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Abstract

The stethoscope has long been used for the examination of patients, but the impor-
tance of auscultation has declined due to its several limitations and the development of 
other diagnostic tools. However, auscultation is still recognized as a primary diagnostic 
device because it is non-invasive and provides valuable information in real-time. To 
supplement the limitations of existing stethoscopes, digital stethoscopes with machine 
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Introduction

Auscultation has long been used for the examination of 
patients because it is non-invasive, and provides valu-
able information in real-time1-3. Thus, the stethoscope 
is a primary diagnostic device especially for respiratory 
diseases4. Abnormal respiratory sounds provide infor-
mation on pathological conditions involving the lungs 
and bronchi. However, the importance of auscultation 
is declining, in part due to the development of other 
diagnostic methods5 but mainly because of the largest 
drawback of auscultation, i.e., its inherent subjectivity. 
The discrimination of abnormal sounds largely de-
pends on the experience and knowledge of the listen-
ers; this problem is being addressed by implementing 
a standardized system to analyze respiratory sounds 
accurately. For example, lung sounds can be recorded 
with a digital stethoscope and then shared6. Artifi-
cial intelligence (AI)-assisted auscultation and digital 
stethoscopes that make use of machine learning (ML) 
algorithms are changing the clinical role of ausculta-
tion7-24. 

Another limitation of existing stethoscopes with re-
spect to auscultation is the impossibility of remote care 
for patients with chronic diseases who are confined to 
nursing facilities or home, or cannot readily access a 
doctor7,24. Auscultation requires contact between the 
stethoscope and patient’s body, and thus cannot be 
used remotely. The utility of non-face-to-face treatment 
was well demonstrated by the coronavirus disease 
2019 (COVID-19) crisis25-28. This limitation is being ad-
dressed by recent advances in battery technology and 
integrated sensors, which have led to the development 
of wireless stethoscopes that can be worn by the pa-
tient and allow auscultation to be done remotely29-32. 

In this review, we briefly examine the history of the 

stethoscope, from its development to the present, and 
the various respiratory sounds. We then describe ML 
in a step-by-step manner, including its use in analyz-
ing respiratory sounds. New auscultation methods 
based on AI-assisted analysis and wireless or wearable 
stethoscopes are considered, and the results of recent 
clinical trials examining AI-based analyses of respirato-
ry sounds are discussed.

Classification of Respiratory Sounds

Respiratory sounds are generated by airflow in the re-
spiratory tract and may be normal or abnormal (Table 1). 
Normal respiratory sounds include tracheal, bronchove-
sicular, and vesicular sounds33,34. Abnormal sounds are 
caused by diseases of the lungs or bronchi34,35 and can 
be identified according to their location, mechanism 
of production, characteristics (pitch, continuity, time 
when typically heard), and acoustic features (waveform, 
frequency, and duration)36. Crackles are short, discon-
tinuous, explosive sounds that occur on inspiration 
and sometimes on expiration3,37. Coarse crackles are 
caused by gas passing through an intermittent airway 
opening and are a feature of secretory diseases such as 
bronchitis and pneumonia38. Fine crackles are induced 
by an inspiratory opening in the small airways and are 
associated with interstitial pneumonia, idiopathic pul-
monary fibrosis (IPF), and congestive heart failure39. 
Stridor is a high-pitched, continuous sound produced 
by turbulent airflow through a narrowed airway of the 
upper respiratory tract3. It is usually a sign of airway 
obstruction and thus requires prompt intervention. 
Wheezes are produced in the narrowed or obstructed 
airway3, are of high frequency (>100 to 5,000 Hz), and 
have a sinusoidal pattern of oscillation40. They usually 
occur in obstructive airway diseases such as asthma 

learning (ML) algorithms have been developed. Thus, now we can record and share 
respiratory sounds and artificial intelligence (AI)-assisted auscultation using ML algo-
rithms distinguishes the type of sounds. Recently, the demands for remote care and 
non-face-to-face treatment diseases requiring isolation such as coronavirus disease 
2019 (COVID-19) infection increased. To address these problems, wireless and wear-
able stethoscopes are being developed with the advances in battery technology and 
integrated sensors. This review provides the history of the stethoscope and classifica-
tion of respiratory sounds, describes ML algorithms, and introduces new auscultation 
methods based on AI-assisted analysis and wireless or wearable stethoscopes.

