down Looking downward, generally to read

or use a cell phone, etc.

Sleep Sleeping face-down Closing eyes, folding hands, resting

head on hands

Listen Erect ears Ears are oriented forward to listen to

a speaker

Looking at speaker Looking at the speaker while

listening in an effort to understand

clearly

Explain Upright speaking Posturing with feet flat on the

ground to speak

Standing to speak Standing still to speak

Speaking with

activity

Utilizing gestures while speaking to

express emotion or emphasize tone

Hand raise Raising left hand Raising the left hand

Raising right hand Raising the right hand

Clearing the

blackboard

Wiping down Holding a blackboard eraser in one

hand and wiping it across the

blackboard

Drinking

water

Drinking water Lifting a drinking vessel to the mouth

Using

computer

Using computer Turning on the computer screen,

utilizing keyboard and mouse with

hands, focusing eyes on the screen

Getting up Getting up Changing from a sitting position to

standing and walking

plane aligns perpendicularly to the observation direction, it

constitutes a positive viewing angle. An oblique angle results when

the body plane forms an angle with the observation direction.
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FIGURE 6

Screenshots of videos taken from di�erent angles and di�erent scales.

A side-view angle is established when the body plane runs

parallel to the observation direction. Accommodating these varying

angles required a simultaneous consideration of different scales,

as illustrated through the screenshots of our videos shown in

Figure 6.

5. Experiment

5.1. Dataset

To test the performance of the proposed method, we conducted

experiments on the IsoGD dataset and the self-made EuClass

dataset. The IsoGD dataset contains the depth and RGB data of

249 gestures, each containing 47,933 labeled video samples; each

sample length is between 9 and 405 frames and the resolution

is 320∗240. The EuClass classroom behavior dataset contains

data for 13 behavior types of teachers and students in the

classroom environment. The video resolution is 720∗1,280 and

the length of each sample is between 30 and 540 frames. The

dataset was created by taking videos of two people performing

various behaviors relevant to daily in-class learning, with the

shooting angle based on the human body’s medial axis from

the left, right, and front angles. The dataset was designed to

be multi-view and multi-scale by using both long and close

shooting distances.

5.2. Experimental details

The proposed method was implemented using PyTorch

on an NVIDIA V100 GPU. Drawing from the performance

characteristics of the IsoGD dataset described in a previous study

(Chen et al., 2022), we used the I3D network and the sampling

length used by IsoGD. During training, each frame was randomly

cropped to 224 × 224 while during inference, the center of the

frame was maintained at the same size. Stochastic gradient descent

was applied to optimize the neural network parameters. The initial

learning rate was set to 0.1, the number of processes to 1, and the

momentum to 0.9; the batch size was set to 8 during training and to

10 during testing. The training phase spanned 30 epochs.

5.3. Comparison with state-of-the-art
methods on IsoGD dataset

We tested the proposed method on the RGB and depth data

of the IsoGD dataset in comparison against other state-of-the-art

methods, which were also operated on the single modality data of

RGB/depth. Note that as the code of some of the methods is not

released, we give the performance with our reproduction.

As shown in Tables 2, 3, the proposed method performed

well in terms of both RGB and depth. On RGB modality data,
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TABLE 2 Comparison of IsoGD (RGB/depth) with state-of-the-art

methods.

Method Modality Acc (%)

Li et al. (2018) RGB 37.28

Miao et al. (2017) RGB 45.07

Duan et al. (2018) RGB 46.08

Li et al. (2019b) RGB 46.12

Zhang et al. (2017) RGB 51.31

Zhang et al. (2018) RGB 55.98

Lin et al. (2018) RGB 56.21

Zhu et al. (2019) RGB 57.42

Zhou et al. (2021) RGB 62.66

Chen et al. (2022) RGB 62.73

Proposed RGB 63.57

TABLE 3 Comparison of IsoGD (Depth) with state-of-the-art methods.

