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The role of SGLT2i in attenuating
residual cardiovascular risk
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lowering: mechanistic insights
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Sodium glucose cotransporter 2 inhibitors (SGLT2) have been increasingly

pursued as a promising target for addressing residual cardiovascular risk. Prior

trials demonstrated that SGLT2i not only promotes glucose-lowering, but also

improves endothelial dysfunction, adiposity, fluid overload, and insulin sensitivity

thus contributing to hemodynamic changes implicated in its cardiorenal benefits.

The mechanisms in the effect of SGLT2i on blood pressure and their potential

role in preventing cardiovascular events are hereby revised.
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Introduction

Cardiovascular disease remains the leading cause of death and disability in individuals

with type 2 diabetes (T2D) (1). For a long time, achieving optimal glycemic control has

been the primary goal of diabetes care due to robust evidence associating glucotoxicity with

the progression of both micro- and macrovascular complications (2). However, recent

findings have revealed that even with stricter glycemic control, the cardiovascular risk in

T2D does not parallel that of healthy individuals (3, 4). The persistence of this risk, despite

all the therapeutic interventions, is referred to as the residual cardiovascular risk. This is

attributed to the complex, multi-faceted pathophysiology of T2D, which includes not only

glucotoxicity but also other risk factors such as hypertension, adiposity, impaired cardiac

energy metabolism, dyslipidemia, and kidney failure (5).

As a consequence, the development of new therapeutic targets that address these

detrimental pathways alongside glucose-lowering has emerged as an encouraging approach

to mitigate residual cardiovascular risk (6). This review provides a comprehensive

exploration of the novel mechanistic insights that highlight the significant role of

sodium-glucose cotransporter-2 inhibitors (SGLT2i) in attenuating residual

cardiovascular risk in T2D. Specifically, we shed light on their blood pressure lowering
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effect, thereby positioning SGLT2i as reliable therapeutic agents in

mitigating cardiovascular complications associated with T2D.
Hypertension

Hypertension is highly prevalent among individuals with T2D,

significantly increasing the risk of cardiovascular disease on top of an

already heavy burden (7, 8). Considering that both conditions overlap

risk factors and pathophysiological pathways, it is estimated that half of

individuals with hypertension have insulin resistance, and up to 85% of

individuals with T2D also have hypertension (9). Experimental studies

have shown that high blood pressure upregulates pathways related to

insulin resistance, while T2D triggers the overactivation of the renin-

angiotensin-aldosterone system and sympathetic tone, resulting in

elevated blood pressure (7, 10). The interplay between T2D and

hypertension synergically worsens cardiovascular risk (11, 12).

Accordingly, individuals with both conditions have a twofold

increase in cardiovascular mortality compared to those with only

T2D or hypertension, and this effect linearly grows as blood pressure

rise (13, 14). Promisingly, SGLT2i have demonstrated the ability to

lower blood pressure whilst optimizing glycemic control (Figure 1).

In comparison to placebo, SGLT2i reduces 24-hour systolic and

diastolic blood pressures by an average of 4 mmHg and 2 mmHg,

respectively. This reduction remains consistent regardless of

baseline blood pressure or changes in weight (15, 16). Given that

a 10 mmHg drop in systolic blood pressure is estimated to decrease

incident cardiovascular events by 12%, the impact of SGLT2i on

blood pressure could significantly reduce morbidity (17, 18).

Furthermore, despite evidence supporting stricter blood pressure

targets for individuals at higher cardiovascular risk is beneficial for

preventing adverse events, real-world data shows that less than a

third of individuals with T2D meet these targets (19–21). SGLT2i

could enhance the effects of concomitant antihypertensive drugs,
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thus improving compliance with blood pressure goals and reducing

the incidence of adverse outcomes (20, 22).
Osmotic diuresis

Until recently, blood pressure reduction through SGLT2i was

attributed solely to osmotic diuresis. To investigate this further,

Heerspink et al. (23) conducted a study on well-controlled

individuals with T2D and examined the effect of 12 weeks of

dapagliflozin treatment on radiolabeled-estimated plasma volume

(23). The results showed that dapagliflozin led to a 7% decrease in

plasma volume and a 10 mmHg reduction in 24-hour systolic blood

pressure compared to the placebo group (23). While these early

hemodynamic changes may be influenced by this mechanism,

compensatory renal responses occurred due to plasma volume

changes, ultimately restoring homeostasis (24).