Keywords: Stethoscope; Artificial Intelligence; Machine Learning; Wireless Technolo-
gy; Wearable Device
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and chronic obstructive pulmonary disease (COPD)38. 
Rhonchi are caused by narrowing of the airways due to 
the secretions and may thus disappear after coughing3. 
In patients with pleural inflammation such as pleurisy, 
the visceral pleura becomes rough and friction with the 
parietal pleura generates crackling sounds, i.e., friction 
rub41. Sometimes, a mixture of two or more sounds or 
noises are heard. Respiratory sounds may also be am-
biguous such that even an expert will have difficulty in 
distinguishing them accurately. In these challenging 
situations, an AI-assisted stethoscope would be useful.

Development of Stethoscopes

The word “stethoscope” is derived from the Greek 
words stethos (chest) and scopos (examination). In the 
5th century B.C., Hippocrates listened to chest sounds 
to diagnose disease (Table 2)1,6,29-32,42-48. In the early 
1800s, before the development of the stethoscope, 
physical examinations included percussion and direct 
auscultation, with doctors placing an ear on the pa-
tient’s chest to listen to internal sounds. In 1817, the 
French doctor Rene Laennec invented an auscultation 
tool. Over time, the stethoscope gradually became 
a binaural device with flexible tubing and a rigid dia-
phragm. Throughout the 1900s, minor improvements 
were made to reduce the weight of the stethoscope 
and improve its acoustic quality. Electronic versions of 
the stethoscope allowed further sound amplification. 
Since the 2000s, with advances in battery technology, 
low power embedded processors, and integrated sen-
sors, wearable and wireless digital stethoscopes are 
emerging; some devices are now able to record and 
transmit sound, which can then be automatically ana-
lyzed using AI algorithms. 

Artificial Intelligence

1. Overview
The development of an AI model typically consists of 
four steps (although in the case of deep learning, three 
steps are involved), as follows (Figure 1).

1) Data preparation 
A dataset appropriate for the target, i.e., the output of 
the model is obtained. During preprocessing, outliers 
are pre-screened and missing values are augmented 
from the given data. Since more data results in higher 
accuracy and better generalization, after data prepro-
cessing, whether the data are still sufficient for model 
construction should be confirmed.

2) Feature extraction 
After data preparation, features appropriate for the 
target are extracted. All available features, the rele-
vance of which is determined based on expert insights, 
should be extracted, but even seemingly uncorrelated 
features might improve model performance. However, 
there may also be competition between the features 
of interest. In such cases, dimensional reduction in the 
feature domain will greatly improve the computation-
al performance and efficiency of the model. In deep 
learning, this step is merged with the subsequent train-
ing and validation steps. Deep learning is designed for 
automatic feature generation based on the data, but 
the process leading to the model’s output is poorly 
understood such that deep learning is called a “black 
box”-type algorithm.

3) Training and validation 
These key steps in ML and data driven algorithms are 
performed using support vector machine (SVMs), deci-
sion trees, and deep learnings. From the prepared data, 
the algorithms train the model by optimizing the cost 
function for the target. An appropriate and efficient 
cost function is therefore an important task in model 
construction. After the model has been trained, it is val-
idated using data prepared from the training data. The 
most well-known validation method is n-fold validation. 

4) Testing 
After a model with the desired performance is ob-
tained, it is run using a test dataset, which is also pre-
pared either exclusively from the training and validation 
dataset or with the addition of new data. A model that 
performs better during training and validation than test-
ing, usually suffers from overfitting; data generalization 
is one of the solutions to this problem.

