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The complexity and high dimensionality of neuroimaging data pose problems for 
decoding information with machine learning (ML) models because the number 
of features is often much larger than the number of observations. Feature 
selection is one of the crucial steps for determining meaningful target features in 
decoding; however, optimizing the feature selection from such high-dimensional 
neuroimaging data has been challenging using conventional ML models. Here, 
we introduce an efficient and high-performance decoding package incorporating 
a forward variable selection (FVS) algorithm and hyper-parameter optimization 
that automatically identifies the best feature pairs for both classification and 
regression models, where a total of 18 ML models are implemented by default. 
First, the FVS algorithm evaluates the goodness-of-fit across different models 
using the k-fold cross-validation step that identifies the best subset of features 
based on a predefined criterion for each model. Next, the hyperparameters of 
each ML model are optimized at each forward iteration. Final outputs highlight 
an optimized number of selected features (brain regions of interest) for each 
model with its accuracy. Furthermore, the toolbox can be executed in a parallel 
environment for efficient computation on a typical personal computer. With the 
optimized forward variable selection decoder (oFVSD) pipeline, we verified the 
effectiveness of decoding sex classification and age range regression on 1,113 
structural magnetic resonance imaging (MRI) datasets. Compared to ML models 
without the FVS algorithm and with the Boruta algorithm as a variable selection 
counterpart, we demonstrate that the oFVSD significantly outperformed across 
all of the ML models over the counterpart models without FVS (approximately 
0.20 increase in correlation coefficient, r, with regression models and 8% increase 
in classification models on average) and with Boruta variable selection algorithm 
(approximately 0.07 improvement in regression and 4% in classification models). 
Furthermore, we confirmed the use of parallel computation considerably reduced 
the computational burden for the high-dimensional MRI data. Altogether, the 
oFVSD toolbox efficiently and effectively improves the performance of both 
classification and regression ML models, providing a use case example on MRI 
datasets. With its flexibility, oFVSD has the potential for many other modalities in 
neuroimaging. This open-source and freely available Python package makes it a 
valuable toolbox for research communities seeking improved decoding accuracy.
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1. Introduction

Neuroimaging data such as structural and functional magnetic 
resonance imaging (MRI) data provide information about the 
functional neuroanatomy with a high spatial resolution and play an 
essential role in providing researchers with unprecedented access to 
the inner workings of the brain of a healthy individual or an individual 
with a neurological disease or psychiatric disorder (Zhu et al., 2019). 
Identifying brain regions that differentiate healthy and nonhealthy 
participants (Nielsen et  al., 2020) or the prognosis of patients’ 
pathological states (Janssen et al., 2018) is essential for neuroscientific 
studies. Needless to say, the impact of those findings is rooted in the 
accuracy of their decoding.

In the last couple of decades, we have seen a surge of studies 
turning to ML models to extract exciting new information from 
neuroimaging data. For example, the partial least squares (PLS) model 
was proposed to extract distributed neural signal changes by taking 
advantage of image elements’ spatial and temporal dependencies 
(McIntosh et al., 1996; McIntosh and Lobaugh, 2004). The adaptive 
boosting model (‘AdaBoost’) was proposed to classify addiction 
disorder patients and healthy controls based on observed 
3-dimensional functional brain images (Warren and Moustafa, 2022). 
The existence of diverse ML models has raised the question of which 
and when an ML model is better suited to extract important new 
information from neuroimaging data (O’Toole et al., 2007; Pereira 
et al., 2009). However, the selection of the most appropriate models 
for a specific dataset and purposes is challenging for people with little 
experience in ML since the appropriate choice of a model depends on 
the number of features (Saeys et al., 2007).

The curse of dimensionality of neuroimaging data can negatively 
affect the generalization performance of ML models, leading to 
estimation instability, model overfitting, local convergence, and large 
estimation errors (Mwangi et al., 2014). For example, the decoding 
abilities of models that depend on specific distributions of data, such 
as geometric distributions of data, can be significantly influenced in 
the high-dimensional data space. A naïve learning model requires the 
number of training data points to be an exponential function of the 
attribute dimension (Jain et al., 2000). Furthermore, the problem of 
the high dimensionality of neuroimaging data (e.g., an extremely large 
number of voxels in fMRI research) poses a number of challenges (Vul 
et al., 2009) even if a model is based on nonparametric strategies 
(Huang et  al., 2012). For example, in the random forest model, 
available features are randomly sampled to generate different 
subspaces of features used to train each decision tree in an ensemble 
(Kuncheva et al., 2010). Because it is typical to observe only a few 
features out of many that significantly contribute to the performance 
of these models, a large number of irrelevant features appear in these 
subspaces. Thus, the average strength of decision trees can be diluted, 
thereby increasing the generalization error of the random forest 
model. These problems also exist in neural network models when the 
high dimensionality of data confounds learning techniques, and the 
network must allocate its resources to represent many irrelevant 
components (Scott, 1992).

Recent advancements in neuroimaging technologies have also 
increased the data size; namely, the total number of features to 
be considered has increased. Therefore, a feature reduction technique 
has become one of the essential aspects of neuroimaging research 
(Mwangi et al., 2014). The size of neuroimaging data may lead to a 

computational burden. However, building a pipeline for hundreds of 
thousands of brain regions can be very costly and time-consuming. 
Recently, several ML methods incorporating parallel computing 
environments have been developed (Xing et al., 2016); implementing 
a fast and efficient pipeline would be  of potential application for 
analyzing a large amount of neuroimaging data.

While many algorithms have been proposed, one thorough ML 
model is forward variable selection (FVS). The FVS algorithm is a 
member of the stepwise feature selection algorithm family (Guyon and 
Elisseeff, 2003; Kutner et al., 2005; Weisberg, 2005; Chandrashekar 
and Sahin, 2014). It is also one of the first and most popular algorithms 
for causal feature selection in some fields, such as gene selection, 
microarray data analysis, and gene expression data analysis (Ooi and 
Tan, 2003; Blanco et al., 2004; Jirapech-Umpai and Aitken, 2005; Saeys 
et al., 2007). The powerful nature of feature decoding in the analysis 
of high-dimensional microbiome data has also been demonstrated 
(Dang et  al., 2022; Dang and Kishino, 2022). The FVS can be  a 
powerful additional tool for neuroimaging research.

