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Abstract. The global ocean takes up nearly a quarter of an-
thropogenic CO2 emissions annually, but the variability in
this uptake at regional scales remains poorly understood.
Here we use a neural network approach to interpolate sparse
observations, creating a monthly gridded seawater partial
pressure of CO2 (pCO2) data product from January 1998
to December 2019, at 1/12◦× 1/12◦ spatial resolution, in
the northeast Pacific open ocean, a net sink region. The data
product (ANN-NEP; NCEI Accession 0277836) was created
from pCO2 observations within the 2021 version of the Sur-
face Ocean CO2 Atlas (SOCAT) and a range of predictor
variables acting as proxies for processes affecting pCO2 to
create nonlinear relationships to interpolate observations at a
spatial resolution 4 times greater than leading global products
and with better overall performance. In moving to a higher
resolution, we show that the internal division of training data
is the most important parameter for reducing overfitting. Us-
ing our pCO2 product, wind speed, and atmospheric CO2,
we evaluate air–sea CO2 flux variability. On sub-decadal to
decadal timescales, we find that the upwelling strength of the
subpolar Alaskan Gyre, driven by large-scale atmospheric
forcing, acts as the primary control on air–sea CO2 flux
variability (r2

= 0.93, p < 0.01). In the northern part of our
study region, divergence from atmospheric CO2 is enhanced
by increased local wind stress curl, enhancing upwelling and
entrainment of naturally CO2-rich subsurface waters, leading
to decade-long intervals of strong winter outgassing. During
recent Pacific marine heat waves from 2013 on, we find en-

hanced atmospheric CO2 uptake (by as much as 45 %) due to
limited wintertime entrainment. Our product estimates long-
term surface ocean pCO2 increase at a rate below the atmo-
spheric trend (1.4± 0.1 µatm yr−1) with the slowest increase
in the center of the subpolar gyre where there is strong inter-
action with subsurface waters. This mismatch suggests the
northeast Pacific Ocean sink for atmospheric CO2 may be
increasing.

1 Introduction

As countries around the world consider updating their car-
bon emission reduction commitments (United Nations Envi-
ronment Programme, 2022), we require a better understand-
ing of global carbon sinks and how they may be shifting un-
der climate change. The global ocean takes up nearly a quar-
ter of anthropogenic carbon dioxide (CO2) emissions annu-
ally (Friedlingstein et al., 2022), but the temporal and spatial
variability in the marine sink remains unclear on decadal or
longer timescales (McKinley et al., 2011; Fay and McKin-
ley, 2013; Wanninkhof et al., 2013; Gruber et al., 2023).
Potential future changes in the marine sink associated with
climate change are also unclear (O’Neill et al., 2016). Ex-
tending the spatial and temporal coverage of the partial pres-
sure of CO2 in seawater (pCO2) observations can help ad-
dress this knowledge gap (Aricò et al., 2021). Benefitting
from the increasing abundance of CO2 measurements at sea
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and community synthesis efforts (e.g., through the Surface
Ocean CO2 Atlas (SOCAT); Bakker et al., 2016), a variety
of interpolation approaches have evolved capable of creating
continuous observation-based estimates of pCO2 (Denvil-
Sommer et al., 2019; Zhong et al., 2022; Laruelle et al.,
2017; Nakaoka et al., 2013; Chen et al., 2019; Ritter et al.,
2017; Landschützer et al., 2013). However, their global focus
and coarse resolution limits their interpretation at regional
scales (Olivier et al., 2022). Only recently, higher-resolution
regional pCO2 maps have been developed for the California
Current System (Sharp et al., 2022) to overcome the limita-
tions of coarse global-scale pCO2 products. These seawater
pCO2 products, combined with wind speed and atmospheric
pCO2, have informed regional to global air–sea CO2 flux es-
timates of multiyear variability (Landschützer et al., 2019,
2016, 2015; Wang et al., 2021; Hauck et al., 2020).

No high-resolution observation-based air–sea CO2 flux
estimate currently exists for the North Pacific Ocean. The
northeast Pacific Ocean has been characterized as a net an-
nual sink for atmospheric CO2 (Wong et al., 2010; Franco
et al., 2021; Sutton et al., 2017; Duke et al., 2023b). The re-
gion is divided by two dominant oceanographic features: the
Alaskan Gyre system to the north and the North Pacific Cur-
rent to the south (Franco et al., 2021). With respect to sur-
face ocean carbon measurements, the Alaskan Gyre system
remains extremely sparsely sampled. The seasonal air–sea
CO2 flux of the gyre has been described as being strongly
influenced by gyre upwelling with outgassing in the winter
and uptake in the summer (Brady et al., 2019; Palevsky et al.,
2013; Chierici et al., 2006). Along the easternmost part of the
North Pacific Current, most of our understanding comes from
a limited region: the Ocean Station Papa mooring at 50◦ N,
145◦W (Sutton et al., 2017) and the Line P Program (Free-
land, 2007). This region has well-documented seasonal cy-
cles (Sutton et al., 2017), interannual variability (Wong and
Chan, 1991; Wong et al., 2010), and long-term trends (Franco
et al., 2021; Sutton et al., 2019). CO2 uptake is mainly driven
by direct ventilation of the shallow upper water column, with
a small seasonal change in surface ocean pCO2 (Wong et al.,
2010; Sutton et al., 2017). The estimated long-term trend in
surface ocean pCO2 appears to be increasing at less than the
atmospheric rate of increase (Franco et al., 2021).

