
ISSUES IN OPEN

HARDWARE

CORRESPONDING AUTHORS:
J.C. Mariscal-Melgar

Helmut-Schmidt University
/ University of the Federal
Armed Forces, Hamburg,
Germany

jc@hsu-hh.de

KEYWORDS:
Open Source Hardware;
OSH; Documentation;
Assembly Manual; Assembly
Instructions; FreeCAD;
automation

TO CITE THIS ARTICLE:
Mariscal-Melgar, JC, Hijma, P,
Moritz, M and Redlich, T. 2023.
Semi-Automatic Generation
of Assembly Instructions
for Open Source Hardware.
Journal of Open Hardware,
7(1): 6, pp. 1–18. DOI:
https://doi.org/10.5334/joh.56

Semi-Automatic Generation
of Assembly Instructions for
Open Source Hardware

J.C. MARISCAL-MELGAR

PIETER HIJMA

MANUEL MORITZ

TOBIAS REDLICH

ABSTRACT
Documentation is an essential component of Open Source Hardware (OSH) projects
both for co-development and replication of designs. However, creating documentation
and keeping it up-to-date is often challenging and time-intensive. There are
several systems that focus on this documentation challenge but they are limited
in their support for keeping documentation up-to-date and relating CAD designs to
documentation. This article proposes a semi-automated solution that relates the
CAD design semantically to a textual specification from which we generate assembly
instructions semi-automatically. Our system contains a CAD plugin and a compiler for
the textual specification with which we show that we can replicate a state-of-the-art
assembly manual to a high degree, that we can automate significant parts of the
documentation process, and that our system can effectively adapt to documentation
changes as a result of evolving designs. Our system leads to a methodology that we
name “CAD-coupled documentation” integrating CAD design with the documentation
process.

*Author affiliations can be found in the back matter of this article

mailto:jc@hsu-hh.de
https://doi.org/10.5334/joh.56
https://orcid.org/0000-0002-2562-0316
https://orcid.org/0000-0002-5716-1118
https://orcid.org/0000-0001-5126-9016
https://orcid.org/0000-0003-4129-8926

2Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

1 INTRODUCTION
Open Source Hardware (OSH) is becoming a more prominent extension of the Open Culture
movement [1] with almost 2000 projects certified by OSHWA [2] and commercial successes
such as Arduino [3] and the 3D-printer field started by the RepRap printer [4]. Academia
embraces OSH as well, for example CERN with their Open Hardware Initiative [5] and
licenses [6].

Documentation is widely recognized to be crucial for OSH for the ability to replicate the
hardware and for co-development of designs [7, 8, 9, 10, 11]. Although providing high-quality
documentation alone is already considered time-intensive and challenging [12, 11], the context
of co-development makes it even more challenging because of the risk of documentation
becoming out-of-date.

Several systems exist that try to alleviate documentation of physical artifacts and many focus
on the “document-while-doing” methodology (as opposed to “document-after-the-fact”) [12]
that suits OSH best [13, 14, 15, 16]. GitBuilding [17] is arguably the state-of-art that provides a
high degree of automation and is focused on collaboration via Git [18].

However, none of these systems target (1) the problem to keep the documentation up-to-date
while the design evolves and (2) trying to find a high degree of integration between the design
and documentation process, an important requirement formulated by Tseng et al. [11].

Our system is designed with these two problems in mind and makes use of a CAD plugin
specifically for documentation to semantically link the CAD designs to a textual specification (i.e.
a markup text description) of assembly instructions, supporting various assembly instruction
features. This leads to a methodology that we call “CAD-coupled documentation” and allows
us to stay close to the “source” of OSH [9] in order to support semi-automatically regenerating
assembly instructions when the design has changed.

After discussing related work (Sec. 2), we define the problem and scope of this research
(Sec. 3). Our work is inspired by the Fabulaser Mini Assembly Manual (Sec. 4) that forms the
basis for our generated assembly manuals. Section 5 discusses our contributions:

•	 a documentation plugin for CAD,

•	 a compiler for our documentation language, and

•	 the methodology that our software exposes.

In Sec. 6 we evaluate our system in various ways and conclude (Sec. 7) that our system
can reproduce the Fabulaser Mini Assembly Manual to a high degree, except for wiring and
electronics that we leave to future work. We show that changes in design have a localized
effect on the documentation sources, therefore supporting design evolution well.

2 RELATED WORK
Open Source Hardware is an emerging field following the footsteps of Open Source Software.
Although there are challenges, the field has high potential, especially with regards to
communities embracing OSH in various ways [19]. This work focuses on a technical challenge
around documentation, a crucial aspect of OSH.

The importance of documentation is well recognized in the context of Open Source Hardware
projects. Ackermann, in his discussion on one of the first OSH licenses, makes an important
distinction between (1) the physical product that is a result of applying documentation; and
(2) the documentation of an OSH project [7]. In other words, documentation is a crucial aspect
of OSH projects and many consider not only CAD files as documentation but also schematic
diagrams, circuit or circuit board layouts, mechanical drawings, build instructions, design
rationale, bill of materials, flow charts, operation instructions, maintenance instructions, repair
and recycling manuals to be documentation [7, 8, 20, 9].

This information is deemed important by many as exemplified by J. Simmons: “What we
really need to do is remind ourselves of just how important documentation is. We need to
remember that documenting our hardware designs is our mission as open source hardware
developers.” [8, p. 62]. Bonvoisin et al. state that documentation is a crucial aspect of open

3Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

source hardware and raises the question of whether open source hardware is still open source
if poorly documented [9]. The most common reasons for high-quality documentation are being
able to co-develop and replicate the hardware [9, 21, 10, 22, 11].

Although documenting hardware is considered valuable for sharing and community
participation [11], it is deemed to be time-intensive [12] and challenging: the documentation
process can conflict with the design process [11] and designers are confronted with questions
such as whether to document the process or outcome and whether to include failed attempts
or not [12, 11].

The benefit of graphic information is widely recognized [8, 12] and often documentation
consists of graphical information combined with text. However, creating such documents is
considered an elaborate process with many distinct processes, such as going through pictures,
selecting them, editing them, and combining them with written text [11]. The difficulty of
taking proper images and editing them is well recognized [12, 11].

In the context of the maker and DIY movement, Milara et al. make a distinction between
“document-after-the-fact” and “document-while-doing” [12]. After-the-fact documentation
has a risk of leaving out important steps and settings, missing information about unsuccessful
steps, and missing design argumentation information [12, 23, 11]. Document-while-doing has
as major problem switching contexts between designing / problem solving and documenting.
Tseng et al. suggest to find ways to seamlessly integrate designing and documenting [11],
something that our work aspires to.