Despite a significant rise in the application of ML models and 
their potential contributions to understanding brain functions, 
neuroimaging data are ill-posed to the high-dimensionality problem. 
Here, we propose a state-of-the-art and effective ML package as a 
solution to the high-dimensionality problem of neuroimaging data 
that is easy to use by neuroscientists interested in applying ML models 
to decode their neuroimaging data with little computational 
programming. In this study, we developed a novel decoding pipeline 
to overcome these challenges by combining two frameworks. First, 
we developed an ML framework incorporating an FVS algorithm that 
integrates model selection steps to detect the minimal set of features 
that could maximize the predictive performance. Second, the pipeline 
selects the best model from a predetermined set of regression and 
classifier models. This simple yet comprehensive two-stage algorithm 
automatically and effectively identifies important features from 
neuroimaging data. Moreover, because the nature of the FVS is 
computationally intensive and time-costly, the toolbox executes in a 
parallel environment to save computational costs. As a proof of 
concept of our approach to neuroimaging datasets, structural 
neuroimaging data were acquired to examine the feasibility of our 
proposed FVS toolbox to decode the neuroanatomical representation 
of (1) biological sex and (2) age with binary classification and multiple 
regression models, respectively.

2. Methods and material

2.1. Forward variable selection (FVS) 
algorithm

The FVS algorithm requires an ML model for feature selection and 
uses its performance to evaluate and determine which features are 
selected. The key idea behind the FVS algorithm is to select a feature 
that provides the largest improvement in terms of the predictive 
performance of the ML model and append this feature to the set of 
selected features in each forward iteration. The iterations stop when 
there is no feature improvement in the performance upon adding a 
feature or the maximum number of selected features has been reached.

In this proof of concept to decode either sex or age from regional 
gray matter volume, we used the FVS algorithm to identify a small 
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number of features (i.e., regions of interest) to improve the 
performance of ML models in the subsequent step of regression or 
classification. At each learning step, a brain region that provides the 
largest increase in the predictive performance of regression or 
classification models is selected and added to the set of selected brain 
regions. This process continues until there is no further performance 
improvement after selecting a brain region or the maximum number 
of selected brain regions that have been set a priori has been reached. 
To save computational time or to restrict the number of to-be-selected 
features for a certain purpose, users should specify a maximum 
number of brain regions for the FVS algorithm. If not, a maximum 
value is all the available brain regions in the data (246 ROIs). In this 
study, 100 ROIs is the maximum number of brain regions for the FVS 
algorithm. Model selection for brain region signature identification 
can also be performed using the FVS algorithm (see Figure 1). At each 
forward iteration, given the selected brain regions, samples were 
randomly split into a training dataset comprising 70% of the samples 
and a test dataset comprising the remaining 30% of the samples. To 
select an appropriate model configuration for a specific task, such as 
a prediction of age, fivefold cross-validation was performed on the 
training data to optimize the respective hyperparameters. Two 
standard algorithms of hyperparameter optimization, the grid search 
and random search strategies with cross-validation, were implemented 
to select the best values for the parameters of the ML model (Bisong, 
2019; Agrawal, 2021). The best-performing hyperparameters for each 
model were achieved when the MSE was minimized.

Based on the specific numbers of parameters of the ML model, 
grid search with cross-validation, all parameter combinations are 
exhaustively considered, while with the random search with cross-
validation, a given number of values are randomly selected from a 
parameter space was considered for parameter optimization (Bergstra 
and Bengio, 2012). These search strategies suffer from high-
dimensional spaces but can often easily be  parallelized since the 
hyperparameter values that the algorithm works with are usually 
independent of each other. Therefore, the ML models have a large 
number of parameters, such as the random forest and decision tree 
models. The random search with a cross-validation strategy is used to 
balance computational time and predictive accuracy. The grid search 
with cross-validation strategy is used for ML models with a few 
parameters, such as the lasso or ridge models. Following the 
hyperparameter optimization, the best ML model is specified, as well 
as the final selected features, namely brain regions in this case.

The FVS algorithm is implemented in a parallel computing 
environment to reduce the computational burden in terms of time 
cost. A number of packages provide high-performance computing 
solutions in Python (Palach, 2014). We  used the thread-based 
parallelism and process-based parallelism that is provided in the joblib 
package to separate Python worker processes to execute tasks on 
separate CPUs. To parallelize each FVS iteration, the input variables 
were separated randomly into a number of subsets. Because of the 
high dimensionality of neuroimaging data, the number of these 
subsets (or comparisons) is usually larger than the number of 

FIGURE 1

Workflow schematics of the automatic ML toolbox coupled with the forward variable selection (FVS) algorithm. All features, i.e., the gray matter volume 
data from each region of interest (ROI), undergo the FVS step, followed by either regression-based or classification-based ML with K-fold cross-
validation (CV). The random search and grid search strategies with cross-validation were adopted to optimize the hyperparameters of the ML models 
at each iteration of the FVS algorithm. The final outcomes were evaluated based on the MSE and MAE for regression-based models and the AUC and 
confusion matrix for classification-based model. n is the number of samples, m is the total number of ROIs (246 ROIs in this study) and x is the number 
of ROIs that the user wants to select.
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processors in a single computer system. In a previous study, a 
computer-friendly procedure was proposed for very high-dimensional 
microbiome data (Dang and Kishino, 2022). To introduce efficient 
computation, queues were created to randomly assign subsets to each 
processor that runs the computational processes from its own privately 
prepared queue (Dang and Kishino, 2022).

As the counterpart feature selection method we  propose, the 
Boruta algorithm (Kursa and Rudnicki, 2010) was tested to compare 
the performance of the FVS. Kursa and Rudnicki (2010) originally 
developed the wrapper algorithm to identify all important variables 
within a classification framework. The Boruta feature selection 
algorithm is applied in bioinformatics areas to select protein targets 
(Pietzner et  al., 2021; Al-Nesf et  al., 2022), microbial functions 
(Diamond et al., 2019; Saffouri et al., 2019; Edwinson et al., 2022), and 
metabolomic profiles (Metwaly et al., 2020; Mayneris-Perxachs et al., 
2022). The main idea of the Boruta algorithm is to create shadow 
features by randomly permuting the values of each original feature. 
This permutation is to generate a null distribution that represents the 
expected importance scores of features. Then, the original features and 
their corresponding shadow features are used to train the random 
forest classifier. The importance of each original and shadow feature 
is determined based on the random forest model. The z-score of the 
original feature is then computed by comparing its importance score 
with the distribution of importance scores of the corresponding 
shadow features. If the z-score is significantly higher than the expected 
chance level, it indicates that the original feature is more important 
than the shadow features. In this study, the maximum value is all the 
available brain regions in the data (246 ROIs) for the Boruta algorithm.