Method Modality Acc (%)

Li et al. (2018) Depth 40.49

Miao et al. (2017) Depth 48.44

Li et al. (2019b) Depth 49.01

Zhang et al. (2017) Depth 49.81

Zhang et al. (2018) Depth 53.28

Zhu et al. (2019) Depth 54.18

Duan et al. (2018) Depth 54.95

Lin et al. (2018) Depth 56.35

Zhou et al. (2021) Depth 60.66

Chen et al. (2022) Depth 61.72

Proposed Depth 62.88

it outperformed the second-best method by 0.84%. The second-

best method uses I3D as the backbone network, combining local

and dual attention mechanisms. The proposed method includes

a two-level attention mechanism for analyzing similar behavioral

video data. The attention mechanism was designed to focus

on relevant features in videos based on different perspectives

and scales, which improves the recognition accuracy; the intra-

class differential representation learning process enhances overall

accuracy. On depth modality data, our network improves the

accuracy of identification by 1.16% compared to the second-

best method.

5.4. Comparison with other methods on
self-made EuClass dataset

The shooting dataset encompasses a large amount ofmulti-view

and multi-scale video data. We experimented on EuClass with a

differentiated representation learning method for similar behaviors

TABLE 4 Recognition accuracy of dataset EuClass using di�erent

methods.

Method Acc (%)

Li et al. (2018) 80.25

Miao et al. (2017) 85.36

Li et al. (2019b) 86.06

Yuan et al. (2019) 88.25

I3D (Carreira and Zisserman, 2017) 90.13

Li et al. (2023b) 91.00

Proposed 91.03

TABLE 5 Ablation experiment results.

DataSet Method Acc (%)

IsoGD (RGB) I3D 61.28

I3D+TL—Attention 62.73

TL-Attention+MSE 63.57

EuClass I3D 90.13

TL-Attention 90.58

TL-Attention+MSE 91.03

and achieved an accuracy of 91.03%. We compared the results of

the proposed method against those of other methods (Table 4) to

find that performs 0.9% better than the I3D network, 10.78% better

than the 3D network CNN, and 5.67% better than Res C3D.

5.5. Ablation experiment

We conducted ablation experiments to validate the efficacy

of the proposed method. We utilized the I3D network as a

baseline to discern the performance of each component. By

incorporating improved elements step-by-step, we assessed

the performance of RGB modal data from both IsoGD and

EuClass datasets. The progressive inclusion of the two-level

attention mechanism and intra-class differential representation

module is outlined in Table 5. Notably, the integration of

the intra-class differential representation learning module

for similar behaviors led to a 2.29% accuracy boost on the

IsoGD dataset when compared to the baseline. For the EuClass

dataset, the recognition accuracy was comparable to that of

the baseline, with a 0.9% enhancement. This improvement

can be primarily attributed to the intra-class differential

representation learning of similar behaviors, which effectively

mitigates the impact of different viewing angles and different scales

on accuracy.

Unlike the baseline I3D method, the proposed method also

includes a two-level attention module focused on channel and

spatial features. For problems with different perspectives and

scales in real scenes, the intra-class differential representation

module can be applied to extract data features for the same

behavior type and perform similarity comparisons, enhancing

learning accuracy.
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6. Conclusions

In this study, we developed a 3D convolutional network-

based two-level attention module and an intra-class differential

representation learning module for recognizing similar behaviors.

We evaluated the proposed approach the IsoGD and a self-

made dataset, EuClass. The backbone network employs the I3D

architecture, augmented with a two-level attention module for

spatial and channel feature extraction. By processing pairs of videos

featuring identical behaviors but with distinct representations,

the network performs feature extraction followed by classification

through intra-class differential representation learning.

The proposed method achieved 63.57% accuracy on the RGB

modality of the IsoGD dataset, surpassing the baseline accuracy

of I3D while outperforming current state-of-the-art approaches.

An accuracy of 91.03% was achieved on the EuClass dataset,

which is higher than the baseline accuracy of I3D. These results

demonstrate the effectiveness of the proposed model in addressing

the challenges posed bymulti-view andmulti-scale data in behavior

recognition tasks.
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