Several related solutions have preceded our work. Dalsgaard and Halskov present a web-based
tool for capturing the rationale in a design process, enabling reflection in hardware projects [13].
The tool captures notes and events in a timeline that is shared among participants.

A similar tool is “Build In Progress” [14], an online collaborative documentation tool. Individuals
or groups can document their progress on building hardware. Instead of using a timeline, the
process of building is visualized in a tree-like structure with color codes. Non-working ideas
are color coded red and successful attempts color coded green. A node in the tree contains
pictures, video, and/or text and there is possibility for others to comment on design decisions.

DoDoc is a system to document hands-on-activities [15]. It consists of a webcam, microphone,
lights, a device with three buttons, and a web-based interface. It can record video, audio,
pictures, and animations. The authors stress that there are two important moments: during
the design, so while designing and afterwards for reflection.

The above systems differ in the following ways from our system. Firstly, they focus on
documenting hardware in general, whereas we only focus on assembly instructions. Although
these systems focus on document-while-doing as is a goal for us, the design process and
documentation process are not “technically integrated”. This means that the documentation
relies on a separate process besides designing, such as pushing buttons, taking pictures, writing
text. Our system is directly technically related to the CAD files. This allows designers to refer to
parts in the CAD file, with the aim of creating an integrated design and documentation process.

There are several solutions specifically for assembly instructions. A well-known documentation
system is the LEGO brick model creation software. These systems cannot handle generic CAD
files and focus on documentation of brick assembly designs. They are similar to our approach
in terms of the abstraction of assembly steps as visual representations of assemblies and sub-
assemblies. The LEGO software systems typically use either a step-based approach, like our
approach, or a timeline-based approach [24, 25, 26, 27, 28, 29].

A more generic documentation system for assembly instructions for Open Source Hardware
is the Open Hardware Assembly Instruction Kit or OHAI-Kit by Open Source Hardware 3D
manufacturer Lulzbot [30]. Creating documentation is done by means of project sets. A project
set describes building a complete machine and consists of multiple projects where a project is a
distinct task such as setting up a frame or doing the final assembly. A project is set up in terms
of work steps where a work step describes an action accompanied by pictures. The system
provides a web interface to create the instructions. The system has a strong separation between
the design and the documentation: the documentation is stored in an internal database and is
not part of the open source hardware project itself.

4Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

DocuBricks is another solution specifically for Open Source Hardware and defines assembly
instructions in a standard format [16]. The building blocks are hierarchically defined as “bricks”
and “parts”. A brick can capture “assembly instructions” with “steps” with descriptions and
media. It is required to use a dedicated Brick editor and the documentation is stored in an XML
file referencing media such as pictures and video. Limitations of this tool are that the process
is not integrated with the development of OSH, and versioning of the documentation such as
with Git [18] is challenging with XML files.

The current state-of-the-art in Open Source Hardware documentation for assembly instructions
GitBuilding [17] improves on Git support by using text files instead of XML. GitBuilding is used
and developed in the context of the open source OpenFlexure microscope [31] - a high-quality,
low-cost microscope built from mainly 3D-printed parts. GitBuilding defines a language for
documentation called BuildUp based on the popular markup language MarkDown and adds
various special types of links. The main goal is to automate generation of a Bill of Materials
(BOM) from the documentation. Other design goals are having a simple text format that can
be (1) edited in a text editor and (2) easily integrated in Git. From the specifications in BuildUp
a website can be generated with links between parts, steps, and BOMs. The main form of
documentation is natural language instructions with images or video. The OpenFlexure team
has moved away from taking pictures by instead using renders from CAD files because images
tend to become outdated, while renders can be regenerated on changes [32].

Our work shares many of the same goals such as a simple text format, good Git support, and
automatically generating BOMs. However, it differs in crucial aspects: Our tool has a strong
semantic relation between the items in the documentation and the CAD files, whereas the links
and parts in GitBuilding have no relation to the original CAD file. This may limit the scalability of
GitBuilding, particularly for large assemblies where the lack of relation between documentation
and the design makes it difficult to keep the documentation consistent with the design as
project complexity grows. Another difference is that GitBuilding focuses on natural language
descriptions in instruction manuals, whereas we aim for documentation with a focus on high-
quality visual instructions, optionally supplemented by small natural language remarks. We
explain the reason for this different focus in the following section.

Finally, our work is inspired by the software world where documentation such as APIs
(Application Programming Interface) is often generated from comments in source files. The
problem to maintain consistency between source code and natural language descriptions has
led to literate programming [33], where source code and natural language descriptions are close
together in the source file. Similar to this goal, our system is focused on achieving consistency
between CAD designs and visual documentation. Modern instances of literate programming
are Org-mode [34] that is very flexible and programming language agnostic and Scribble [35]
in which there is hardly separation between the markup language and programming language.
Because of this flexibility, our system uses Scribble for the textual representation and our
system.

3 PROBLEM DESCRIPTION
As we have seen in the previous section, documentation is a crucial aspect for Open Source
Hardware for two separate goals: (1) replication of the hardware and (2) co-development of
the hardware. Devising the documentation is a time-intensive and elaborate process where
graphical information, often obtained by taking pictures, is deemed an important but also a
time-intensive aspect.

In general, two approaches are recognized: The document-after-the-fact approach may work
for traditional hardware products, while document-while-doing is a clear favorite for OSH, since
an important goal is that the hardware is co-developed during its lifetime by potentially many
persons distributed all over the globe.

The co-development process is also why versioning systems such as Git are valuable in Open
Source Hardware and Software. These systems allow to record changes over time, explaining
the design evolution. Because versioning systems excel in highlighting changes in text files,
these types of files are typically preferred over binary files that rely on third-party tools to
highlight changes. For example, viewing two different versions of a CAD file in a CAD program

5Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

requires native support for this in the CAD program, whereas for text files there is no need for
such third-party tools.

Another related problem to versioning is the central question of what the source exactly
constitutes of. In general, one would want to make the source footprint as small as possible and
to derive information from the source. In terms of documentation of OSH, it is common that
the source footprint is large with the design files being a source of truth and the documentation
another source of truth which may lead to a disconnect between these sources of truth. Ideally,
we would want to keep the source footprint small, generating the documentation as much as
possible from the source, preventing a disconnect between the design and the documentation.
This is related to the problem of separation between the design and documentation process
that many systems show.

For example, in GitBuilding, the build instructions in natural language form should match the
design in the CAD files, but if the CAD design changes, the natural language instructions do
not automatically update with these changes and may become outdated. The problem is that
besides the CAD files, the documentation is a second source of truth and it is the hardware
designer’s task to keep these sources matched up. Ideally, you would want to reduce the
sources of truth and let the documentation be as much as possible dependent on the CAD
design.