2.2. Regression-based ML models

We explored various ML models to examine how a regional brain 
structure could contain information representing age. After the 
preprocessing of structural imaging data, the input (target features) 
included high-dimensional structural gray matter volumetric data 
from 1,113 samples in 246 brain regions (see Section 3 for details). 
We applied a variety of ML models to identify features and to reduce 
the dimension of this input with parametric regularization models for 
feature selection and nonparametric models that perform a random 
sampling of the available features to generate different subspaces of 
features to achieve a trade-off between bias and variance. In our 
toolbox, we  selected two nonparametric models and 10 
parametric models.

For the nonparametric regression models, the commonly used 
decision tree regression, random forest (RF), and Gaussian process 
models were selected (Hastie et al., 2009). (1) Decision tree regression 
is a supervised learning model that sets up a decision rule depending 
on the features at every interior node (Hastie et al., 2009). The features 
selected for the first partition at the root have the largest relevance. 
This feature selection procedure is recursively repeated for each subset 
at the node until further partitioning becomes impossible. The 
decision tree regression is typically considered to analyze MRI images 
(Naik and Patel, 2014; Filli et al., 2018; Kim et al., 2018). (2) The 
random forest (RF) is a modification of the bagging regression that 
aggregates a large collection of decision trees (Breiman, 2001). The 
primary step in building an ensemble of decision trees is to randomly 
sample the available features to generate different subspaces of features 

at each node of each unpruned decision tree. Using this strategy, better 
estimation performances can be  obtained compared with using a 
single decision tree because each tree estimator has a low bias but high 
variance, whereas the bagging process of RF achieves a bias-variance 
trade-off. The random forest (RF) model has become a standard data 
analysis tool in multiple areas, such as bioinformatics (Boulesteix 
et al., 2012; Ferreira and Figueiredo, 2012) and neuroimaging analysis 
(Mitra et al., 2014; Eshaghi et al., 2016). (3) The Gaussian process (GP) 
is a nonparametric model that is a natural generalization of a 
multivariate Gaussian distribution to a Gaussian distribution over a 
specific family of functions, such as kernel functions (Rasmussen, 
2003). In GP regression, a prior distribution is proposed directly over 
the nonlinear function space rather than specifying a parametric 
family of nonlinear functions. Different kernels can be used to express 
different structures observed in the data. Thus, the GP has a large 
degree of flexibility in capturing the underlying signals without 
imposing strong modeling assumptions. This property makes the GP 
an attractive model for analyzing genetic data (Chu et al., 2005) as well 
as MRI data (Wassermann et al., 2010).

We selected eight parametric ML models, including ‘ridge 
regression,’ ‘least absolute shrinkage and selection operator (Lasso) 
regression,’ ‘kernel ridge regression,’ ‘multitask Lasso regression, least 
angle regression (Lar),’ ‘LassoLar regression,’ ‘elastic net regression,’ 
and ‘regularized linear model with stochastic gradient descent (SGD).’ 
(1) Ridge regression is a linear least squares model that uses L2 
regularization or weight decay to control the relative importance of 
features (Hastie et  al., 2009). L2 regularization encourages weight 
values to decay toward zero. Thus, ridge regression can be used to 
overcome the disadvantages of the ordinary least square method, i.e., 
the variance in the estimate of the linear transform may be  large 
because the number of features is significantly larger than the number 
of samples. (2) Least absolute shrinkage and selection operator (Lasso) 
regression, which is another type of linear regression, uses L1 
regularization and can eliminate a number of coefficients from the 
model by adding a penalty equal to the absolute value of their 
magnitude (Hastie et  al., 2009). (3) Kernel ridge regression is an 
extension of ridge regression that is used when the number of 
dimensions can be much larger, or even infinitely larger, than the 
number of samples (Vovk, 2013). The main idea is to propose the 
kernel trick to convert the original data space into the fancy feature 
space that can significantly reduce the computational burden of 
learning processes. (4) Multitask Lasso regression generalizes the 
Lasso to the multitask setting by replacing the L1-norm regularization 
term with the sup-norm regularization sum (Hastie et al., 2009). (5) 
The least angle regression (Lar) model is the modification of the Lasso 
and the forward stagewise linear regression models, where the number 
of features is significantly greater than the number of samples (Efron 
et al., 2004). At each iteration, Lars selects the feature most correlated 
with the target. If multiple features have a similar correlation, the 
direction equiangular between the features is moved forward. (6) The 
Lasso model fit with least angle regression (LassoLar) is the 
combination of Lar and Lasso and is implemented to improve the 
variable selection (Efron et al., 2004). (7) The elastic net model is the 
generalization of ridge regression and lasso. This model proposes the 
elastic net penalty, which controls the coefficients’ balance between 
the L1 and L2 regularization (Zou and Hastie, 2005; Hastie et al., 
2009). Thus, an elastic net can be used to perform feature selection in 
a high-dimensional space. And (8) Regularized linear model with 
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stochastic gradient descent (SGD) learning is an extension of the 
ridge, Lasso, and elastic net models with a large number of training 
samples implemented with a plain stochastic gradient descent learning 
routine (Hastie et  al., 2009). See the Supplementary material for 
detailed explanations for each ML model.

For each ML model, the parameter optimization steps were 
developed. Specifically, in the cases of the ridge, Lasso, multitask 
Lasso, Lar, and LassoLar models, the complexity of the parameters 
that control the amount of shrinkage was optimized. The elastic net 
model includes an additional parameter that controls a combination 
of L1 and L2 penalties separately. The main parameters of the 
regularized linear model with SGD learning were loss functions, 
penalty options, and the learning rate schedule, whereas those of the 
kernel ridge regression model were kernel options that include linear, 
Laplacian, Gaussian, and sigmoid kernels, the regularization 
parameter, and the kernel coefficient, and those of the decision tree 
model were the maximum depth of the tree, the minimum number of 
samples required to split an internal node, the minimum number of 
the samples required to be at a leaf node, the function to measure the 
quality of a split, the strategy used to choose the split at each node, and 
the number of features to consider when looking for the best split. The 
parameters of the random forest regression were the same as those of 
the decision tree regression, except that the number of trees was an 
additional parameter.