Understanding what drives air–sea CO2 fluxes on sea-
sonal, interannual, and decadal timescales in the northeast
Pacific Ocean will provide information on how the regional
sink may change in the future. This region is already expe-
riencing persistent marine heat waves with dramatic temper-
ature anomalies observed during 2014 to 2016 and 2018 to
2020 events (Freeland and Ross, 2019; Bond et al., 2015),
with future events predicted to become longer-lasting, more
frequent, more extensive, and more intense (Frölicher et al.,
2018). The impact of large-scale climate-driven decadal os-
cillations on the marine carbon system is just beginning to
be explored in models (Hauri et al., 2021). Furthermore,
this region has been targeted as a potential site of marine

carbon dioxide removal, as a negative emissions technol-
ogy aimed at meeting emission reduction goals continues to
grow in interest and investment (Cooley et al., 2022). Some
proposed approaches look to artificially stimulate biologi-
cal carbon drawdown (GESAMP, 2019; NASEM, 2021). The
northeast Pacific Ocean, as an iron-limited high-nutrient low-
chlorophyll region (Dugdale and Wilkerson, 1991; Aumont
et al., 2003; Martin et al., 1994; Freeland et al., 1984), has
already been the location of geoengineered biological carbon
drawdown experiments (Boyd et al., 2007, 2005; Wong and
Johnson, 2002; Ianson et al., 2012). Thus, a firm understand-
ing of processes driving carbon fluxes and the establishment
of environmental baselines in the region is critical.

Our aim is to investigate drivers of air–sea CO2 flux vari-
ability in the northeast Pacific (NEP) Ocean, building a novel
regional high-resolution artificial neural network (ANN) ap-
proach adopted from an existing global setup (Landschützer
et al., 2013). In Sect. 2, we describe the creation of a gridded
pCO2 data product (herein referred to as ANN-NEP; NCEI
Accession 0277836; Duke et al., 2023a) monthly from Jan-
uary 1998 to December 2019 at 1/12◦× 1/12◦ spatial res-
olution in the northeast Pacific open ocean (approximately
9 km by 5 km, latitude by longitude). In Sect. 3, we show that
the high-resolution regional pCO2 product is robust enough
to recreate training observation data while generalizing well
compared to independent withheld observation data. We also
show that stepping to a higher resolution regionally with
appropriate tuning of the internal training and evaluation
data ratio does not hinder product performance. In Sect. 4,
our results show that the upwelling strength of the subpolar
Alaskan Gyre and surface ocean connectivity to subsurface
waters act as the primary controls on air–sea CO2 flux vari-
ability in our study area. We conclude by calculating long-
term trends in surface ocean pCO2 and carbon uptake, ex-
amining trends relative to connectivity to subsurface waters.

2 Data and methods

Our study area comprises the region between latitudes 45
and 62◦ N and longitudes 120 and 155◦W (Fig. 1), with the
open-oceanic and coastal boundary defined as 300 km off-
shore following Laruelle et al. (2017). We limit our study
region to the open-ocean regions with reduced variability
and related drivers compared to the continental shelf re-
gions. Creating a product on the continental shelf and in the
nearshore areas requires different neural network consider-
ations and is associated with high uncertainties (Laruelle et
al., 2017). This work represents a 4-fold increase in spatial
resolution over previous multiyear global open-ocean prod-
ucts, usually coarser than 1/4◦ (Landschützer et al., 2020b).
The increased resolution derives from high-resolution pre-
dictor data used to create the product (Table 1). To interpolate
the existing CO2 observations in this domain, we adapt the
artificial neural network (ANN) self-organizing-map feed-
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forward-network (SOM-FFN) approach developed by Land-
schützer et al. (2013, 2014). In a first step, the method divides
the region of interest into dynamic zones with similar bio-
geochemical features (i.e., SOM biogeochemical provinces),
using a self-organizing-map approach. In a second step, a
feed-forward neural network is used for interpolating pCO2
observations in each of the pre-determined provinces of step
one. Specifically, nonlinear functional relationships are cre-
ated between pCO2 observations (or neural network target
data), where they exist in our study domain, and indepen-
dent predictor variables (or neural network input data) that
are known to drive the marine carbon cycle (see Sect. 2.1 be-
low). Once the relationships are established, they can be ap-
plied where no observations exist to fill space and time gaps
and create continuous sea surface pCO2 maps from 1998–
2019.