A special case of the different sources of truth are taking photographs of the assembly. This
is not only a time-intensive process, but it is particularly prone to a disconnect between the
evolving design and the picture that has been taken. Each time the design changes, a new
picture has to be taken and it is the hardware designer’s responsibility to keep these pictures
up-to-date with the design.

3.1 SCOPE

Given the problem description above, we aim for a system that given CAD source files of an
OSH project, semi-automatically generates high-quality visual documentation and BOMs while
minimizing natural language instructions to reduce the potential for a disconnect between
design and documentation. This documentation should have a strong semantic relation with
the CAD files, thereby reducing the time and effort to create said documentation supporting co-
development in which the design evolves. In addition, the documentation source files should
be text files to allow efficient tracking of changes in the documentation.

Although many different types of documentation exist and are important for OSH, we focus
mainly on assembly instructions in this work, motivated by Bonvoisin et al. who identify three
main criteria to assess accessibility and replicability [9]:

•	 CAD files availability and editability,

•	 Assembly instructions availability and editability, and

•	 Bill of Materials availability and editability.

In our approach we assume that we have the CAD design of the physical artifact available in a
compatible file format. To be generic to the specific CAD implementation, we expect a CAD file
with the following properties:

•	 Each part or tool that should be named or visualized in the assembly instructions is
available in the CAD file.

•	 Each part has a distinct identifier and can be used as source in a Bill of Materials.

From this information, our software tools assist in creating high-quality visual assembly
instructions.

4 USE-CASE: FABULASER MINI ASSEMBLY MANUAL
To evaluate our work, we will compare our solution to manually created assembly instructions
for the open source laser cutter Fabulaser Mini [36]. This machine is part of the Open Lab Starter
Kit project that aims to design open source machines for Fab Labs. A Fab Lab is a maker space
with several machines such as laser cutters and 3D printers to fabricate products [37].

6Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

The assembly instructions for the laser cutter [38] were created through a collaboration
between the main designer, a CAD professional and a graphics designer. This was an elaborate
and manual process summarized below:

To break down the assembly process in logical steps, the main designer, CAD professional,
and graphics designer maintained a shared document, the manual workbook, in which they
recorded the name, the parts, tools, and remarks associated with each step. The graphic
designer designed a layout to provide clear instructions. The page is A4 landscape with in
the heading the step number and a descriptive title prominently on the page, and then a
subheading with the progress in terms of steps and a time indicator.

Figure 1 shows the layout of one of the steps in the Fabulaser Mini manual. The footer contains
pictograms of the required tools and extra information. The body has several columns where
the first column is fixed and always used for the pictograms of the required parts. The rest of the
columns is free to use and the most important is the depiction of the component to assemble.
Remarks are in principle in column 2 if space permits. Otherwise, they can be placed in other
columns if needed. Zoomed highlights are placed freely depending on where it is logical and
instructive.

The CAD professional imports the CAD file from the main designer and organizes the views of
the various steps for the assembly instructions, for the main images and the zoomed highlights.
The visibility of the parts in an assembly step is improved by showing a subset of the machine to
build and graying out parts that are important for context. For example, in Figure 1 the profiles
on the floor are grayed out and serve as context for the four profiles that need to be attached.
The zoomed highlight also shows that screws and other parts are selectively moved (partially
exploded) with a red line showing how to insert the screws.

The viewing angle and general graphical representation are evaluated by all three collaborators
and when they deem the view satisfying, the CAD professional exports the main image, the
zoomed highlights, and the pictograms of the parts and tools. This information is handed to
the graphic designer that lays out these elements on the page and creates the column with the
used parts, counting how many time each part is used. In Figure 1, note that the left column is
essentially a Bill of Materials for this step.

5 APPROACH
To automate the process of generating assembly instructions in the style of the Fabulaser
Mini manual, we developed two software packages that interact closely. The OSH AutoDoc

Figure 1 A page of a step in
the Fabulaser Mini manual.

7Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

Workbench [39] is a plugin for FreeCAD [40]. The OSH AutoDoc PDF package [41] is a compiler
that takes as input the output of the OSH AutoDoc Workbench and a textual specification.
The compiler combines the CAD information and the textual specification and from this
generates an assembly manual in the form of a PDF file. We will first discuss the workbench,
then the compiler and the textual specification, and finally the methodology that arises
from using the software. All software and the examples are available under open source
licenses [39, 40, 41, 42].

5.1 THE OSH AUTODOC WORKBENCH

Given a CAD file with a design, the workbench [39] reorganizes the information for assembly
instruction purposes using links to the original design. The documentation information can
be stored in a separate documentation CAD file that links to the design CAD file, but this is not
strictly necessary.

The documentation CAD file contains a layer for each assembly step. To populate these step
layers, the workbench has special functionality to select parts and place them in the right step
layer. As soon as a part is put into a step layer, the part is hidden to uncover other parts in the
design.

The workbench also makes use of position layers. Users can select parts and reposition
them for documentation purposes, essentially creating a partial explosion. Examples are re-
positioned screws that indicate how to insert them with an automatically generated red line
(see Figure 1 the top-right highlight). We can automatically reposition screws by inferring the
direction of the screw by subtracting the center of the bounding box from the center of gravity
of the screw.

The central abstraction that the workbench provides is the layer state and the layer state
manager. A layer state defines which layers are visible or invisible and which layers are the
original color or grayed out (see Figure 2). Position layers reposition screws or other parts
based on visibility of the layer. Layer states also preserve a camera position from an angle or
perspective that the user chooses and as such, the layer states are well equipped to define the
views for a step or a highlight in the assembly instructions.

Figure 3 shows the relation between layer states and the layers. A layer state captures part
layers, position layers and a camera position. This information is used to export a high-quality
vector image. A layer state also stores which layers are visible and in case of part layers whether
the original layer is used or a grayed out version. A part layer contains the parts for an assembly
step. The software can then automatically generate: (1) images for each of the parts in one
go, and (2) a CSV table with the necessary information to create a mini-BOM for each of the
assembly steps.

Figure 2 Activated layer state
Step 4.2 makes several layers
visible and grayed out.

8Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

5.2 THE OSH AUTODOC COMPILER

The compiler [41] parses the textual specification, using a subset of the Scribble markup
language. Scribble [35] is a Domain-Specific Language (DSL) for documentation and allows you
to write text with generic tags that a user can define. For our work, we defined tags that convey
information for the assembly manual. Some of these tags refer directly to the abstractions in
the documentation CAD file such as @image or @highlight that refer to a specific layer state or
@minibom that refers to a part layer.