2. AI-based classification of respiratory sounds 
Most current AI algorithms for the identification of 
respiratory sounds are data driven, i.e., trained from 
a given dataset. In this approach, the performance of 
the AI algorithms is highly dependent on the data type 
and preparation. Thus far, deep learning methods have 
performed best; however, regardless of the method, 
clinicians should understand how AI-based respiratory 
sound analysis applies to clinical practice. Studies as-
sessing the utility of ML and deep learning to analyze 
respiratory sounds are summarized in Table 3. 

In a previous study, we developed a deep learning 
algorithm of respiratory sounds49, using convolutional 
neural network (CNN) classifier with transfer learning 
method for appropriate feature extraction. The model 
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Table 2. History of stethoscope development

B.C. 400 Hippocrates first practiced a form of auscultation 
(succession splash) involving shaking a patient by the 
shoulders and listening to the subsequent intrathoracic 
sounds42.

~Early 1800s Percussion
Immediate auscultation; placing one’s ear directly onto 

the skin of the patient1

1816 Rene Laennec invented the first stethoscope, which was 
monaural and made of a tightly rolled sheet of paper; this 
was later replaced by a hollow tube of wood43.

1825–1850

 

A number of monoaural stethoscopes were developed44, 
including one that was trumpet shaped (which improved 
its function). A flexible stethoscope was also developed 
and an ear piece was added to better fit the ear.

1850–1890 A binaural stethoscope with two earpieces was introduced 
and then further developed45. The new design allowed 
clinicians to tune out their surroundings and focus their 
attention on intrathoracic sounds. 

1890 A combination of a diaphragm and bell-shaped chest 
piece allowed physicians to hear most internal sounds46. 
The rubber and plastic binaural stethoscope was lighter 
and more convenient. 

1900–1950 Electronic amplifiers were added to amplify the internal 
acoustics (reference: website of the Melnick Medical 
Museum).
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detected abnormal sounds among 1,918 respiratory 
sounds recorded in a routine clinical setting; the de-
tection accuracy was 86.5%. Furthermore, the model 
was able to classify abnormal lung sounds, such as 
wheezes, rhonchi, and crackles with an accuracy of 
85.7%. Chen et al.18 proposed a novel deep learning 
method for the classification of wheeze, crackle, and 
normal sounds using optimized S-transform (OST) and 
deep residual networks (ResNets) to overcome the lim-

itations of artifacts and constrained feature extraction 
methods. The proposed ResNet using OST had an ac-
curacy of 98.79%, sensitivity of 96.27%, and specificity 
of 100% for the classification of wheeze, crackle, and 
normal respiratory sounds.

An ML-based analysis using artificial neural net-
works (ANNs) was applied to identify four respiratory 
sounds, including wheezes, rhonchi, and coarse and 
fine crackles20. The AI approach was more efficient 

Figure 1. Machine learning processes. (A) General machine learning process. (B) Deep learing (DL) process.

Data
preparation

Feature
extraction

Training &
validation

Test

Test
Data

preparation

Automatic feature extraction

Training & validation

Deep learning black box

A

B DL process

General ML process

Machine learning processes

Table 2. Continued

1963 David Littmann patented a stethoscope very similar to 
those used today47.

1999 Richard Deslauriers created a stethoscope that could 
record and playback sounds47.

2000–Present The use of digital stethoscopes, which allow the recording 
and sharing of sounds, is increasing, together with deep-
learning-based sound analysis; wireless and wearable 
stethoscopes are currently under development6,29-32,48. 
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Table 3. Recent studies performing AI-based analyses of respiratory sounds

Study Database
(accessibility) Datasets Respiratory 

sounds Methods Results

Kim et al. 
(2021)49

Chungnam National 
University 
Hospital, Korea 
(private)

297 Crackles, 298 
wheezes, 101 
rhonchi, and 1,222 
normal sounds from 
871 patients

Crackle, wheeze, 
rhonchi, and 
normal sounds

CNN 
classifier 
with transfer 
learning

Accuracy: 85.7%
AUC: 0.92

Chen et al. 
(2019)18

ICBHI dataset 
(public)