2.1 Predictor data

The chosen predictor variables for this study (Table 1) had
all been used previously in observation-based pCO2 inter-
polated products (Denvil-Sommer et al., 2019; Zhong et
al., 2022; Landschützer et al., 2014; Gregor et al., 2018;
Telszewski et al., 2009). Sea surface temperature (SST)
comes from the satellite-based European Space Agency Cli-
mate Change Initiative (Merchant et al., 2019; ESA Sea
Surface Temperature Climate Change Initiative (SST_cci):
Level 4 Analysis Climate Data Record, version 2.1), as does
chlorophyll-a concentration which served as a proxy for bi-
ological processes (ESA Ocean Colour Climate Change Ini-
tiative, 2022). The remaining physical process predictor data
(e.g., sea surface salinity (SSS), sea surface height (SSH),
and mixed layer depth (MLD)) are obtained from the Coper-
nicus Marine Environment Monitoring Service global ocean
eddy-resolving reanalysis (Global Ocean Physical Reanal-
ysis Product, EU Copernicus Marine Service Information
GLOBAL_REANALYSIS_PHY_001_030). Jointly assimi-
lated observations include satellite altimeter data and in situ
vertical profiles of temperature and salinity informing the
MLD reanalysis product (Table 1). The ocean general cir-
culation model is based on the Nucleus for European Mod-
elling of the Ocean (NEMO) platform, driven at the surface
by the European Centre for Medium-Range Weather Fore-
casts ERA-Interim winds (Jean-Michel et al., 2021). Both
chlorophyll a and mixed layer depth were log10-transformed
to produce a distribution of values closer to normal before
being used in either SOM-FFN step. Atmospheric pCO2
in microatmospheres was downloaded from Landschützer et
al. (2020b), derived from the National Oceanic and Atmo-
spheric Administration Earth System Research Global Mon-
itoring Laboratory (https://gml.noaa.gov/ccgg/globalview/,
last access: August 2022) atmospheric mole fraction of CO2
(χCO2) and SST (Reynolds et al., 2002) as well as sea
level pressure (Kalnay et al., 1996) following Dickson et
al. (2007). Finally, the monthly pCO2 climatology of Land-

schützer et al. (2020a) was used as an additional input param-
eter solely for defining the SOM biogeochemical provinces.

2.2 pCO2 observations

ANN target pCO2 data come from the Surface Ocean CO2
Atlas (SOCAT) v2021 (Bakker et al., 2016), and there
are additional data from the Fisheries and Oceans Canada
February 2019 Line P cruise (https://www.waterproperties.
ca/linep/, last access: August 2022; Fig. 1c). Sea surface CO2
fugacity (fCO2) was converted to sea surface pCO2 (Text S1
in the Supplement; Körtzinger, 1999). pCO2 observations
were bin-averaged into monthly 1/12◦ latitude by 1/12◦ lon-
gitude grid cells computing the mean and standard deviation
within each grid cell. Of the 8 712 264 grid cells that rep-
resent the surface ocean gridded in three dimensions over
264 months (1998–2019) at a 1/12◦× 1/12◦ resolution in
the study area, just 0.39 % have an associated gridded pCO2
value (Fig. 1).

2.3 Evaluation

In constructing the optimal ANN architecture, a series of
SOM-FFN tuning tests were conducted comparing ANN out-
put to training and independent withheld data. The ANN per-
formance for each tuning test was evaluated using five sta-
tistical metrics: root mean squared error (RMSE), the coef-
ficient of determination (r2), mean absolute error (MAE),
mean bias (calculated as the mean residual), and the slope
of the linear regression (c1) between the ANN and the corre-
sponding gridded SOCAT pCO2 observations. Independent
withheld data came from randomly selected SOCAT data
using associated expocodes corresponding to unique com-
plete underway cruise tracks or mooring deployments. We
tested 100 random independent withheld data splits and se-
lected one representative of basin-wide observational cov-
erage (summer and southern sampling bias), with winter,
spring, and fall data present (Figs. 1 and S1 in the Sup-
plement). These independent withheld data represented ap-
proximately 5 % of the total study area gridded pCO2 data,
with coverage during all seasons over a range of latitudes
(Fig. S1). Ensuring that selected independent withheld data
are random yet also representative of the full domain, with-
out withholding critical end range training data, is difficult.
Community-based best practices are likely needed going
forward to ensure continuity in reported observation-based
pCO2 product uncertainty based on independent withheld
data (Sect. 3.2).