As a criterion to compare the performance of regression, the mean 
squared error (MSE), mean absolute error (MAE), and Spearman 
correlation coefficients that were calculated between the predicted and 
the true values were calculated (Hastie et al., 2009). In the field of 
statistics, the Akaike or Bayesian information criteria (also known as 
AIC or BIC, respectively) are widely used indices to quantify the fit of 
a model (Burnham and Anderson, 2004); however, these information 
criteria methods do not apply for nonparametric regression models 
(e.g., decision tree, random forest). Thus, we selected the MSE and 
MAE, which are applicable across all models.

2.3. Classification-based ML models

We also extended the application of our model to study the binary 
or multi-class classification. We examined how brain structure could 
contain information representing sex (male or female). The automated 
classification models include nonparametric models, such as decision 
tree, random forest, gradient boosting models, extreme gradient 
boosting, and extremely randomized trees, which have the capability 
of regression and classification. (1) Decision trees are commonly 
utilized classification models in various fields, such as machine 
learning and data mining (Gavankar and Sawarkar, 2017). Decision 
trees include a number of tests or attribute nodes linked to subtrees 
and decision nodes labeled with a class, i.e., a decision. A sample is 
classified by starting at the root node of the tree. Each node represents 
features in a group to be classified, and each subset defines a value that 
can be taken by the node (Hastie et al., 2009). The entropy, Gini index, 
and information gain are the standard measures of a dataset’s impurity 
or randomness in decision tree classification. (2) Random forest 
classification is one of the most popular ensemble models that can 
be  used to avoid the tendency of simple decision trees to overfit 
(Breiman, 2001). Similar to regression, random forest classification 
proposes a slightly randomized training process to build multiple 

decision trees independently. The randomization processes include 
using only a random subset of the whole training dataset to build each 
tree and using a random subset of the features or a random splitting 
point when considering an optimal split. (3) The gradient boosting 
model is an ensemble model that uses the boosting technique to 
combine a sequence of weak decision trees (Friedman, 2001). Each 
tree in the gradient boosting fits the residuals from the previous tree. 
Thus, the errors of the previous tree are minimized, and the overall 
accuracy and robustness of the model are considerably improved. (4) 
Extreme gradient boosting is an efficient and scalable implementation 
of the gradient boosting model for sparse data with billions of 
examples (Chen and Guestrin, 2016). (5) Extremely randomized trees 
are another model to improve the performance of decision trees by 
generating diverse ensembles (Geurts et al., 2006). The main idea of 
this model is to inject randomness into the training process by 
selecting the best splitting attribute from a random subset of features. 
However, in contrast to the random forest, the bootstrap instances 
procedures are implemented by extremely randomized trees. 
We  provide specific explanations for each ML model in the 
Supplementary material.

Because of the computational burdens of nonparametric models, 
random search strategies with cross-validation are implemented for 
the parameter optimization steps. The parameters of decision tree 
classification, such as the maximum depth of the tree and the 
minimum number of samples required to split an internal node, are 
similar to those of regression. The Gini index and entropy are used to 
measure the quality of a split in classification. Moreover, a large 
number of parameters of random forest, gradient boosting, extreme 
gradient boosting, and extremely randomized trees are similar to the 
parameters of decision tree classification. However, several special 
parameters can significantly influence performance. Specifically, the 
number of trees is the most important parameter of random forest 
classification. The necessary parameters of gradient boosting 
classification include the loss function to binomial and multinomial 
deviance, the function to measure the quality of a split, the function 
to measure the quality of a split, and the number of boosting stages. 
The parameters of extreme gradient boosting are similar to those of 
gradient boosting. Its computational speed is faster because it has an 
option for the number of parallel trees constructed during each 
iteration. An important parameter of extremely randomized trees is 
the number of trees in the forest, and the bootstrapping technique is 
not used to build each tree.

Simple parametric models, such as logistic regression and naïve 
Bayes, were also included in the classification models. (1) Logistic 
regression is a standard model for building prediction models for 
classification. Due to the high-dimensional problems of multiple areas 
(Bühlmann and van de Geer, 2011), ridge and Lasso penalties are 
added to penalized logistic modeling for the feature selection step. 
This model has been applied for the analysis of genetic datasets to 
select a subset of genes that can provide more accurate diagnostic 
methods (Liao and Chin, 2007; Wu et al., 2009). (2) Naïve Bayes is a 
classification model that refers to constructing a Bayesian probabilistic 
model to assign a posterior class probability to each sample 
(McCallum and Nigam, 1998). The important assumption of this 
model is that the features constituting the sample are conditionally 
independent given the class. The naïve Bayes model is fast, easy to 
implement, and relatively effective for the classification of biological 
datasets (Yousef et  al., 2007). The grid search strategy with 
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cross-validation is implemented for the parameter optimization steps. 
The parameter in logistic classification is an elastic net mixing 
parameter to control the combination of the L1 and L2 regularization. 
The naïve Bayes classification parameter is an additive (Laplace/
Lidstone) smoothing parameter.

To evaluate the decoding performance, three main criteria were 
compared across tested models: ‘precision’ is defined as the number of 
true positives over the number of true positives plus the number of 
false positives, ‘recall’ is defined as the number of true positives over 
the number of true positives plus the number of false-negatives, and 
the ‘F1 score’ is defined as the harmonic mean of precision and recall. 
Figure 1 depicts the steps for searching for important features using 
FVS, the application of each ML model, and how these computations 
are appropriately decomposed in a parallel computation manner. All 
parallel computations were run on a workstation computer (Intel 
Xeon Gold 6230 Processor 2.10 GHz × 2, 40 cores, 2 threads per core, 
128 Gb RAM) under Ubuntu 20.04.1 LTS.