Figures 4 and 5 show how the Scribble statements translate to the generated page. The red
underlined strings directly relate to the documentation CAD file, referring to a part layer (@
minibom) or layer states (@image, @highlight, @tool). Note that the @howto statement refers
to the first @howto-item that is defined elsewhere in the textual specification. Figures 6 and 7
show the definition and the generated page to which is referred. The compiler automatically
incorporates the question and the page reference.

Figure 3 The relation between
layer states and the layers.

Figure 4 The textual
specification in Scribble for
Figure 5 to replicate Figure 1.

9Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

Figure 5 The generated
assembly step based on the
textual description in Figure 4,
replicating Figure 1.

Figure 7 The generated howto
page of Figure 6.

Figure 6 The definition of the
first howto item shown in
Figure 7.

10Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

5.3 METHODOLOGY

The two software packages with their functionality and abstractions give rise to a methodology
for documentation that we call “CAD-coupled documentation”. Part of the process is performed
in CAD software with links between the design CAD file and the documentation CAD file to
support a high degree of integration between the design and documentation process. The
manual itself is specified in the Scribble markup file that is concerned with the semantics and
layout of the assembly instructions. Table 1 lists the various phases in the process and in which
software packages they take place.

Firstly, it is necessary to determine effective and logical assembly (sub)steps (phase 1). This
cannot be automated but the workbench can help to organize the parts in part layers in the
second phase. In phase 3, the workbench helps to reposition parts (partially exploded view) for
clarifying the assembly process. The user then defines steps and highlights in terms of layer
states that make selected part or position layers visible (phase 4). In the layer states the user
can save the viewpoint of the camera from a simple context menu (phase 5) and automatically
generate images and mini-BOMs (phase 6). The two last phases apply to the compiler and
consist of declaring the Scribble statements for the assembly instructions and generating the
manual. Although the phases are presented in a sequential fashion, at any time, it is possible to
refine the assembly instructions in any phase, for example repositioning parts, after which the
manual can be generated again. We published videos with an overview of the functionality [43]
and the complete methodology applied to a small vise assembly [44]. We also provide a virtual
machine with all the software pre-installed with instructions to replicate the videos [45] and a
container image with FreeCAD and the workbench [46].

6 EVALUATION
We use several methods to evaluate our work. Firstly, we show to what extent we can replicate
the original Fabulaser Mini Assembly Manual (Sec. 6.1). Secondly, we highlight each aspect
of the problem description in Sec. 3 and show to what extent our approach solves them
(Sec. 6.2–6.4).

6.1 REPLICATING THE FABULASER MINI ASSEMBLY MANUAL

To show to what extent we can replicate the original Fabulaser Mini Assembly Manual, we
recreate two of the steps and show the differences in Figures 8 to 10. In Figure 8 we can see
that the two versions are virtually the same, but that there are small differences, as can be
seen in subsequent figures: Figure 9 shows a step in the assembly manual, whereas Figure 10
a sub-step. In the original versions on the left side, the title text has a period character before
the title description only for steps but not for sub-steps, whereas the generated versions on the
right side consistently leaves out the period character for both steps and sub-steps. Since we
generate two steps in this example, the total step count is different from the original manual.
The mini-BOM shows the various components arguably clearer in the original version, but in the
generated version, users can obtain a sense of size of the component because of thinner lines
and additionally, the angle of the component’s picture matches the assembly step for easier

PHASE DESCRIPTION SOFTWARE

1) Inspect Design Determine logical steps in assembly Workbench

2) Select Parts Intuitive hiding and selection of parts Workbench

3) Position Parts Selective explosion of parts Workbench

4) Define Layer States Define assembly steps and highlights Workbench

5) Set Camera positions Save viewpoint angle and perspective Workbench

6) Generate Images Mini-BOM and step vector images Workbench

7) Write Textual Specification Fill the Scribble template Compiler

8) Generate Assembly Instructions Generate a PDF assembly manual Compiler

Table 1 Phases in the
methodology.

11Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

identification of parts. Finally, in the generated version, the red sticker is not listed as a part and
is mentioned in a remark instead. However, in contrast to the original assembly instructions,
the red sticker is part of the CAD model in the generated version and therefore, its placement is
consistent over steps, whereas in the original instructions, the red sticker is manually placed in
the page, sometimes with inconsistent results.

Figure 10 shows two virtually similar pages but it also highlights a drawback of automation. In
the bottom left corner, the original page specifies alternatives for the use of the template or a
square with two images, whereas this flexibility is challenging to achieve in our current version.
We therefore only included the use of the template and leave out the square. In principle, we
could implement this functionality but then questions arise whether we support two alternative
equivalent tools or even more, whereas in the non-automated setting, the graphic designer has
the flexibility to decide this and simply place two or more alternatives.

Table 2 presents supported features. By supported we mean that a particular layout from the
original Fabulaser Mini assembly manual can be replicated. The column “Replicated” shows
the parts of the original instructions that we replicated for the evaluation. The global list of

Figure 8 Difference between
original and generated Step 1.

Figure 9 Difference between
original and generated Step 1,
zoomed in.

Figure 10 Difference between
original and generated Step
2.1.

12Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

tools and the full BOM of parts are currently not supported. However, since we can already list
subsets of tools and parts, a page with the full BOM of parts and tools would be a minor change
in the software. In essence, we can conclude that we support all major features of the original
Fabulaser Mini assembly manual.

Since we have not recreated each step of the original assembly instructions, we analyzed
all the step layouts used in the original manual. This allows us to verify to what extent we
support a given page layout, where supporting means that we can replicate a page with this
layout. Table 3 shows that the majority of the pages are layout S1, that we fully support, albeit
that we do not support arbitrary tool combinations of alternatives as is mentioned before
(approximately 25% of S1). A small number of step layouts (S2) use a stand-alone, secondary
image which would be a minor change in our software. About 10% of the steps use electronics
and wiring. This would require a major change in our software that we leave to future work,
potentially in combination with an EDA tool such as KiCad [47]. A small percentage uses S4 with
a stacked highlight that would require a minor change in our software. Finally, step layout S5
mixes text with images. Supporting this would require a minor change to the software as well.

6.2 ELABORATE DOCUMENTATION PROCESS

Section 3 lists several aspects of documenting hardware. The first aspect is that documentation
is an elaborate and time-intensive process. As explained in Sec. 5, our solution specifically aims
for integration between the design and documentation process by means of automation in
what we call “CAD-coupled documentation”.