2.4 Neural network construction

SOM-FFN tuning tests occurred in series using the MAT-
LAB Neural Network Toolbox, with sequential improve-
ments impacting future tests. The optimization of the SOM-
derived biogeochemical provinces involved trial-and-error
testing of various parameters including SOM biogeochem-
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Figure 1. (a) Total number of months of observational coverage from Surface Ocean CO2 Atlas (SOCAT) v2021 (Bakker et al., 2016)
and additional data from the Fisheries and Oceans Canada February 2019 Line P cruise (https://www.waterproperties.ca/linep/, last access:
August 2022) per 1/12◦× 1/12◦ grid cell. (b) Number of unique annual months of observational coverage per 1/12◦× 1/12◦ grid cell.
(c) Mean sea surface height (SSH; Table 1) shows relative location of the subpolar Alaskan Gyre (negative SSH values) and the North Pacific
Current (SSH approximately equal to 0). Ocean Station Papa is labeled and marked with a black circle, while Line P is labeled and marked
with a red line.

ical province count, predictor variable choice, and static
or varying province shape with each time step (Land-
schützer et al., 2013). The choice of four SOM biogeochem-
ical provinces represented the lowest number of SOM bio-
geochemical provinces for a typical clustering structure to
emerge (Fig. S2), while keeping the ratio of gridded pCO2
observations to the total grid cells within each province
similar (0.38± 0.06 %). The best SOM predictor variables
were SST, SSS, MLD (Table 1), and the Landschützer et
al. (2020a) pCO2 climatology. We did not normalize predic-
tor data (e.g., force a mean of 0 and standard deviation of 1),
implicitly weighting SOM predictors toward the pCO2 cli-
matology as its range is at least 1 order of magnitude greater
than that for SST, SSS, and log(MLD) (Landschützer et al.,
2013). As a result, our dynamic provinces follow the sea-
sonal variations in the pCO2 climatology (Landschützer et
al., 2020a). Thus, non-static provinces, which changed shape
from 1 month to the next over a climatology, proved the most

useful in clustering seasonal cycle variability. This clustering
does lead to clearly unphysical fronts as an artifact of the
approach.

In reaching an optimal FFN architecture (i.e., number of
inputs, number of hidden layers and neurons in each hidden
layer), trial-and-error testing of tuning parameters explored
predictor variable choice, FFN training algorithm and activa-
tion functions, pre-training to determine the number of neu-
rons in the first hidden layer, introducing a second hidden
layer with a static number of neurons, and changing the in-
ternal data division ratio (optimized at 94 : 6; see Sect. 3.4
below).

To emphasize interannual and longer-term trends within
the six predictor variables (Table 1), each predictor vari-
able is used in two different forms: first in its raw form
and second after de-seasonalizing, bringing the total number
of FFN predictors used to 12. To de-seasonalize a variable,
within each grid cell, the monthly anomaly was calculated

Biogeosciences, 20, 3919–3941, 2023 https://doi.org/10.5194/bg-20-3919-2023

https://www.waterproperties.ca/linep/


P. J. Duke et al.: Estimating marine carbon uptake in the northeast Pacific 3923

Table 1. Northeast Pacific open-ocean artificial neural network predictor variables and their corresponding source, original temporal and
spatial resolutions, and processing steps used for this study.

Predictor variable Source Original resolution Processing

Temporal Spatial

Satellite-based product

Sea surface temperature (SST) SST_cci Level 4 Daily 1/20◦× 1/20◦ Averaged to monthly,
Analysis Version 2.1 aggregated to 1/12◦× 1/12◦

Chlorophyll a (Chl) Ocean_Colour_cci Daily 1/24◦× 1/24◦ Averaged to monthly,
Version 5.0 aggregated to 1/12◦× 1/12◦,

log10-transformed

Satellite and in situ observation data assimilated reanalysis product

Sea surface salinity (SSS) Copernicus Marine Service
Global Reanalysis
PHY_001_030

Monthly 1/12◦× 1/12◦ None

Sea surface height (SSH) None

Mixed layer depth (MLD) log10-transformed

Atmospheric-measurement-based interpolation product

Atmospheric pCO2 Landschützer et al. Monthly 1◦× 1◦ Interpolated to 1/12◦× 1/12◦

(2020b) – NCEI
Accession 0160558

by subtracting the climatological monthly mean, removing
the seasonal cycle from the data (the same approach is used
when looking at anomaly values in our results; Sect. 4).
Where no chlorophyll-a satellite data were available, the
ANN was run again with the remaining predictors and out-
put was merged to fill empty grid cells (Landschützer et al.,
2014). The Levenberg–Marquardt backpropagation training
algorithm and hyperbolic tangent sigmoid activation func-
tion (i.e., trainlm and tansig respectively in MATLAB) were
found to deliver the best fit. The number of neurons within
the first hidden layer varied by province and the optimal
number of neurons was determined in a pre-training run,
where we increased the number of neurons parabolically
from two up to a number where the ratio between the train-
ing sample size and the number of weights did not exceed 30
(i.e., a number that was determined by trial and error). The
best output performance of the pre-training determines the
best neuron setup which was then further used for the actual
ANN training.