2.4. Neuroimaging data samples

To examine the feasibility of the proposed pipeline in 
neuroimaging, we acquired high-resolution structural MRI scans of a 
large number of healthy subjects from the Human Connectome 
Project (HCP). This dataset includes 1,113 samples. The dataset had 
four age ranges: 22–25, 26–30, 31–35, and more than 36 years; 507 
males and 606 females. The structural images were segmented into 
gray matter, white matter, and cerebrospinal fluid and normalized 
(1×1×1 voxel size) into a template space using standard parameters 
implemented in the Computational Neuroanatomy Toolbox (CAT12). 
During the segmentation process, CAT12 implemented an automated 
parcellation of the gray matter to extract the gray matter volume in 
native space from 246 cortical and subcortical brain regions according 
to neuroanatomical landmarks based on the Brainnetome Atlas1 (Fan 
et al., 2016). CAT12 was also used to estimate individual values of the 
total intracranial volume (TIV), which was included as a covariate of 
no interest for the classification and regression models. Notably, the 
pipeline technically works for the whole-brain voxel-based dataset; 
however, these segmented data were used for simplicity.

Here, we provide a use case example to identify the best model to 
predict the target variable. More specifically, the gray matter volume 
data from 246 Brainnetome regions were selected as target features to 
predict the age and sex of participants using regression and 
classification models, respectively.

2.5. Package structure

Our framework includes two core modules: automatic ML models 
and FVS algorithm for regression and classification. First, ML models 
and the FVS algorithm were implemented using Python programming 
to optimize the parallel computations that could significantly reduce 
the computation time. The scikit-learn library in Python was used to 
implement core computational techniques for the random forest 

1 https://atlas.brainnetome.org/bnatlas.html

classifier. Our Python package to implement the proposed model is 
available on GitHub.2 In general, each user creates a short script of 
regression or classification that contains (1) automatic ML models for 
the input dataset and (2) the FVS algorithm combined with the best 
ML model in step (1). For example, the script for regression after 
controlling the effects of variables such as the total intracranial volume 
(TIV) is short.

>>> from Auto_ML_Regression import AutoML_Regression

>>> from FVS_Regression import AutoML_FVS_Regression

>>> AutoML_Regression.fit(X_train, y_train, X_test, y_test)

This function runs 11 ML regression models to select the best 
model for the input dataset. The output of this function is a table that 
shows the rank of performances of 11 ML regression models based on 
their performance.

>>> AutoML_FVS_Regression.fit(X_train, y_train, X_test, y_test, 

model = “LassoLars,” n_selected_features = 100)

After selecting the best ML model, the user implements the 
function that runs the FVS algorithm to identify an important group 
of ROIs. For example, the LassoLars model is the best model with the 
smallest value of MSE in our dataset. Thus, we want to combine the 
LassoLars model with the FVS algorithm, and the maximum number 
of features that we want to set is 100. In this case, we define a model 
as “LassoLars” and ‘n_selected_features’ at 100. The details of the 
parameters and outputs of all functions in our package are provided 
in the README.md file on GitHub. Table 1 shows the main functions 
of our package.

3. Results

3.1. Improved accuracy for regression 
models to predict age

Table 2 summarizes the MSE values for each ML model with the 
Boruta algorithm, with and without the FVS algorithm, to predict the 
age of healthy individuals. For the comparisons without FVS, the best 
performance and the smallest MSE (MSE = 0.4541) were obtained 
using the LassoLars regression model. MSE values were normally 
distributed for all variable selection algorithms (Lilliefors corrected 
Shapiro–Wilk test all p > 0.18).

The variable selection model had a very strong effect (F2,20 = 225.521; 
p < 0.001; partial η2 = 0.958). Post Hoc analyses revealed that across the 
11 models, Boruta improved the decoding accuracy over the ‘without 
FVS’ (p < 0.001; Cohen’s d = 0.815), as was expected. Beyond the Boruta 
algorithm, the use of the FVS algorithm significantly improved the 
performance against both ‘without FVS’ (p < 0.001; Cohen’s d = 2.216) 
and ‘with Boruta’ (p < 0.001; Cohen’s d = 1.177) with very large effect 
size (see Figure 2). Notably, it is essential to consider the computational 

2 https://github.com/tungtokyo1108/FVS_decoder
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cost (see Supplementary Table S1 for the computational cost of each 
model and algorithm). In terms of decoding accuracy, ‘random forest 
(second best)’ and ‘Gaussian process (third best)’ models without 
variable selection comparatively were as good as the LassoLars 
regression model. However, the computational costs of the random 
forest (CPU time = 242.0 s without FVS) and Gaussian process (CPU 
time = 80.2 s without FVS) models were more excessive because the 
parameters were more complex than those of LassoLars regression 
(CPU time = 20.3 s without FVS). The other models, such as ridge, 
elastic net, and Lars regression, had faster computations but did not 
satisfy reasonable performance. Therefore, we focused on the LassoLars 
regression model for the next step of the analysis.

Among all model comparisons, 54 out of 246 brain regions 
were identified with a Spearman correlation coefficient of 0.63 
(p < 0.0001, Figure 3) using the FVS-supported LassoLar regression 
model. The Boruta-supported LassoLar regression model showed 
a comparable accuracy with a Spearman correlation coefficient of 
0.51 (p < 0.0001). Comparing the FVS and Boruta algorithms, both 

algorithms commonly selected 20 ROIs, such as the thalamus, 
hippocampus, amygdala, orbital gyrus, and superior frontal gyrus 
(see Supplementary Table S3). However, there were several 
differences in the selected features. While the ‘FVS-supported 
LassoLar’ model uniquely selected several ROIs such as 
parahippocampal gyrus, insula gyrus, basal ganglia, and angular 
gyrus (see Supplementary Table S4), the ‘Boruta-supported 
LassoLar’ model selected inferior parietal gyrus, inferior temporal 
gyrus, inferior frontal gyrus (see Supplementary Table S5). 
Focusing only on the three best FVS-supported models (namely, 
LassoLar, Random Forest, and Gaussian Process), several 
commonly selected ROIs are thought to be  important for age: 
thalamus, hippocampus, and insula cortex. As was the case for the 
differences in FVS and Boruta algorithms, different ROIs were 
selected by each model (see Supplementary Tables S4, S5 for 
the details).

Figure  4 shows selected brain regions identified by the 
FVS-supported LassoLars model. As it turned out, these results were 

TABLE 1 An overview of the main functions in the FVSdecoder package.