In a related study, Scholtes et al. (24) explored the effects of

dapagliflozin treatment on individuals with T2D on standardized

sodium intake regimens. They found that dapagliflozin upregulated

multiple water-conservation compensatory pathways, including

vasopressin-mediated water retention, hyperactivation of the

renin-angiotensin-aldosterone system, and a sharp decrease in

fractional urea excretion (24–26). Consequently, renal adaptative

responses play a significant role in mitigating the impact of volume

contraction on SGLT2i-induced hemodynamic changes, suggesting

the involvement of other concurrent pathways.
Sympathetic tone

Adrenergic overdrive plays a pivotal role in the pathogenesis of

hypertension and the progression of end-organ damage (27). In

individuals with hypertension, the presence of T2D intensifies the
FIGURE 1

Mechanisms involved in blood pressure reduction by SGLT2i.
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hyperactivation of sympathetic tone, leading not only to elevated

blood pressure but also an increased risk of left ventricle

hypertrophy, myocardial infarction, heart failure, stroke and

mortality (28–31). A study by Hamaoka et al. (32) demonstrated

that a 12-week treatment with dapagliflozin in patients with heart

failure resulted in a decrease in muscle sympathetic nerve activity

and resting heart failure whilst reducing blood pressure. Similarly,

Balcıoğlu et al. (33) found that a 24-week treatment with

dapagliflozin improved heart rate variability and prevented

ventricular premature beats, whereas SGLT2i therapy also

prevented vaso-vagal syncope in the SCAN study (34).

These findings suggest that SGLT2i modulation of the

autonomic nervous system may contribute to blood pressure

reduction and potentially attenuate residual cardiovascular risk.

However, further investigation is necessary to gain a comprehensive

understanding of the underlying mechanisms of these drugs.
Insulin resistance and
endothelial dysfunction

Insulin resistance and endothelial dysfunction, which are key

contributors to cardiovascular risk, are associated with increased

blood pressure that could be prevented through the use of SGLT2i

(35). Insulin plays a pivotal role in regulating blood pressure

through two pathways: (i) the phosphatidylinositol 3-kinase

(PI3K)/protein kinase-B (Akt)/nitric oxide (NO) pathway, which

promotes vasodilatation and, ultimately, decrease blood pressure;

and (ii) the mitogen-activated protein kinase (MAPK)/endothelin-1

(ET-1) pathway, which causes vasoconstriction and elevates blood

pressure (36). In the presence of insulin resistance, the activity of

the MAPK/ET-1 pathway dominates over that of the PI3K/Akt/NO

pathway, leading to vasoconstriction with elevated blood pressure

prevailing (36). Furthermore, insulin resistance has also been

associated with hyperactivated sympathetic tone, activation of the

renin-angiotensin aldosterone system, and increased salt-

sensitivity; all of which are implicated in hypertension (12, 37–40).

Previous studies have demonstrated that SGLT2i therapy

improves endothelial function and insulin sensitivity (41). For

instance, in the ADDENDA trial, an open-label prospective

randomized clinical trial that enrolled 98 individuals with T2D

and carotid atherosclerotic disease, the efficacy of dapagliflozin

treatment was examined over a 12-week period. The results

demonstrated significant improvements in vasomotor function

and increased plasma nitrite levels (42). This study adds to

existing evidence that SGLT2i possess multiple beneficial effects.

They have been shown to reduce oxidative stress, modulate

adhesion molecules, and exhibit anti-inflammatory and anti-

apoptotic properties. These collective effects ultimately contribute

to the restoration of endothelial function (43–45).

SGLT2i also improve insulin sensitivity. A study by Merovci

et al. (46) showed that 14 days of dapagliflozin therapy led to

significant improvements in insulin-stimulated glucose disposal in

individuals with T2D, suggesting increased muscle insulin

sensitivity (46). Glycosuria was partially compensated by an

increase in endogenous glucose synthesis following increased
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glucagon levels (46). Accordingly, Rodriguez et al. found that 12-

week treatment with dapagliflozin improved insulin sensitivity, as

assessed by serial measurements of plasma insulin and glucose

levels adjusted for urinary glucose excretion, in a group of 24 adults

with pre-diabetes undergoing oral glucose tolerant test (47).

Although the mechanisms involved in SGLT2i abrogation of

insulin resistance remains under debate, prior experiments

suggest that SGLT2i prevention of glucotoxicity-induced oxidative

stress of beta-cells may partially answer for this effect (48).