To avoid overfitting, we split all the internal training data
into two subsets (i.e., one actual training dataset and one
internal evaluation dataset). While most studies use a fixed
ratio (usually 80 : 20) between these sets, we used the op-
timal ratio determined by a criterion suggested in Amari et
al. (1997) that is dependent on the number of degrees of free-
dom and hence varies with the optimal number of neurons
determined in the pre-training (see Sect. 3.4 below). While
the training dataset is used to reconstruct the nonlinear re-
lationship between input data (Table 1) and pCO2 observa-
tions, the internal evaluation data are used to stop the training

before the network starts overfitting the training data. Specif-
ically, we stopped the training when six consecutive itera-
tions did not reduce the network’s error compared to internal
evaluation data (Hsieh, 2009). The addition of a second hid-
den layer with a static neuron number of five was found to
slightly improve performance within the evaluation metrics.

2.5 Cross-evaluation and ensemble

In order to further decrease the risk of overfitting, we used a
10-fold cross-evaluation approach (Li et al., 2020a, b) and a
bootstrapping method (Landschützer et al., 2013). Here, all
SOCAT cruises (apart from the independent withheld data;
Sect. 2.3) were randomly divided into 10 equal subsamples
using SOCAT expocodes prior to gridding. One subsample
was used as 10-fold evaluation data (10 % of all data) and was
excluded from training, while the remaining nine subsamples
were used together as training data (90 % of all data). The
cross-evaluation process was repeated 10 times, with each of
the 10 subsamples used exactly once as the 10-fold evalua-
tion dataset. We performed 10 rounds of training with each
10-fold training data subsample where we randomly split the
ANN internal training and evaluation data based on the op-
timal ratio determined through testing (Sect. 3.4). The ro-
bustness and reliability of an ANN have been shown to be
significantly improved by combining several ANNs into an
ANN ensemble model (Sharkey, 1999; Linares-Rodriguez et
al., 2013; Fourrier et al., 2020). The 10 different ANN out-
puts trained on 10 different 10-fold training data subsamples
were used as an ANN ensemble, where the 10 outputs were
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averaged to obtain the final ANN-NEP pCO2 product (Four-
rier et al., 2020).

2.6 Computation of air–sea fluxes

Using the ANN-NEP pCO2 product, the air–sea CO2 flux
(FCO2), was calculated using Eq. (1):

FCO2 =∝ k1pCO2 , (1)

based on solubility (∝) as a function of temperature and
salinity using the data presented in Table 1 (Weiss, 1974), gas
transfer velocity (k), and the gradient between pCO2 in the
surface ocean and the atmosphere (1pCO2). Here, the gas
transfer velocity is a function of wind speed retrieved from
monthly 1/4◦ spatial-resolution Cross-Calibrated Multiplat-
form ocean surface wind data (Mears et al., 2019) interpo-
lated to 1/12◦, the temperature-dependent Schmidt number
specific to CO2, and the gas transfer coefficient from Wan-
ninkhof (2014). Negative (positive) flux values indicate CO2
uptake (outgassing) by the ocean. Uncertainty in the air–sea
CO2 flux comes from a 20 % uncertainty in k (Wanninkhof,
2014) and the overall product uncertainty in estimated pCO2
(θpCO2 ; Eq. 2; see Sect. 3.2 below). As the uncertainty in
1pCO2 is dominated by the uncertainty in estimated surface
ocean pCO2, we neglect the small contribution from atmo-
spheric CO2 (< 1 µatm; Landschützer et al., 2014).

3 Network performance

3.1 Evaluation comparing to SOCAT data

Overall, the final high-resolution regional artificial neural
network northeast Pacific pCO2 product (ANN-NEP) ob-
tains good fits, with an overall r2 of better than 0.8 and an
RMSE of around 11 µatm between the estimated pCO2 and
the gridded SOCAT pCO2 data across both the training data
(Fig. 2a) and independent withheld data (Fig. 2b). The mean
bias is negligible (< 0.8 µatm; smaller than observational un-
certainty). These results also apply within individual calen-
dar years and within monthly groupings across all years, in-
dicating that the temporally inhomogeneous data distribution
over the time range and between seasons does not have a
measurable effect on the estimates (Table S1 in the Supple-
ment). There is no clear spatial structure to the residuals, with
no specific region displaying persistently positive or negative
residuals (Fig. S3). When compared to local pCO2 mooring
data from Ocean Station Papa (which is included in SOCAT;
Fig. 1; Sutton et al., 2017), the ANN-NEP product also per-
forms well (r2

= 0.86; 133 months; not shown).
The ANN ensemble model mean approach demonstrated

improved performance metrics when compared to each indi-
vidual ensemble member. The ensemble median was nearly
equivalent to the ensemble mean (r2

= 0.99; not shown).
Overall, individual ensemble members showed little devia-
tion (RMSE< 8 µatm) from the ensemble mean (Fig. 2c),

with the ensemble mean still improving estimate robustness
and reducing overtraining as evident in comparing the final
ANN product to independent withheld data (Fig. 2b) and the
mean RMSE of individual ensemble members to indepen-
dent withheld data (13± 1 µatm; Fig. S4a). Each individual
ensemble member also performed relatively well compared
to the 10 % subsample of corresponding 10-fold evaluation
data (mean RMSE= 17± 2 µatm; Fig. S4b). The mean stan-
dard deviation across all grid cells within the 10-fold ensem-
ble is 2.2± 1.3 µatm (mapped in Fig. S5).