136 Crackles, 44 
wheezes, and 309 
normal sounds 

Crackle, wheeze, 
and normal 
sounds

OST and 
ResNets

Accuracy: 98.79% 
Sensitivity: 96.27%
Specificity: 100%

Grzywalski  
et al. 
(2019)20

Karol Jonscher 
University Hospital 
in Poznan, Poland 
(private)

522 Respiratory 
sounds from 50 
pediatric patients

Wheezes, rhonchi, 
and coarse and 
fine crackles

ANNs F1-score: higher 
than that of 
pediatricians 
(8.4%)

Meng et al. 
(2020)12

China-Japan 
Friendship 
Hospital, China 
(private)

240 Crackles, 260 
rhonchi, and 205 
normal sounds from 
130 patients

Crackle, rhonchi, 
and normal 
sounds

ANNs Accuracy: 85.43%

Kevat et al. 
(2020)10

Monash Children’s 
Hospital, 
Melbourne, 
Australia (private)

192 Respiratory 
sounds from 25 
pediatric patients

Crackle and 
wheeze

ANNs True-positive rate
Crackles: Clinicloud, 

0.95; Littman, 0.75
Wheeze:  

Clinicloud, 0.93; 
Littman, 0.8

Chamberlain 
et al. 
(2016)23

Four separate 
clinical sites in 
Maharashtra, India  
(private)

890 Respiratory 
sounds from 284 
patients

Crackle and 
wheeze

SVM AUC
Crackle: 0.74
Wheeze: 0.86

Altan et al. 
(2020)8

Respiratory 
Database@TR 
(public)

600 Respiratory 
sounds from 50 
patients

Wheeze (COPD 
and non-COPD 
patients)

DBN classifier Accuracy: 93.67%
Sensitivity: 91%
Specificity: 96.33%

Fernandez-
Granero  
et al. 
(2018)50

Puerta del Mar 
University Hospital 
in Cadiz, Spain 
(private)

16 Patients with 
COPD

Wheeze (acute 
exacerbation of 
COPD)

DTF classifier 
with 
additional 
wavelet 
features

Accuracy: 78.0%

Fraiwan  
et al. 
(2022)13

ICBHI dataset, 
KAUH dataset 
(public)

1,483 Respiratory 
sounds from 213 
patients 

Asthma, COPD, 
bronchiectasis, 
pneumonia, heart 
failure and normal 
(control) patients

BDLSTM Highest average 
accuracy: 99.62% 

Total agreement: 
98.26%

Sensitivity: 98.43%
Specificity: 99.69% 

Saldanha  
et al. 
(2022)51

ICBHI dataset 
(public)

6,898 Respiratory 
sounds from 126 
patients

Healthy, 
pneumonia, 
LRTI, URTI, 
bronchiectasis, 
bronchiolitis, 
COPD, asthma

MLP, CNN, 
LSTM, 
ResNet-50, 
Efficient Net 
B0

Sensitivity:
   97% (MLP)
   96% (CNN)
   92% (LSTM)
   98% (ResNet-50)
   9�6% (Efficient Net 

B0)
Alqudah  

et al. 
(2022)53

ICBHI dataset,  
KAUH dataset 
(public)

1,457 Respiratory 
sounds

Normal, asthma, 
bronchiectasis, 
bronchiolitis, 
COPD, LRTI, 
pneumonia, and 
URTI

CNN, LSTM, 
and hybrid 
model 
(CNN-
LSTM)

Accuracy: 
   99.62% (CNN)
   99.25% (LSTM)
   9�9.81% (CNN-

LSTM)