A recent meta-analysis with 55 clinical trials and over 36

thousand patients demonstrated that all SGLT2i consistently

reduce serum uric acid (SUC) levels, compared to placebo, and

this may contribute to insulin resistance and endothelial

dysfunction reversion (49). In this regard, prior experiments

showed that induction of hyperuricemia in T2D mice not only

abrogate nitric oxide release and increased blood pressure, but also

inhibited the expression vascular adhesion cell molecule in vitro

(50). Furthermore, data from clinical studies support hyperuricemia

as an independent risk factor not only for cardiovascular events, but

also for rapid decline in kidney function of T2D individuals (51).

Together, SGLT2i effect on SUC may hence contribute to the

reduction of blood pressure and assist in overall cardiovascular

risk reduction (52).
Weight loss

SGLT2i therapy promotes weight loss, which also helps

reducing residual cardiovascular risk. Currently, eight out of ten

individuals with T2D are affected by excess weight (53). Addressing

these conditions not only improves blood pressure and glycemic

control, but also provides significant benefits in terms of peripheral

neuropathy symptoms, exercise tolerance and overall quality of life

(54–56). Studies have shown that a decrease of 1 unit in body mass

index leads to a 5 mmHg reduction in systolic blood pressure, and a

10% reduction in body weight results in a 1% decrease in glycated

hemoglobin (55, 57). Previous research has also demonstrated that a

majority of hypertension cases are attributed to excess adiposity,

and that reducing adiposity may lead in some cases to the remission

of hypertension (58). While the complex relationship between

obesity and hypertension is beyond the scope of this article (59),

we will focus on the evidence implicating SGLT2i-induced weight

loss on blood pressure changes.

In a recent meta-analysis of 18 randomized controlled trials

enrolling over 1,430 participants, SGLT2i therapy was associated

with an average weight reduction of 2.73 kg (60). Participants who

were concomitantly on a regular exercise regimen and had

preserved kidney function were twice as likely to experience a

weight loss greater than 3% of their baseline weight, and these

reductions were independently correlated to systolic blood

pressure drops (61–63). Further studies conducted by our group

demonstrated that weight loss primarily stems from fat mass loss.

This finding is supported by the evidence of an increase in the lean-

to-total mass ratio in individuals with T2D treated with

dapagliflozin compared to those treated with glibenclamide

alongside metformine in the ADDENDA trial (64). Other trials
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have also shown that the majority of total body mass change

consists of water and fat mass loss, with minimal impact on lean

mass loss (65–68).

The effect of SGLT2i on glycosuria is involved in adiposity

reduction. In this matter, Rajeev et al. found that dapagliflozin

increase daily urinary glucose excretion by up to 40g, which in turn

translates in an incremental daily energy expenditure of 300kcal

(69). The expected weight loss for such caloric deficit is of 10kg per

year, which is higher than the observed change in body weight. Such

discrepancy is partially explained by the activation of compensatory

mechanisms that increase endogenous synthesis of glucose and

appetite. In fact, earlier studies showed that dapagliflozin glucose-

lowering effect is partially attenuated by a concomitant increase in

glucagon and glucose synthesis of 32% and 17%, respectively, that

may attenuate caloric deficit attenuating weight loss (46).

Seminal hypothesis-generating experimental studies have also been

conducted. For example, Xu et al. showed that empagliflozin reduces

inflammation in adipose tissue, increases energy expenditure and heat

production, and promotes the expression of uncoupled protein 1 in

brown fat tissue (70). Moreover, empagliflozin enhanced the beta

oxidation of fatty acids through the upregulation of MAPK

pathways, reduced liver steatosis, and increased adiponectin levels in

ApoE-/- mice (71). These effects may be abrogated by compensatory

increased appetite. In fact, Devenny et al. (72) showed that

dapagliflozin induces a 30% increased caloric intake in T2D mice

with ad libidum access to food, thus resulting in a 3-fold lower body

weight loss compared to animals with restricted access to diet (72).

Beyond those mechanisms, the prevention of mitochondrial

dysfunction and the modulation of adiponectin levels may be

potential mechanisms underlying the impact of SGLT2i on adiposity,

although those hypothesis warrants further verification (73, 74).