3.2 Uncertainty calculations

Uncertainty in the ANN-estimated pCO2 product was calcu-
lated following Landschützer et al. (2018, 2014), Roobaert
et al. (2019), and Keppler et al. (2020) (Eq. 2), where the
overall pCO2 product uncertainty (θpCO2 ) is calculated from
the square root of the sum of the four squared errors: obser-
vational uncertainty (θobs), gridding uncertainty (θgrid), ANN
interpolation uncertainty (θmap), and ANN run randomness
uncertainty (θrun).

θpCO2 =

√
θ2

obs+ θ
2
grid+ θ

2
map+ θ

2
run (2)

Observational uncertainty (θobs = 3.1 µatm) is the measure-
ment uncertainty in pCO2 in the field, evaluated as the aver-
age of the uncertainty assigned to each data point according
to its SOCAT quality control (QC) flag (between 2–5 µatm).
Gridding uncertainty (θgrid = 1.5 µatm) is associated with
gridding SOCAT observations into monthly 1/12◦× 1/12◦

bins, evaluated as the average standard deviation among
pCO2 values within each grid cell with at least three data
points. ANN interpolation uncertainty (θmap = 11.1 µatm) is
uncertainty introduced by interpolating the pCO2 observa-
tions using the SOM-FFN approach, evaluated as the RMSE
from the ANN ensemble output compared to the independent
withheld SOCAT data (Fig. 2b). One limitation of our ap-
proach in assessing the uncertainty in the ANN interpolation
method is that it is only applicable to grid cells where ob-
servations are available. Consequently, location-specific sea-
sonal biases, especially at high latitudes with limited win-
tertime observations (Fig. 1a, b), may not be fully captured
or accounted for. The standard deviation of the ensemble (en-
semble spread) gives an indication of how robust our estimate
is from one run to the next using different 10-fold training
data (Sect. 2.5; Keppler et al., 2020). ANN run randomness
uncertainty (θrun = 2.2 µatm) comes from the mean standard
deviation between 10-fold ensemble members (Sects. 2.5 and
3.1), which is less than the comparison of each member of the
ensemble with the ensemble mean (Figs. S4; 2c).

Overall product uncertainty combining all four compo-
nents according to Eq. (2) is 12 µatm, with the contribution of
ANN interpolation uncertainty being the largest. Our prod-
uct uncertainty is comparable to reported open-ocean un-
certainty values from global products (Landschützer et al.,
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Figure 2. Regional high-resolution artificial neural network northeast Pacific (ANN-NEP) ensemble mean pCO2 against (a) training pCO2
observation data and (b) independent withheld pCO2 observation data. Number of observations (N ), root mean squared error (RMSE),
coefficient of determination (r2), mean absolute error (MAE), mean bias (calculated as the mean residual), and the slope of the linear
regression (c1). The observed linear relationship is represented by the dotted blue line. (c) ANN-NEP pCO2 (ensemble mean) against
individual ensemble member estimates. Total number of observations (N ) across all 10-fold ensemble members (see Sect. 2.5). Across all
panels, data are binned into 2 µatm by 2 µatm bins. The dashed black line represents a perfect fit of slope (c1)= 1 and intercept= 0. Color
bar shows data density on a log scale. Note the order-of-magnitude difference in the color bar scale between panels.

2014) as well as a regional product in the California Current
System (Sharp et al., 2022). Combining the reported uncer-
tainty in the gas transfer velocity (Sect. 2.6) and the overall
pCO2 product uncertainty yields an average uncertainty of
±0.24 mol m−2 yr−1 in the air–sea gas flux, with the largest
fraction of the error stemming from the uncertainty in the
gas transfer velocity. The total uncertainty in the flux corre-
sponds to roughly 20 % of individual grid cell calculated flux
values.

3.3 Improvement relative to a global product

The ANN-NEP pCO2 product created here shows improved
performance over the Landschützer et al. (2020b) global
product at each time step within the study area when com-
pared to SOCAT data gridded at 1/12◦× 1/12◦ (Fig. 3),
illustrating the importance of regional high-resolution esti-
mates in resolving fine-scale variations. Across all evaluation
metrics the global product does not perform as well in the re-
gion compared to SOCAT training data (RMSE= 14; r2