By capturing the layout of the Fabulaser Mini manual in layout rules in our software, we
automate the role of the graphic designer to a high degree. However, our approach still provides

MANUAL FEATURE DESCRIPTION SUPPORTED REPLICATED

Title-page Page with full assembly Yes Yes

Index Table of contents Yes Yes

How to use manual Instructions on manual usage Yes No

List of tools A list of tools to use No No

How-to pages Instructions for common tasks Yes Yes

Safety instructions Generic safety instructions Yes No

Duration time Duration pictogram for a step Yes Yes

Multi-column typesetting Typeset remarks per column Yes Yes

Mini-BOM Mini-BOM with pictograms Yes Yes

Remarks Step-specific remarks Yes Yes

Highlights Zoomed images for details Yes Yes

Labels Labels to certain parts Yes Yes

How-to remarks Refer to how-to pages Yes Yes

Tools for each step List of tools for a step Yes Yes

List of Parts Full BOM of parts No No

Table 2 List of support of
assembly manual features.

STEP LAYOUT DESCRIPTION EXAMPLE PAGES % OF PAGES SUPPORTED

S1 Layout of Figure 8 and 10 15, 16, 17 79.7 Yes1

S2 S1 with stand-alone image 20, 70, 73 3.3 No2

S3 S1 with electronics/wiring 24, 25, 26 10.1 No3

S4 S1 with stacked highlight 37, 40, 83 4.5 No2

S5 S1 with text/image columns 84, 85, 86 12.4 No2

Table 3 Replicability of step
layouts. 125% of these pages
use tool alternatives that we
do not support. 2Support for
this requires a minor addition
to our software. 3Support for
this requires a major change
to our software.

13Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

flexibility in layout decisions by providing hints for placing highlights, labels, and remarks into
columns or into a Cartesian coordinate system.

Table 1 lists several steps of our methodology, but the last step “Generate Assembly Instructions”
leaves out many steps of the automation that we list in Table 4. Instead of focusing on these
kinds of details, users can focus on the semantics, so determining what a step is, how long it
takes to complete the step, or making assembly more clear by adding a highlight. Essentially,
users can focus on filling a predefined Scribble template per step with the relevant information
for their assembly process.

Another strength of this approach is that it is a software solution that eliminates the need for
taking pictures with a camera or physically disassembling the machine to understand steps
or obtain clearer images. Additionally, the tight integration between the documentation and
design CAD files assure that there is only one source of truth which is the collection of CAD files.

Quantifying the time savings caused by our approach is challenging because we cannot
reconstruct how much time the creation of the original Fabulaser Mini manual took because
of various iterations with multiple people. In addition, to fully compare the time durations,
we would have to include electronics and wiring which we leave to future work. However, to
give an indication of how time-intensive our approach is, we timed the creation of assembly
instructions for two small projects that show that we can generate a manual of about 5 steps
in the order of 1 hour. Table 5 lists the machines, the number of steps, and the amount of
minutes it took to complete the manual. A video that times the steps of creating the Vise
assembly is available [44].

6.3 SUPPORT FOR GIT AND CO-DEVELOPMENT

Another aspect listed in the problem description that is important in OSH is the support for Git
as a versioning system, one of the main reasons for the current state-of-the-art documentation
system GitBuilding [17]. Our approach is friendly to versioning because the specification of
assembly instructions is a line-based text file.

However, since we interact with a CAD file, the support for Git for the overall system depends
on the support that the CAD file has in Git. For our specific implementation in FreeCAD, support
is limited for CAD files in Git, but there is the possibility to get textual summaries of differences
in the binary FreeCAD files.

Our software does not incorporate co-development features like collaborative interaction, as
those found in cloud-based CAD solutions. This presents a future research challenge. Instead,
we rely on existing co-development tools, where assembly manual designers, create a local
copies of file repositories and collaborate with existing tools compatible with Git.

AUTOMATIC FUNCTIONALITY

Cross-reference page references

Cross-reference howto references

Number steps

Layout page components

Build the title page

Build the index

Build the howto pages

Generate the mini-BOMs

Table 4 Automatic
functionality for generating
assembly instructions.

MACHINE NR. STEPS TIME TO COMPLETE

Vise 6 24 minutes

Vertical Lathe 5 26 minutes

Table 5 Example designs for
evaluating time duration.

14Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

6.4 DESIGN EVOLUTION CONSIDERATIONS

Although our software is usable for non-open hardware projects, the main reason for this
level of automation is evolution of designs through collaboration that is typical for OSH. It is
challenging to anticipate all possible design changes and the effects on the documentation
process. Therefore, instead, we analyze what interactions are required for evolving designs and
enumerate the interactions with our software.

For this analysis we have the following assumptions: We make use of a “design CAD file”
containing a design for version 1 of some tool or machine. Then we have the “documentation
CAD file”, also in version 1, with the abstractions from our methodology and links into the
design CAD file. Finally, there is the “textual specification”, also in version 1. The documentation
CAD file has layers, positions, and layer states that are used in the textual specification that
links to the documentation CAD file and from which we can generate the manual of version 1.

Now as part of the evolution of the design, the design CAD file is changed into versions 2, 3, and
4 that potentially require changes in the documentation CAD file and the textual specification.
The design evolution workflow that we describe below is illustrated in Figure 11. The actions for
the documentation CAD file and the textual specification are listed in Table 6.

The effects of changing the design CAD file from a version to a higher one are always limited in
scope for the documentation CAD file because of the low number abstractions in this latter file.
The documentation CAD file consists of two types of layers: (1) layers for parts and (2) layers for
positions. The layer states record which layers are (3) on or off or (4) grayed out for steps and
highlights. Finally, the layer states define camera positions (5).

Consider the following changes in the design: we simplify the design to use less screws in
version 2 (see Figure 11 and Table 6). Our system supports this design change in the following

VERSION ACTIONS DOCUMENTATION CAD FILE ACTIONS TEXTUAL SPECIFICATION

v2 Remove broken links (1)

[Remove positions (2)]

v3 Update broken link to point to new part (1)

[Redo positions (2)]

Update camera position (5)

v4 Update broken link to point to new part (1) Make new step definition

Add links to new part layer (1) Refer to part layer for BOM

[Redo positions (2)] Refer to layer state for image

Turn layers on/off on new layer state (3) Determine coordinates image

Gray out layers (4)

Establish camera positions (5)

Table 6 Actions on the
documentation CAD file and
the textual specification for
the versions 2, 3, and 4 for
Figure 11. The actions in
square brackets [] are optional
depending on whether
positions were created for
these parts.

Figure 11 Design evolution
workflow for different
scenarios. Table 6 lists the
actions required for each
version.

15Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

way: The excess screws will be apparent in the documentation CAD file because of broken links
to the design CAD file. After removing the broken links from the part layer (1) and potentially
removing corresponding positions (2), the user can automatically generate the manual again
to make it up-to-date.