Function Purpose Output

Functions from AutoML_Regression

fit() Automatic select the best model out of 11 ML 

regression models

A table shows a rank of performances of 11 ML regression

evaluate_regression() Show the performance of ML regression A table shows the MSE and Spearman correlation

Functions from AutoML_Classification

fit() Automatic select the best model out of 9 ML 

classification models

A table shows a rank of performances of 9 ML classification

evaluate_regression() Show the performance of ML classification A table shows accuracy, precision, recall, and F1 score

Functions from AutoML_FVS_Regression

fit() Combine forward variable selection (FVS) with 

11 ML regression models

A table shows the rank of performances of ML regression for a number 

of features. A table shows a number of selected features

Functions from AutoML_FVS_Classification

fit() Combine forward variable selection (FVS) with 

9 ML classification models

A table shows the rank of performances of ML classification for a 

number of features. A table shows a number of selected features

TABLE 2 Accuracies of the ML models as assessed by MSE to predict age.

Model MSE without FVS (#ROIs) MSE with Boruta (#ROIs) MSE with FVS (#ROIs)

LassoLar 0.4541 (246) 0.4023 (62) 0.3686 (54)

Random forest 0.4807 (246) 0.4156 (75) 0.3722 (63)

Gaussian process 0.4855 (246) 0.4379 (83) 0.3895 (78)

Ridge 0.4900 (246) 0.4418 (79) 0.3928 (81)

Elastic net 0.4909 (246) 0.4653 (77) 0.4011 (73)

Lars 0.4988 (246) 0.4728 (61) 0.4171 (68)

Lasso 0.5034 (246) 0.4831 (67) 0.4265 (59)

Kernel ridge 0.5061 (246) 0.4927 (82) 0.4402 (71)

Multitask lasso 0.5341 (246) 0.5156 (66) 0.4578 (52)

Decision tree 0.5669 (246) 0.5318 (71) 0.4669 (76)

Stochastic gradient descent 0.5687 (246) 0.5475 (78) 0.5000 (80)

FVS, forward variable selection algorithm; MSE, mean squared error; ROI, region of interest. Entries are sorted in order of ascending MSE values.
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consistent with previous reports on the association of brain regions 
with age. For example, the thalamus plays a critical role in the 
coordination of information flow in the brain, mediating 
communication and integrating many processes, including memory, 
attention, and perception. Thus, age-related cognitive capability could 
be  associated with micro- and macrostructural alterations in the 
thalamus. A number of previous studies have shown that increasing 
age significantly influences the changes in the thalamus (Good et al., 
2001; Hutton et al., 2009).

3.2. Improved accuracy for classification 
models to identify sex

Table 3 summarizes the accuracies for each ML model with the 
Boruta algorithm, with and without the FVS algorithm that classifies 
the male and female groups. The best performance among the 
comparisons without the FVS algorithm, with the highest accuracy of 
75.44%, was obtained using the random forest classifier. Accuracy 
values were normally distributed for all variable selection algorithms 
(Lilliefors corrected Shapiro–Wilk test all p > 0.31). There was a very 
strong effect of the variable selection model (F2,12 = 79.843; p < 0.001; 
partial η2 = 0.930). Post Hoc analyses revealed that across the 7 models, 
Boruta improved the decoding accuracy over the ‘without FVS’ 
(p < 0.001; Cohen’s d = 0.389) as was expected. Beyond the Boruta 
algorithm, the use of the FVS algorithm significantly improved the 
performance against both ‘without FVS’ (p < 0.001; Cohen’s d = 1.394) 
and ‘with Boruta’ (p < 0.001; Cohen’s d = 0.985) with very large effect 
size (see Figure 5).

Notably, it is essential to consider the computational cost (see 
Supplementary Table S2 for the computational cost of each model and 
algorithm). In terms of decoding accuracy, ‘extreme gradient boosting 
(second best)’ models (74.55%) without variable selection 
comparatively were as good as the random forest model (75.44%, see 
Table 3). However, the computational costs of the extreme gradient 
boosting model (CPU time = 270.0 s without FVS) model were more 
expensive because the parameters were more complex than those of 
the random forest classifier (CPU time = 150.0 s without FVS). 
Additionally, logistic regression with the absolute norm L1 achieved a 
fairly comparable performance (70.65%) to the extreme gradient 
boosting classifier (74.55%), while the computational time of logistic 
regression was considerably shorter (CPU time = 19.0 s without FVS) 
than that of extreme gradient boosting classifier (CPU time = 270.0 s 
without FVS). Conversely, the extremely randomized trees and naïve 
Bayes models had poor performances with low accuracy values (68.56 
and 61.37%).

FIGURE 2

Performance comparison of 11 regression models with Boruta 
algorithm, with and without forward variable selection (FVS) to 
predict age, controlling for total intracranial volume (TIV). Left (blue): 
11 regression models without the FVS algorithm. Middle (orange): 11 
regression models on a subset of brain regions selected with the 
Boruta algorithm. Right (green): 11 regression models on a subset of 
brain regions selected with the FVS algorithm. P values were 
calculated using one-way repeated measures ANOVA tests with 
Benjamini–Hochberg correction for multiple comparisons for 11 
pairs of models. *p  <  0.05, **p  <  0.01, ***p  <  0.001.

FIGURE 3

Performance comparison of LassoLar regression with Boruta algorithm, with and without the forward variable selection (FVS) algorithm to predict age, 
controlling for the effects of total intracranial volume (TIV). Left panel: LassoLar regression with all of brain regions (MSE  =  0.45, Spearman ρ  =  0.44, 
p  =  0.064). Middle panel: LassoLar regression on a subset of brain regions selected with the Boruta algorithm (MSE  =  0.4, Spearman ρ  =  0.51, p  <  0.0001). 
Right panel: LassoLar regression on a subset of brain regions selected with the FVS algorithm (MSE  =  0.36, Spearman ρ  =  0.63, p  <  0.0001). Predicted 
age data are plotted as a function of the true score. The blue lines and blue shades represent a linear regression line with a confidence interval.
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Among all model comparisons, Figure 6 shows that 87 out of 
246 brain regions were identified, and the accuracy improved to 
82.63% using the FVS-supported random forest classifier. Females 
were identified with an accuracy of 87%, and males were identified 
with an accuracy of 77%. The Boruta-supported random forest 
classifier identified 73 out of 246 brain regions and achieved an 
accuracy of 78.35%. Figure 7 shows that the selected brain regions, 
such as the thalamus, inferior frontal gyrus, precuneus, and basal 
ganglia, were mapped on the Brainnetome Atlas. These brain 
regions were identified by our model and were consistent with 
previous reports. For example, a number of studies showed that 
females had significantly greater volumes in the inferior frontal 
gyrus, thalamus, and precuneus. Conversely, males had significantly 

greater volumes in the basal ganglia and lingual gyrus. Comparing 
the FVS and Boruta algorithms, both algorithms commonly selected 
36 ROIs, such as the thalamus, inferior frontal gyrus, inferior 
parietal gyrus, basal ganglia, and middle frontal gyrus. However, 
there were several differences in the selected features (see 
Supplementary Table S6). While the ‘FVS-supported Random 
Forest’ model uniquely selected several ROIs such as superior 
frontal gyrus, superior parietal gyrus, fusiform gyrus, and cingulate 
(see Supplementary Table S7), the ‘Boruta-supported Random 
Forest’ model selected orbital gyrus, postcentral gyrus, lateral 
occipital gyrus (see Supplementary Table S8). Focusing only on the 
two best FVS-supported models (namely, Random Forest and 
extreme gradient boosting), several commonly selected ROIs are 