CNN: convolutional neural network; AUC: area under the curve; ICBHI: International Conference on Biomedical and Health Informat-
ics; OST: optimized S-transform; ResNet: deep residual network; ANN: artificial neural networks; SVM: support vector machine; COPD: 
chronic obstructive pulmonary disease; DBN: deep belief network; DTF: decision tree forest; KAUH: King Abdullah University Hospital; 
BDLSTM: bidirectional long short-term memory network; LRTI: lower respiratory tract infection; URTI: upper respiratory tract infection; 
MLP: multi-layer perceptron; LSTM: long short-term memory.
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than an evaluation by five physicians. In another study 
using ANNs, the accuracy for classifying crackle, rhon-
chi, and normal respiratory sounds was 85.43%12. The 
classification performance of ANNs for pediatric respi-
ratory sounds was independently validated. Detection 
accuracy was high for crackles and wheezes, at 95% 
and 93% respectively10. A recent study developed a 
semi-supervised deep learning algorithm to identify 
wheezes and crackles in 284 patients with pulmonary 
diseases23. The area under the receiver characteristic 
curve obtained with the algorithm was 0.86 for wheez-
es and 0.74 for crackles. The study showed that a 
semi-supervised algorithm with SVM enables the anal-
ysis of large datasets without the need for additional 
labeling of lung sounds. 

Analysis of respiratory sounds using a deep learning 
algorithm (deep belief networks [DBNs]) successfully 
distinguished patients with COPD from healthy individ-
uals8. The proposed DBN classifier also distinguished 
COPD from non-COPD patients with accuracy, sensitiv-
ity, and specificity, values of 93.67%, 91%, and 96.33%, 
respectively. The authors concluded that a deep learn-
ing-based model could aid the assessment of obstruc-
tive lung diseases, including COPD. Using a decision 
tree forest algorithm with additional wavelet features, 
Fernandez-Granero et al.50 investigated the respiratory 
sounds recorded in 16 COPD patients telemonitored at 
home with a respiratory sensor device. The detection 
accuracy of 78.0% demonstrated the potential of the 
proposed system for early prediction of COPD exac-
erbations, which would allow patients to obtain timely 
medical attention. 

A recent study investigated the use of deep learning 
to recognize pulmonary diseases based on respiratory 
sounds13. Electronically recorded lung sounds were 
obtained from controls and patients suffering from 
asthma, COPD, bronchiectasis, pneumonia, and heart 
failure; the classification accuracy of the deep learning 
algorithm was 98.80%, 95.60%, 99.00%, 100%, 98.80%, 
and 100%, respectively. In that study, the data were 
initially preprocessed and used to train two deep learn-
ing network architectures, i.e., a CNN and bidirectional 
long short-term memory network (BDLSTM), attained 
a precision of 98.85%. Other studies have also applied 
deep learning models to classify pulmonary diseases 
based on respiratory sounds51. A study using the Inter-
national Conference on Biomedical and Health Infor-
matics (ICBHI) database used crackles, wheezes, and 
both as the basis for AI-guided diagnosis of pneumonia, 
lower respiratory tract infection (LRTI), upper respirato-
ry tract infection (URTI), bronchiectasis, bronchiolitis, 
COPD, and asthma52. Respiratory sounds represent-

ing those diseases were synthesized using a variety 
of variational autoencoders. The results showed that 
unconditional generative models effectively evaluated 
the synthetic data. The sensitivity of multi-layer per-
ceptron, CNN, long short-term memory (LSTM), Res-
Net-50, and Efficient Net B0 was 97%, 96%, 92%, 98%, 
and 96%, respectively. A hybrid model combining CNN 
and LSTM was also proposed for accurate pulmonary 
disease classification53. Four different sub-datasets 
were generated from the ICBHI52 and King Abdullah 
University Hospital54. The four datasets contained data 
asthma, fibrosis, bronchitis, COPD, heart failure, heart 
failure+COPD, heart failure+lung fibrosis, lung fibrosis, 
pleural effusion, and pneumonia. The best results were 
obtained with the hybrid model, which had the highest 
classification accuracy (99.81%) for 1,457 respiratory 
sounds from controls and patients with asthma, bron-
chiectasis, bronchiolitis, COPD, LRTI, pneumonia, and 
URTI. By expanding the number of training datasets, 
the overall classification accuracy improved by 16%. 