A more complicated change would be to replace a part with a new one with different dimensions
in version 3. In our system, the old part results in a broken link in the documentation CAD file.
After removing the old part from the part layer (1) and adding the new part in the same layer
(1), potentially redoing positions (2), the user needs to update camera positions for the layer
states that feature the replaced part (5) because of changed dimensions. The user can then
regenerate the manual to make it up-to-date.

The most convoluted design change would be a change that requires changes in the assembly
steps, for example splitting a step or combining a step. An example is replacing a part with one
that requires more assembly and explanation, needing an additional step in version 4. This
would require a new part layer, moving parts from other part layers (1), and potentially redo
positions (2). Additionally, we would require creating a new layer state, turning on or off layers
(3), graying out layers (4), and esatblishing a camera position (5).

For version 2 and 3 it is not required to make any changes in the textual specification, but
version 4 does require changes in the textual specification. It involves creating a new step
definition in the textual specification (that can conveniently be adapted from a previously
defined step). In this step definition, the user should refer to the new part layer and layer state
in the documentation CAD file. With this information, the user can automatically generate the
new mini-BOM and incorporate a new image for this step with the camera angles that the
user defined in the layer state in the documentation CAD file. However, even for this most
convoluted example, the actions to perform are limited in scope and after the changes, the
documentation can be generated again in one go.

7 CONCLUSION
Open Source Hardware (OSH) projects have become more prominent and adoption is growing.
High-quality documentation is crucial for OSH to facilitate the replication and co-development.
Current state-of-the-art documentation systems offer limited support for two issues: (1) how
to ensure that documentation stays up-to-date with constantly evolving designs, and (2) how
to integrate the design and documentation processes.

We addressed these issues with our system that consists of a CAD plugin for documentation
and a compiler for a textual specification. This allows specifying assembly manuals with a
strong semantic relation between the documentation and the CAD design, and brings forward
a methodology that we name “CAD-coupled documentation”.

We evaluate our system by replicating parts of a state-of-the-art assembly manual for OSH. We
show that we can replicate this manual to a high degree and that we can automate significant
parts of the documentation. Additionally, design evolution results in documentation changes
that are limited in scope as a result of the abstractions our system provides.

Although our work shows high potential for integrating the design and documentation process,
our work is currently limited to assembly instructions and in particular, our software cannot
handle the electronics part of the manual that we aimed to replicate. For future work, we aim
to apply our work to electronics and other forms of documentation that are important for OSH.

Another direction for future work is to extend the support for designs made with other CAD
software than FreeCAD. Our system supports creating manuals from a STEP file acting as the
design CAD file. However, design evolution with STEP files is not supported, because a change
in alternative CAD software will result in a new STEP export and therefore a new design CAD
file. Because of this, the documentation CAD file will not be able to maintain the links to the
design CAD file. One potential direction is to record how the documentation CAD file was built
from a STEP design CAD file. Then, given a new STEP file that captures a subsequent version of
the design, we would apply the recording to recreate the documentation CAD file, notifying the
user which recorded actions cannot be performed because of changes in the design CAD file.

16Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

In a greater context, integrating the design and documentation process and semi-automatically
generating documentation allows to keep the source footprint of OSH small and allows the
documentation to be of high quality and consistent over evolving designs. This can enable the
highly valuable OSH communities to focus more on improving designs without distractions of
elaborate documentation processes that require much discipline to keep up-to-date with the
designs.

ACKNOWLEDGEMENT
We would like to thank Daniele Ingrassia, Marc Kohlen, and Liane Sayuri Honda for their
collaboration and valuable insights.

FUNDING INFORMATION
This research was funded by the European Regional Development Fund (ERDF) in the context of
the INTERFACER Project.

COMPETING INTERESTS
The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
J.C. Mariscal-Melgar orcid.org/0000-0002-2562-0316
Helmut-Schmidt University/University of the Federal Armed Forces, Hamburg, Germany

Pieter Hijma orcid.org/0000-0002-5716-1118
Hamburg Institute for Value Systematics and Knowledge Management, HIWW, Hamburg, Germany

Manuel Moritz orcid.org/0000-0001-5126-9016
Helmut-Schmidt University/University of the Federal Armed Forces, Hamburg, Germany

Tobias Redlich orcid.org/0000-0003-4129-8926
Helmut-Schmidt University/University of the Federal Armed Forces, Hamburg, Germany

REFERENCES
1. Alison Powell. “Democratizing production through open source knowledge: from open software

to open hardware.” In: Media, Culture & Society 34.6 (2012), pp. 691–708. DOI: https://doi.

org/10.1177/0163443712449497

2. OSHWA Certified Projects List. Open Source Hardware Association. 2023. URL: https://certification.

oshwa.org/list.html (visited on 01/17/2023).

3. Massimo Banzi and Michael Shiloh. Getting started with Arduino. Ed. by Patric Di Justo. Fourth

Edition. Maker Media, Inc., 2022.

4. Rhys Jones, Patrick Haufe, Edward Sells, Pejman Iravani, Vik Olliver, Chris Palmer, and Adrian
Bowyer. “RepRap the replicating rapid prototyper.” In: Robotica 29.1 (2011), pp. 177–191. DOI:

https://doi.org/10.1017/S026357471000069X

5. CERN. CERN launches Open Hardware initiative. 2023. URL: https://home.cern/news/press-release/

cern/cern-launches-open-hardware-initiative (visited on 01/16/2023).

6. Myriam Ayass and Javier Serrano. “The CERN Open Hardware License.” In: International Free

and Open Source Software Law Review 4.1 (2012), pp. 71–78. DOI: https://doi.org/10.5033/ifosslr.

v4i1.65

7. John R. Ackermann. “Toward Open Source Hardware.” In: University of Dayton Law Review 34.2

(2009), pp. 183–222.

8. Alicia Gibb. Building Open Source Hardware: DIY Manufacturing for Hackers and Makers. Pearson

Education, 2014.

9. Jérémy Bonvoisin, Robert Mies, Jean-François Boujut, and Rainer Stark. “What is the Source

of Open Source Hardware?” In: Journal of Open Hardware 1.1 (2017), pp. 1–18. DOI: https://doi.

org/10.5334/joh.7

10. Nadica Miljkovi, Ana Trisovic, and Limor Peer. “Towards FAIR Principles for Open Hardware.” In:

CoRR abs/2109.06045 (2021). DOI: https://doi.org/10.5281/zenodo.5524414

11. Tiffany Tseng and Mitchel Resnick. “Product versus Process: Representing and Appropriating DIY

Projects Online.” In: Proceedings of the 2014 Conference on Designing Interactive Systems. DIS ’14.