=

0.74; mean bias=−2; c0 = 0.68; MAE= 10; compared to

Fig. 2a). This improvement suggests that a regional high-
resolution product can narrow the range of variability in pre-
dictor data within the SOM clustering step and present pCO2
observation data with a greater correlation to the FFN. In
the Landschützer et al. (2020b) global product, there is often
only one SOM biogeochemical province covering the whole
region, forcing nonlinear relationships in the FFN to be built
around greater variability in pCO2 observation data from a
wider range of geographic areas. The ANN-NEP regionally
specific four SOM biogeochemical province grouping could
alleviate this shortcoming in the FFN step. The improvement
in our high-resolution product is particularly evident in the
seasonal amplitude, where differences between ANN-NEP
and Landschützer et al. (2020b) exceed the product uncer-
tainty in 25 % of grid cells (Fig. S6a). The largest seasonal
amplitude differences occur in the north Alaskan Gyre region
and south of the North Pacific Current (Fig. S6a). The addi-
tional spatial resolution and temporal details in the regional
high-resolution product provide key information to inform
future observation programs including potential mooring lo-
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cations. The value added in stepping to a high-resolution re-
gional product proves particularly useful in resolving biogeo-
chemical gradients within the subpolar Alaskan Gyre system
in our study area (Sect. 4).

3.4 Performance at coarser resolutions

Stepping to a higher spatial resolution drastically de-
creases the ratio of gridded pCO2 observations compared
to the total number of grid cells (Fig. 4f); neverthe-
less, the ANN experiences minimal loss in performance
across different spatial resolutions (Fig. 4a–e). Globally,
most open-ocean observation-based pCO2 products are
interpolated onto a 1◦× 1◦ gridded resolution (Land-
schützer et al., 2020b; Global Ocean Surface Carbon,
EU Copernicus Marine Service Information MULTI-
OBS_GLO_BIO_CARBON_SURFACE_REP_015_008,
2022; Denvil-Sommer et al., 2019; Zhong et al., 2022), with
most coastal or regional products using a 1/4◦× 1/4◦ grid
cell size (Laruelle et al., 2017; Sharp et al., 2022; Hales et
al., 2012; Nakaoka et al., 2013), with a few regional products
stepping to even higher resolutions (e.g., 1 km in Chen et
al., 2016; 4 km in Parard et al., 2015, 2016; 11 km in Xu et
al., 2019). To determine how the network performs when
producing a coarser-resolution product, we tested the same
configuration of our tuned 1/12◦× 1/12◦ ANN at various
resolutions (Fig. 4). The predictor variables and SOCAT
pCO2 observations were simply bin-averaged to coarser
grid cell sizes (i.e., 1, 1/2, 1/4, 1/8◦).

Using the same ANN configuration between the different
resolutions (i.e., optimal SOM biogeochemical provinces,
appropriate predictors, neuron number in the first hidden
layer, etc.; see Sect. 2.5), the most important parameter for
reducing overfitting at each resolution becomes the internal
data division ratio between the pCO2 training data used by
the ANN to train and internally evaluate (Fig. 4). We tested
a suite of data division ratios between 99 % of data used to
train and 1 % used to internally evaluate to a 50/50 split at
1 % intervals for each resolution (Fig. 4). These tests were
run without the 10-fold cross-evaluation ensemble approach.
To quantify the optimal ratio at each resolution, we used an
overfitting metric (Eq. 3) equal to the larger of the training or
independent withheld data RMSE plus the absolute value of
the difference between the two:

Overfitting metric=max
(
RMSEtraining,RMSEwithheld

)
+
∣∣RMSEtraining−RMSEwithheld

∣∣ . (3)

Using an internal data division ratio optimized based on the
overfitting metric, an ANN interpolated pCO2 product with
an uncertainty value of 12.5± 0.4 µatm (see Sect. 3.2; Ta-
ble S2) is possible at each of the coarser resolutions (Fig. 4a–
e; Table S2). For comparison, the reported uncertainty in
a global product (Landschützer et al., 2014) ranges from 9
to 18 µatm. In regions with sufficient observational coverage
(Fig. 4f; Bakker et al., 2016), this finding creates a prece-

dent for stepping to a higher-resolution product with nearly
no loss in performance, overcoming the overfitting concern
with increased resolution (Rosenthal, 2016).

4 Air–sea CO2 fluxes

With the estimated ANN pCO2 product displaying a strong
ability to accurately represent regional pCO2 variability
in the northeast Pacific (Sect. 3), we calculate air–sea
CO2 fluxes in the region (Eq. 1). Long-term (1998–2019)
mean pCO2 and air–sea CO2 fluxes display similar patterns
(Fig. 5). In the northwest of our study area, high pCO2
and net CO2 outgassing to the atmosphere correspond to
the influence of the upwelling subpolar Alaskan Gyre sys-
tem (Figs. 5; 1c). Lower pCO2 values and stronger atmo-
spheric CO2 uptake occur in the North Pacific Current re-
gion (Fig. 1c) to the south and along the eastern study
area margin (Fig. 5). The gradient of the gyre captured in
the high-resolution estimate improves regional understand-
ing, with the largest differences between the Landschützer
et al. (2020b) global product occurring in the north (basin-
wide absolute difference 2 %–5 %; Fig. S6a). ANN-NEP cal-
culated fluxes compare well to air–sea CO2 fluxes averaged
across six unique, coarser-resolution, global-observation-
based pCO2 products, each using five different wind speed
products (r2

= 0.81; Fay et al., 2021). However, our work
suggests that the global product ensemble may underesti-
mate the outgassing signal from the subpolar Alaskan Gyre
(Figs. 5b; S7). A higher resolution in the gyre gradient also
provides regional context to carbon measurements made at
the Ocean Station Papa mooring, often used to represent the
Alaskan Gyre (e.g., Jackson et al., 2009), which is actually
situated approximately between the two regions and along
the Line P monitoring program.