There has been a growing body of evidence from both clinical

and experimental settings supporting the role of SGLT2i as a

promising target for tackling overweight and obesity thus

contributing to improved blood pressure control. So far, it has

become clear that SGLT2i not only reduces body weight, but also

shifts body composition toward a decrease in body fat percentage,

promoting less atherogenic and hypertensive phenotypes, hence

abrogating residual cardiovascular risk (65, 75).
Genetic variants

The influence of gene polymorphisms on SGLT2i has been

scarcely explored. For example, UDP-glucuronosyltransferase 1-9

(UGT1A9) enzyme answers for dapagliflozin glucuronidation to its

inactive metabolite, dapagliflozin-3-O-glucuronide (D3OG). Prior

studies demonstrated that UGT1A9 gene polymorphisms modulate

UGT1A9 enzyme activity, and this may have repercussions on

dapagliflozin pharmacodynamics, thus affecting its influence on

several pathways implicated in blood pressure control (76–78).

Furthermore, Solini et al. (79) demonstrated that dapagliflozin

prompts putative epigenetic modulation of miR30e-5p and

miR199a-3p, that in turn abrogate renal resistive index and may

therefore contribute to a favorable hemodynamic profile potentially

contributing to cardiovascular prevention (79).
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Other in vitro experiments also support a role for canagliflozin

in modulating sirtuin 3 gene expression in proximal tubular

epithelial cells promoting both renoprotective as a potential driver

of blood pressure lowering (80). Likewise, Zhao et al. showed that

epigenetic modulation of transient receptor potential channel 3

prevented high-salt diet-induced hypertension in rats, and this

effect was at least partially explained by parallel activation of

TRPC3/NCX1 pathway modulating intracellular calcium handling

(81). From this data, it is possible that individuals with salt‐sensitive

hypertension, which is tightly regulated by gene polymorphisms,

such as HSD11B2 and CYP3A5, involved in salt-sensitive

hypertension, may experience greater blood pressure changes

compared to non-salt-sensitive (82).
Cardiorenal benefits

Prior trials provided solid evidence of cardiorenal benefits from

SGLT2i treatment in high-risk T2D individuals. In the DECLARE

TIMI 58 study dapagliflozin yielded a 17% (HR 0.87, 95%CI: 0.73 –

0.95; p= 0.005) relative risk reduction in the composite outcome of

CV death or hospitalization for heart failure in 17,160 patients

followed for 4.2 years, when compared to placebo (83). Likewise, in

the CANVAS trial, canagliflozin reduced the relative risk of MACE

by 14%, (HR 0.86; 95% CI: 0.75 – 0.97, p < 0.001), and that of renal

outcomes including 40% reduction in glomerular filtration rate,

renal replacement therapy and renal death, by over 40% (HR 0.60,

95% CI: 0.47-0.77). In line with these results, empagliflozin reduced

the incidence of the composite outcome of CV death, myocardial

infarction, and stroke by 14% (HR 0.86, 95% CI 0.74-0.99; p= 0.04),

and that of hospitalization for heart failure by 35% (HR 0.65,

95% CI 0.50 – 0.85; p= 0.002) (84).

Renal benefits from SGLT2i in T2D subjects have been also

explored in further trials. In this regard, the CREDENCE study was

stopped early at 2.6 years after demonstrating a 30% lower relative

risk of a doubling of the creatinine level or death from renal causes

in the canagliflozin compared to the placebo group (85). Later

findings unequivocally showed that SGLT2i display renoprotective

effects regardless of T2D status reducing the relative risk of

composite renal outcomes by over 39% (HR 0.61; 95% CI, 0.51 -

0.72; P<0.001) and 28% (HR 0.72; 95% CI 0.64 to 0.82; P<0.001) in

the DAPA-CKD and EMPA-KIDNEY trial, respectively (86, 87).

Current data thus support a class effect favoring both cardiac and

renal events prevention hance playing an imperative role in

attenuating the residual risk of T2D (88).
Concluding remarks

Residual cardiovascular risk in individuals with T2D remains

an unresolved matter that needs to be adequately addressed.

Hypertension affects a significant majority (eight in ten) of

individuals with T2D, amplifying the risk of adverse outcomes.

However, the utilization of SGLT2i therapy has shown remarkable

potential in attenuating this risk and current evidence supports that

a part of this benefit is mediated by the influence of SGLT2i on
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hypertension through mechanisms that were revised in this article.

To effectively combat the adverse consequences of residual

cardiovascular risk in individuals with T2D, it is imperative to

address the knowledge gaps hereby highlighted and implement

targeted interventions.
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