2014, pp. 425–428. DOI: https://doi.org/10.1145/2598510.2598540

https://orcid.org/0000-0002-2562-0316
https://orcid.org/0000-0002-2562-0316
https://orcid.org/0000-0002-5716-1118
https://orcid.org/0000-0002-5716-1118
https://orcid.org/0000-0001-5126-9016
https://orcid.org/0000-0001-5126-9016
https://orcid.org/0000-0003-4129-8926
https://orcid.org/0000-0003-4129-8926
https://doi.org/10.1177/0163443712449497
https://doi.org/10.1177/0163443712449497
https://certification.oshwa.org/list.html
https://certification.oshwa.org/list.html
https://doi.org/10.1017/S026357471000069X
https://home.cern/news/press-release/cern/cern-launches-open-hardware-initiative
https://home.cern/news/press-release/cern/cern-launches-open-hardware-initiative
https://doi.org/10.5033/ifosslr.v4i1.65
https://doi.org/10.5033/ifosslr.v4i1.65
https://doi.org/10.5334/joh.7
https://doi.org/10.5334/joh.7
https://doi.org/10.5281/zenodo.5524414
https://doi.org/10.1145/2598510.2598540

17Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

12. Iván Sánchez Milara, Georgi V. Georgiev, Jani Ylioja, Onnur Özüduru, and Jukka Riekki.
““Document-while-doing”: a documentation tool for Fab Lab environments.” In: The Design Journal

22.sup1 (2019), pp. 2019–2030. DOI: https://doi.org/10.1080/14606925.2019.1594926

13. Peter Dalsgaard and Kim Halskov. “Reflective Design Documentation.” In: Proceedings of

the Designing Interactive Systems Conference. DIS ’12. 2012, pp. 428–437. DOI: https://doi.

org/10.1145/2317956.2318020

14. Tiffany Tseng. “Build in Progress: Building Process-Oriented Documentation.” In: Makeology.

Routledge, 2016, pp. 237–254. DOI: https://doi.org/10.4324/9781315726519-16

15. Pauline Gourlet, Sarah Garcin, Louis Eveillard, and Ferdinand Dervieux. “DoDoc: A Composite

Interface That Supports Reflection-in-Action.” In: Proceedings of the TEI ’16: Tenth International

Conference on Tangible, Embedded, and Embodied Interaction. TEI ’16. 2016, pp. 316–323. DOI:

https://doi.org/10.1145/2839462.2839506

16. Tobias Wenzel. DocuBricks. 2016. URL: http://www.docubricks.com/ (visited on 01/17/2023).

17. Julian Stirling. GitBuilding. 2021. URL: https://gitbuilding.io/ (visited on 01/17/2023).

18. Scott Chacon and Ben Straub. Pro Git. Ed. by Louise Corrigan. Second Edition. USA: Apress, 2014. DOI:

https://doi.org/10.1007/978-1-4842-0076-6

19. Manuel Moritz, Tobias Redlich, and Jens Wulfsberg. “Best Practices and Pitfalls in Open Source

Hardware.” In: Proceedings of the International Conference on Information Technology & Systems

(ICITS 2018). 2018, pp. 200–210. DOI: https://doi.org/10.1007/978-3-319-73450-7_20

20. Felix Arndt, Jérémy Bonvoisin, Tobias Burkert, Lukas Schattenhofer, Jerry de Vos, Fabian
Flüchter, Martin Häuer, Dietrich Jäger, Timm Wille, Mehera Hassan, Robert Mies, Brynmor
John, Manuel Moritz, Tobias Redlich, Christian Schmidt-Gütter, Emilio Velis, Joost van Well,
Diderik van Wingerden, Tobias Wenzel, Lukas Winter, and Lars Zimmermann. Technical Rule DIN

SPEC 3105-1:2020-07: Open Source Hardware, Part 1: Requirements for technical documentation.

Tech. rep. Berlin, Germany: Deutsches Institut für Normung e.V. (DIN), 2020, p. 13. DOI: https://doi.

org/10.31030/3173063

21. Jérémy Bonvoisin, Jenny Molloy, Martin Häuer, and Tobias Wenzel. “Standardisation of Practices

in Open Source Hardware.” In: Journal of Open Hardware 4.1 (2020), pp. 1–11. DOI: https://doi.

org/10.5334/joh.22

22. Rafaella Antoniou, Romain Pinquié, Jean-François Boujut, Amer Ezoji, and Elies Dekoninck.
“Identifying the Factors Affecting the Replicability of Open Source Hardware Designs.” In: Proceedings

of the Design Society 1 (2021), pp. 1817–1826. DOI: https://doi.org/10.1017/pds.2021.443

23. A. Ezoji, J.F. Boujut, and R. Pinquié. “Requirements for design reuse in open-source hardware:

a state of the art.” In: Procedia CIRP 100 (2021), pp. 792–797. DOI: https://doi.org/10.1016/j.

procir.2021.05.042

24. BrickLink. BrickLink Studio. 2023. URL: https://www.bricklink.com (visited on 01/17/2023).

25. Allen Smith. Bricksmith. 2023. URL: https://bricksmith.sourceforge.io/.

26. Ronald Melkert. LDCad. 2023. URL: http://www.melkert.net/LDCad (visited on 01/17/2023).

27. James Jessiman. LDraw. 2023. URL https://www.ldraw.org/ (visited on 01/17/2023).

28. Leonardo Zide. LeoCAD. 2023. URL: https://www.leocad.org/ (visited on 01/17/2023).

29. Mecabricks. Mecabricks. 2023. URL: https://www.mecabricks.com/ (visited on 01/17/2023).

30. Lulzbot. OHAI: Open Hardware Assembly Instructions. URL: https://ohai.lulzbot.com/ (visited on

01/17/2023).

31. Joel T. Collins, Joe Knapper, Julian Stirling, Joram Mduda, Catherine Mkindi, Valeriana Mayagaya,
Grace A. Mwakajinga, Paul T. Nyakyi, Valerian L. Sanga, Dave Carbery, Leah White, Sara Dale,
Zhen Jieh Lim, Jeremy J. Baumberg, Pietro Cicuta, Samuel McDermott, Boyko Vodenicharski, and
Richard Bowman. “Robotic microscopy for everyone: the OpenFlexure microscope.” In: Biomedical

Optics Express 11.5 (2020), pp. 2447–2460. DOI: https://doi.org/10.1364/BOE.385729

32. Joe Knapper, Julian Stirling, Joel Collins, Samuel Mcdermott, Valerian Sanga, Paul Nyakyi,
Grace Anyelwisye, Greg Austic, William Wadsworth, Catherine Mkindi, and Richard Bowman.
“Transitioning from Academic Innovation to Viable Humanitarian Technology: The Next Steps for the

OpenFlexure Project.” In: 2021 IST-Africa Conference (IST-Africa). 2021, pp. 1–11.