FIGURE 4

Selected brain regions significantly associated with age. The red color denotes a positive correlation with age; the green color denotes a negative 
correlation with age. (A) Premotor thalamus (left), (B) premotor thalamus (right), (C) sensory thalamus (left), (D) orbital gyrus lateral area 11, (E) orbital 
gyrus orbital area 12/47, (F) basal ganglia dorsolateral putamen.

TABLE 3 Accuracies of the ML models used to classify the male and female groups.

Model Accuracy (%) without FVS 
(#ROIs)

Accuracy (%) with Boruta 
(#ROIs)

Accuracy (%) with FVS 
(#ROIs)

Random forest 75.44 (246) 78.35 (73) 82.63 (87)

Extreme gradient boosting 74.55 (246) 77.21 (110) 81.13 (92)

Logistic regression with the absolute 

norm L1

70.65 (246) 72.46 (88) 80.23 (98)

Gradient boosting 69.46 (246) 71.53 (81) 79.04 (76)

Extremely randomized trees 68.56 (246) 69.62 (102) 76.04 (81)

Decision tree 66.39 (246) 67.18 (77) 70.65 (68)

Naïve bayes 61.37 (246) 63.75 (64) 67.76 (53)

FVS, forward variable selection algorithm; ROI, region of interest. Entries are sorted in order of descending accuracy values.

https://doi.org/10.3389/fninf.2023.1266713
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Dang et al. 10.3389/fninf.2023.1266713

Frontiers in Neuroinformatics 10 frontiersin.org

thought to be important for sex: thalamus, cingulate, and inferior 
frontal gyrus. As was the case for the differences in FVS and Boruta 
algorithms, different ROIs were selected by each model (see 
Supplementary Tables S7, S8 for details).

4. Discussion

In this study, a parallelized FVS toolbox is developed to provide 
optimized decoding of neuroimaging data samples. Our toolbox 
can be used to propose the best ML model for user’s input data and 
identify a small group of important features that significantly 

improve the performance of the ML model. We have demonstrated 
that the toolbox is feasible for region of interest (ROI) data without 
revising the model types (parametric or nonparametric) and 
parameter settings, suggesting that this toolbox is generalizable and 
could potentially be used to train multiple types of neuroimaging 
data without modification. Given previous use cases of the ML 
model that have been established in genetic studies using the FVS 
algorithm (Dang and Kishino, 2022), we have extended the FVS 
algorithm and the toolbox has been created for neuroimaging 
studies. To examine the feasibility of our ML pipelines, sample 
neuroimaging data were acquired from the HCP database. As case 
samples, we compared the accuracies (predictability) of the classical 
ML models with and without the FVS algorithm.

We tested the performances of several ML models by analyzing 
large structural MRI datasets with a large number of variables (246 
brain regions). An easy-to-use computational package may help 
novel data scientists in neuroimaging research and advance the 
research by identifying accurate features relevant to questions 
of interest.

4.1. Comparison against existing methods

The proposed method presents the following advantages 
compared with the previous methods. First, neuroscientists could 
avoid decision uncertainties when considering or choosing the 
most appropriate model for their own datasets. In our proposed 
method, users only provide the input data and decide whether to 
run the proposed ML pipeline for either classification or regression 
based on their purpose of analysis. The automatic algorithm will 
rank the ML models and recommend the best model for the user’s 
dataset. In this study, the results showed that random forest was the 
most accurate model for classification. Random forest is an ML 
model that is based on combining multiple decision trees by 
random selection of samples. Therefore, random forest overcomes 
the problem of overfitting decision trees, which can result in a 

FIGURE 5

Performance comparison of 7 classification models with Boruta 
algorithm, with and without the forward variable selection (FVS) 
algorithm to classify male and female groups, controlling for the 
effects of total intracranial volume (TIV). Left (blue): 7 classification 
models without the FVS algorithm. Middle (orange): 7 classification 
models on a subset of brain regions selected by the Boruta 
algorithm. Right (green): 7 classification models on a subset of brain 
regions selected by the FVS algorithm. P values were calculated 
using one-way repeated measures ANOVA tests with Benjamini–
Hochberg correction for multiple comparisons. *p  <  0.05, **p  <  0.01, 
***p  <  0.001.

FIGURE 6

Performance comparison of the random forest classifier with Boruta algorithm, with and without the forward variable selection (FVS) algorithm to 
classify two groups, controlling for the effects of total intracranial volume (TIV). Left panel: random forest classifier analysis with all of brain regions. 
Middle panel: random forest classifier on a subset of brain regions selected by the Boruta algorithm. Right panel: random forest classifier on a subset of 
brain regions selected by the FVS algorithm.
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better fitting of the model (Ghose et al., 2012; Mitra et al., 2014; 
Sarica et al., 2017; Zhu et al., 2018). In the regression task, the best 
performance for predicting the age of healthy individuals was 
obtained using the LassoLar model. The performance of random 
forest was ranked second (Smith et  al., 2013; Jog et  al., 2017; 
Dimitriadis et al., 2018). In the second step, the FVS algorithm was 
used to select a feature (e.g., ROI) that improves the accuracies of 
ML classification models or reduces the MSEs of ML regression 
models at each iteration. This procedure was stopped if the 
performance of the ML model reached a maximization. The FVS 
algorithm attempts to identify a minimal core set of brain regions 
that can provide insights into brain functions. The results showed 
that the performances of all ML models in classification and 
regression were significantly improved after applying the FVS 
algorithm. For example, the FVS algorithms identified 87 ROI 
features that improved the accuracy of the random forest classifier 
from 75.44 to 82.63%.