These studies suggest that AI-based respiratory 
sound analysis can provide an innovative approach in 
the diagnosis of respiratory diseases. Although there 
are still limitations such as the interpretations of com-
plex sounds and data dependency, moreover, unde-
sired noises exist, AI-based algorithms are expected 
to play a key role in supporting clinicians to evaluate 
respiratory diseases in the future. Additionally, noise re-
duction or removal and data standardization are need-
ed for obtaining enhanced prediction performance of 
AI algorithms. 

Clinical Trials Using Digital Stethoscopes 
and Artificial Intelligence

Many ongoing studies are investigating the use of digi-
tal stethoscopes in combination with AI, beginning with 
the classification of respiratory sounds as normal or 
abnormal. AI algorithms are then developed to analyze 
the recorded sounds for the detection of COPD, asth-
ma, IPF, and other lung diseases (e.g., using the Steth-
oMe electronic stethoscope, Poznań, Poland). Other 
clinical trials are examining the use of AI to screen 
COVID-19 patients based on their voice, breaths, and 
cough, and testing the feasibility of smart stethoscopes 
for remote telemedicine and the monitoring patients 
with respiratory diseases (by checking respiratory and 
cough sounds) (Table 4).

With advances in mechanical technology and AI, 
smart stethoscopes able to analyze and classify respi-
ratory sounds will soon be implemented in many clini-
cal fields. This may lead to renewed awareness of the 
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clinical importance of auscultation, which has been un-
derestimated since the advent of image technologies 
such as computed tomography and sonography.

New Devices

Wireless and wearable stethoscopes, which are grad-
ually becoming commercially available, are particularly 
useful for treating patients who must be isolated, such 
as those with COVID-19, in whom auscultation cannot 
be performed with a regular stethoscope. For example, 
a wireless stethoscope with a Bluetooth connection 
system can be used to monitor hospitalized patients 
with severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) pneumonia55. More advanced wearable 
stethoscopes may improve the monitoring of patients 
with pulmonary diseases. Zhang et al.55 developed 
a wearable, Bluetooth 5.0 Low Energy (LE)-enabled, 
multimodal sensor patch that combines several modal-
ities, including a stethoscope, ambient noise sensing, 
electrocardiography, and impedance pneumography, 
thus providing multiple types of clinical data simulta-
neously. Lee et al.56 developed a soft wearable stetho-
scope with embedded ML and evaluated its ability to 
classify respiratory sounds; the feasibility of wearable 
smart stethoscopes was demonstrated. Joshitha et 
al.57 designed a Wi-Fi-enabled contactless electronic 
stethoscope. The prototype, which contained a re-
ceiver module and circuit diagram, demonstrated the 

potential of this novel platform for use in smart stetho-
scopes. Recently, a smart stethoscope with contact-
less radar measurement ability has been introduced as 
an advanced method for the acquisition of respiratory 
sounds for use in many clinical settings. An important 
point in developing a new stethoscope is to reduce the 
motion artifact caused by the lack of adhesion between 
the rigid stethoscope and the patient’s dry skin. Since 
it leads to inaccurate diagnosis of breath sounds, there 
are attempts to reduce it by making the stethoscope of 
bendable materials or attaching the stethoscope to the 
body through bandages (Table 5)29,55-58.

Conclusion

With the development of digital stethoscopes and 
sound transmission technology, it has become possi-
ble to record and share respiratory sounds and accu-
rately distinguish them using ML algorithms. Advances 
in battery technology, embedded processors with low 
power consumption, integrated sensors, Wi-Fi, and ra-
dar technology are contributing to the development of 
stethoscopes and other wireless and wearable medical 
devices. In the case of stethoscopes, these significant 
modifications have overcome the limitations of existing 
models. Importantly, they allow the identification of 
respiratory diseases without a specialist, thereby en-
hancing the clinical effectiveness of auscultation. Ac-
curate auscultation can result in more rapid diagnosis 

Table 4. Ongoing clinical trials using digital stethoscopes and artificial intelligence

Trial Stethoscope NCT number

1 Evaluating the Feasibility of Artificial Intelligence Algorithms in Clinical 
Settings for the Classification of Normal, Wheeze and Crackle Sounds 
Acquired from a Digital Stethoscope