33. D.E. Knuth. “Literate Programming.” In: The Computer Journal 27.2 (1984), pp. 97–111. DOI: https://

doi.org/10.1093/comjnl/27.2.97

34. Eric Schulte, Dan Davison, Thomas Dye, and Carsten Dominik. “A Multi- Language Computing

Environment for Literate Programming and Reproducible Research.” In: Journal of Statistical Software

46.3 (2012), pp. 1–24. DOI: https://doi.org/10.18637/jss.v046.i03

35. Matthew Flatt and Eli Barzilay. Scribble: The Racket Documentation Tool. 2022. URL: https://

download.racket-lang.org/releases/8.7/pdfdoc/scribble.pdf (visited on 01/19/2023).

36. Daniele Ingrassia. Fabulaser Mini. 2021. URL: https://www.inmachines.net/Fabulasermini (visited on

01/17/2023).

37. J.C. Mariscal-Melgar, Mohammed Omer, Manuel Moritz, Pieter Hijma, Tobias Redlich, and Jens P.
Wulfsberg. “Distributed Manufacturing: A High-Level Node-Based Concept for Open Source Hardware

https://doi.org/10.1080/14606925.2019.1594926
https://doi.org/10.1145/2317956.2318020
https://doi.org/10.1145/2317956.2318020
https://doi.org/10.4324/9781315726519-16
https://doi.org/10.1145/2839462.2839506
http://www.docubricks.com/
https://gitbuilding.io/
https://doi.org/10.1007/978-1-4842-0076-6
https://doi.org/10.1007/978-3-319-73450-7_20
https://doi.org/10.31030/3173063
https://doi.org/10.31030/3173063
https://doi.org/10.5334/joh.22
https://doi.org/10.5334/joh.22
https://doi.org/10.1017/pds.2021.443
https://doi.org/10.1016/j.procir.2021.05.042
https://doi.org/10.1016/j.procir.2021.05.042
https://www.bricklink.com
https://bricksmith.sourceforge.io/
http://www.melkert.net/LDCad
https://www.ldraw.org/
https://www.leocad.org/
https://www.mecabricks.com/
https://ohai.lulzbot.com/
https://doi.org/10.1364/BOE.385729
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.18637/jss.v046.i03
https://download.racket-lang.org/releases/8.7/pdfdoc/scribble.pdf
https://download.racket-lang.org/releases/8.7/pdfdoc/scribble.pdf
https://www.inmachines.net/Fabulasermini

18Mariscal-Melgar et al.
Journal of Open Hardware
DOI: 10.5334/joh.56

TO CITE THIS ARTICLE:
Mariscal-Melgar, JC, Hijma, P,
Moritz, M and Redlich, T. 2023.
Semi-Automatic Generation
of Assembly Instructions
for Open Source Hardware.
Journal of Open Hardware,
7(1): 6, pp. 1–18. DOI:
https://doi.org/10.5334/joh.56

Submitted: 28 February 2023
Accepted: 19 July 2023
Published: 14 August 2023

COPYRIGHT:
© 2023 The Author(s). This is an
open-access article distributed
under the terms of the Creative
Commons Attribution 4.0
International License (CC-BY
4.0), which permits unrestricted
use, distribution, and
reproduction in any medium,
provided the original author
and source are credited. See
http://creativecommons.org/
licenses/by/4.0/.

Journal of Open Hardware is
a peer-reviewed open access
journal published by Ubiquity
Press.

Production.” In: Proceedings of the Conference on Production Systems and Logistics: CPSL 2022. 2022,

pp. 795–808. DOI: https://doi.org/10.15488/12171

38. Marc Kohlen and Liane Sayuri Honda. Assembly Manual of the Fabulaser Mini. 2021. URL: https://

github.com/fab-machines/Fabulaser-Mini/blob/main/manual/Fabulaser%20manual%20L2M2.pdf

(visited on 02/19/2023).

39. J.C. Mariscal-Melgar and Pieter Hijma. FreeCAD OSH Automated Documentation Workbench. Version

v0.1.0. 2023. DOI: https://doi.org/10.5281/zenodo.7633440

40. J.C. Mariscal-Melgar and Pieter Hijma. FreeCAD for OSH Automated Documentation. Version v0.1.0.

2023. DOI: https://doi.org/10.5281/zenodo.7633414

41. J.C. Mariscal-Melgar and Pieter Hijma. OSH Automated Documentation PDF. Version v0.1.0. 2023.

DOI: https://doi.org/10.5281/zenodo.7633370

42. J.C. Mariscal-Melgar and Pieter Hijma. OSH Automated Documentation Data. Version v0.1.0.

Zenodo, 2023. DOI: https://doi.org/10.5281/zenodo.7633472

43. J.C. Mariscal-Melgar and Pieter Hijma. OSH Automated Documentation - Overview Video. 2023. DOI:

https://doi.org/10.5281/zenodo.7633581

44. J.C. Mariscal-Melgar and Pieter Hijma. OSH Automated Documentation - Creating an Assembly

Manual for a Vise Video. 2023. DOI: https://doi.org/10.5281/zenodo.7633593

45. J.C. Mariscal-Melgar and Pieter Hijma. Live Image for OSH Automated Documentation. Version

v0.1.0. 2023. DOI: https://doi.org/10.5281/zenodo.7633515

46. J.C. Mariscal-Melgar and Pieter Hijma. OSH Automated Documentation Apptainer. Version v0.1.0.

2023. DOI: https://doi.org/10.5281/zenodo.7652868

47. Jean-Pierre Charras. KiCad EDA. 2023. URL: https://www.kicad.org (visited on 01/17/2023).

https://doi.org/10.5334/joh.56
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.15488/12171
https://github.com/fab-machines/Fabulaser-Mini/blob/main/manual/Fabulaser%20manual%20L2M2.pdf
https://github.com/fab-machines/Fabulaser-Mini/blob/main/manual/Fabulaser%20manual%20L2M2.pdf
https://doi.org/10.5281/zenodo.7633440
https://doi.org/10.5281/zenodo.7633414
https://doi.org/10.5281/zenodo.7633370
https://doi.org/10.5281/zenodo.7633472
https://doi.org/10.5281/zenodo.7633581
https://doi.org/10.5281/zenodo.7633593
https://doi.org/10.5281/zenodo.7633515
https://doi.org/10.5281/zenodo.7652868
https://www.kicad.org