4.2. Advantages of FVS

In the regression model, the option with FVS significantly 
outperformed the option without FVS and with the Boruta 
algorithm (Figures 2, 5, respectively). For the regression model to 
identify age, the LassoLars model was selected as the best model, 
and 54 regions to account for age were identified. In brief, this 
finding suggests that the thalamus and orbital gyrus are significantly 
associated with age-related changes. A previous study found that a 

general linear model identified age-related changes in terms of gray 
matter density (Tisserand et al., 2004). The prefrontal cortex (PFC), 
the (medial) temporal lobe, and the posterior parietal cortex 
showed the greatest differences in gray matter density.

For the classification model to identify regions that account for 
sex, the random forest model was determined to be the best model. 
This result suggests that the inferior frontal gyrus, thalamus, and 
precuneus regions may contribute to identifying sex. A previous 
study (Xu et al., 2000) suggested that the posterior right frontal 
lobe, right temporal lobe, left basal ganglia, parietal lobe, and 
cerebellum regions may contribute to identifying differences 
between males and females.

4.3. Limitations

Although it was apparent that the FVS algorithm robustly and 
significantly improved the accuracy for both classification and 
regression models, the downside of this model is the computation 
time to apply nearly all possible pairs to consider all features (up to 
the specified number of pairs specified by the user). To compensate 
for the issue of time, the parallel computing pipelines implemented 
in our toolbox effectively minimize and compensate for the 
computational time.

While the FVS algorithm significantly improves the 
performances of the ML models, the computational burden of the 
FVS algorithm is still a difficult challenge for personal computers. 
Even if we apply the parallel computational techniques to overcome 

FIGURE 7

Selected brain regions identified as predictors of the sex categories (male and female). The red color denotes male predicting volume  >  female 
predicting volume; the green color denotes male predicting volume  <  female predicting volume. (A) Premotor thalamus, (B) inferior frontal gyrus dorsal 
area 44, (C) precuneus medial area 5 (PEm), (D) basal ganglia dorsolateral putamen, (E) basal ganglia nucleus accumbens, (F) ligual gyrus medio ventral 
occipital caudal.
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large-scale problems in the FVS algorithm, a high-performance 
computer, but not on a low-spec computer, is necessary to efficiently 
run our proposed tool. Although the computational speed could 
be improved, based on the material efficiency aspects of personal 
computers, implementing our strategy would still not be possible. 
In the future, we may implement a new method (Xing et al., 2016) 
that can balance high-speed computation and material efficiency.

Furthermore, instead of a voxel-based approach, atlas-based 
analyses were performed in this study for demonstrational 
purposes. One could apply the proposed method to voxel-based 
datasets in future studies. It has been shown that the differential 
outcomes between voxel-based and atlas-based analyses to identify 
structural brain alterations between groups (Seyedi et al., 2020). 
Therefore, the reported observations in this study may differ from 
those using a voxel-based approach. The best model for 
determining age in our study, for example, identified several brain 
regions reported to be  associated with age (i.e., thalamus, 
hippocampus, amygdala, orbital gyrus, and superior frontal gyrus) 
as reported in the previous works (Good et al., 2001; Zhou et al., 
2022). However, certain brain regions reported in these studies 
were not chosen via our approach; these include the postcentral 
gyrus, superior temporal gyrus, brainstem, medial frontal cortex, 
middle temporal gyrus, middle frontal gyrus, and cerebellum. The 
same holds true for the classification models for sex. Although the 
amygdala, precuneus, cerebellum, parietal operculum cortex, and 
orbital cortex were reported as significant regions to classify sex, 
we  only found a limited overlap such as the thalamus, inferior 
frontal gyrus, inferior parietal gyrus, basal ganglia (Ruigrok 
et al., 2014).

Although direct comparisons of decoding accuracies were 
made, it would be important to be aware that the oFVSD, or ML in 
general, may not necessarily identify the same brain regions as 
previous studies. While our data-driven feature selection approach 
certainly benefits from blind-folded neural decoding, on the other 
hand, the FVS approach is rather greedy, and it may lead to local 
minimas and may not necessarily reflect scientific rigorousness 
based on existing evidence. Our toolbox may further practically and 
logically benefit from human supervision based on existing 
literature by restricting target features to scientifically validated 
brain regions of interest (Chu et al., 2012). That said, users of the 
oFVSD need to carefully interpret the outcome due to the pitfalls of 
the data-driven ML approach that this toolbox may offer.

4.4. Computational time

The high-dimensional problems of these datasets will result in 
more difficult challenges for the FVS algorithms. The FVS algorithm 
was applied to analyze the 16S rRNA sequencing microbiome 
datasets, where the number of features was huge (approximately 
30,000 features) in our previous study (Dang and Kishino, 2022). 
To reduce the computational burden of the FVS algorithm, some 
prescreening algorithms [such as the Boruta algorithm (Kursa and 
Rudnicki, 2010) and Laplacian score (He et  al., 2005)] were 
proposed to detect all strongly and weakly relevant features to 
reduce the considerable data dimensionality. With the initial 
prescreening pipeline, the computational time of the FVS algorithm 
could be  significantly decreased from days to hours (Dang and 

Kishino, 2022). The current pipeline uses a fixed prescreening 
model. Therefore, additional considerations of this strategy may 
be necessary if the number of features becomes very large to apply 
a rigorous search method such as our approach.

5. Conclusion

The use of neuroimaging data to train ML models has a 
significant potential for identifying brain regions whose structure 
and activities may contain information predictive of physical 
phenotypes, mental states, and pathological conditions. However, 
an overwhelmingly large number of ML models exist, which may 
increase the difficulties for those unfamiliar with mathematical 
theories. Moreover, the high dimensionality of neuroimaging data 
negatively impacts the power of ML models to discover hidden 
information in the selected neural resources. Furthermore, 
researchers are often challenged with time-consuming computations 
to identify neural substrates, a variety of neuroscientific discoveries, 
and the development of novel therapeutic interventions. In this 
study, we proposed a novel procedure that not only automatically 
selects the best ML model for specific neuroimaging data but also 
identifies a group of brain regions that substantially improve the 
performance in terms of high-speed computation and high 
accuracy. This powerful decoding tool may be applicable to a variety 
of neuroimaging modalities.
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