Smart stethoscope NCT05268263

2 Clinical Evaluation of AI-aided Auscultation with Automatic Classification 
of Respiratory System Sounds (AIR)

StethoMe electronic 
stethoscope

NCT04208360

3 AI Evaluation of COVID-19 Sounds (AI-EChOS) (AI-EChOS) NA NCT05115097

4 Deep Learning Diagnostic and Risk-Stratification for IPF and COPD 
(Deep Breath)

Digital stethoscope NCT05318599

5 Acoustic Cough Monitoring for the Management of Patients with Known 
Respiratory Disease

Hyfe Cough Tracker 
(Hyfe) App in 
smartphone

NCT05042063

6 Telemedicine System and Intelligent Monitoring System Construction of 
Pediatric Asthma Based on the Electronic Stethoscope

Electronic 
stethoscope

NCT05659225

7 Blue Protocol and Eko Artificial Intelligence Are Best (BEA-BEST) Eko digital 
stethoscope

NCT05144633

8 Personalized Digital Health and Artificial Intelligence in Childhood 
Asthma (Asthmoscope)

Digital Stethoscope NCT04528342

NCT: National Clinical Trial; NA: not available. 
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and earlier treatment, in addition to reducing the bur-
den of radiation exposure and high examination costs 
by avoiding unnecessary imaging tests. As the use of 
telemedicine has expanded, driven by its successful 
implementation during the COVID-19 pandemic, the 
monitoring of chronic respiratory diseases in the hard-
to-reach patients will be vastly improved.

With the development of wearable stethoscopes and 
the transmission of breath sounds through Bluetooth, 
there are attempts to continuously monitor the breath 
sounds of critically ill patients in the intensive care unit. 
In a study comparing continuous auscultation using a 
wearable stethoscope with intermittent auscultation 
using a conventional stethoscope for wheeze detec-
tion, extending the duration of auscultation using a 
wearable stethoscope even in a noisy environment 
showed comparable performance to the conventional 
auscultation59. Another study showed that the quanti-
fication of abnormal respiratory sounds could predict 

complications after extubation60. In addition, a study 
was attempted to detect the position of the double-lu-
men tube through the strength of the respiratory sound 
in patients undergoing lung surgery61.

However, smart stethoscope must still overcome 
several problems. Coexisting noises make it difficult 
to precisely discriminate respiratory sounds, such that 
noise filtering is important albeit challenging task. In 
addition, two or more sounds may be mixed and heard 
at the same time, which complicates their differentia-
tion. Further refinement of deep learning algorithms 
may improve noise filtering, including the ability to dis-
tinguish the characteristics of coexisting sounds.

Point-of-Care Ultrasound (POCUS), which has been 
used for the diagnosis and treatment of various diseas-
es since the 1990s, has also rapidly increased its use 
with the introduction of portable device, and is useful 
for primary care of patients along with stethoscopes62. 
Like a stethoscope, POCUS is non-invasive and can 

Table 5. Recently developed wireless and wearable stethoscopes

Trial Device Reference

1 Lung Auscultation of Hospitalized Patients with SARS-CoV-2 
Pneumonia via a Wireless Stethoscope

55

2 Wearable Multimodal Stethoscope Patch for Wireless Biosignal 
Acquisition and Long-Term Auscultation

29

3 Fully Portable Continuous Real-Time Auscultation with a Soft 
Wearable Stethoscope Designed For Automated Disease 
Diagnosis

56

4 Design and Implementation of Wi-Fi Enabled Contactless Electronic 
Stethoscope

57

5 Contactless Stethoscope Enabled by Radar Technology 58
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be performed right on the bed without moving the pa-
tient to the examination room. The combination of im-
age-based POCUS and the sound-based stethoscope 
serves as an effective diagnostic tool in the clinical 
field63-65.

In conclusion, the stethoscope is expected to de-
velop through steady research in the future, and to be 
used as more popular medical devices through the 
application of AI analysis programs and development 
of wearable device. This breakthrough of stethoscope 
has the potential to pave the way for a future defined by 
personalized digital healthcare.
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