4.1 Seasonal variability

To determine seasonal cycle drivers, we decompose the cli-
matological pCO2 into a thermal and non-thermal compo-
nent (Takahashi et al., 2002, 1993):

pCO2 (T) = pCO2 (am)× exp[0.0423
(
T(mm)− T(am)

)
], (4)

pCO2 (NT) = pCO2 (mm)× exp[0.0423
(
T(am)− T(mm)

)
], (5)

R(T NT−1) =
max

(
pCO2 (T)

)
−min

(
pCO2 (T)

)
max

(
pCO2 (NT)

)
−min(pCO2 (NT))

. (6)

Here the subscripts T and NT represent thermal and non-
thermal effects, respectively, while subscripts am and mm
represent annual mean and monthly mean values, respec-
tively. Equation (4) imposes the empirical temperature de-
pendency on the annual mean pCO2 value, providing an esti-
mate of seasonal temperature control (Sarmiento and Gruber,
2006; Takahashi et al., 2002). Equation (5) removes the tem-
perature dependency from the monthly mean pCO2 values,
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Figure 3. (a) Mean residuals over the full study area at each time step of the ANN-NEP pCO2 estimate in this study and the Landschützer et
al. (2020b) product interpolated to the 1/12◦× 1/12◦ grid of this study, compared to the gridded SOCAT data displaying the mean absolute
error (MAE). (b) Total number of gridded SOCAT observations across the study area at each time step.

Figure 4. Varying spatial resolution: (a) 1◦, (b) 1/2◦, (c) 1/4◦, (d) 1/8◦, and (e) 1/12◦ ANN pCO2 product performance evaluated by the
mean RMSE (Sect. 2.3) of training data (blue line), independent withheld data (orange line), and an overfitting metric (green line; Sect. 3.4)
against internal data division ratios of the pCO2 training data used by the ANN to train and internally evaluate. The ratios in gray show the
range of the lower 10th percentile (5 of 50 runs) of overfitting metric values for each resolution. (f) At each spatial resolution, the left-hand y
axis shows the optimal internal data division ratio with error bars representing the lower 10th percentile of overfitting metric values (same as
gray ranges in a to e with all resolutions converging around RMSE= 12.8± 0.4 µatm). The right-hand y axis shows the percent of gridded
pCO2 observations (targets) compared to the total number of grid cells.

providing an estimate of the residual, non-thermal controls
on pCO2 including circulation, mixing, gas exchange, and
biology. The ratio of the seasonal amplitudes of the two com-
ponents (Eq. 6; R(T NT−1)) can distinguish the dominant pro-

cess, where a value greater (less) than 1 indicates that thermal
(non-thermal) processes dominate.

Seasonally, the northern Alaskan Gyre region of our study
area (latitudes north of 52◦ N; Fig. 6a, b) flips from out-
gassing in the wintertime to uptake in the summer in the cli-
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Figure 5. (a) Long-term (1998–2019) mean ANN-NEP pCO2 and (b) air–sea CO2 flux density in mol m−2 yr−1 for the open-ocean northeast
Pacific. Negative (positive) flux values indicate CO2 uptake (outgassing) by the ocean. Ocean Station Papa is shown for reference.

Figure 6. (a) Zonally averaged air–sea CO2 flux from the ANN-estimated pCO2 product climatology along each 1/12◦ latitude band in
the study area plotted against the climatological month along the x axis (Hovmöller diagram). Negative (positive) flux values indicate CO2
uptake (outgassing) by the ocean. The dashed gray line subdivides the Alaskan Gyre and North Pacific Current regions in the north and
south with different seasonal drivers summarized in panels below. (b) Alaskan Gyre region (latitudes north of 52◦ N) and (c) North Pacific
Current region (latitudes south of 52◦ N) area-averaged monthly climatological pCO2 (solid blue line), thermal component (i.e., changes due
to temperature; Eq. 4; dotted red line), non-thermal component (i.e., changes due to circulation, mixing, gas exchange, and biology; Eq. 5;
dot–dash green line), and atmospheric pCO2 (dashed black line). The climatology is plotted over 19 months to emphasize the seasonal cycle.
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matological air–sea CO2 flux (Brady et al., 2019; Palevsky
et al., 2013; Chierici et al., 2006). The change in the sign
of the flux is driven by a 40 µatm difference between winter
maximum and summer minimum pCO2 climatology values
(Fig. 6b). In the Landschützer et al. (2020a) climatology, this
seasonal dipole in the Alaskan Gyre also exists, displaying
a 40 µatm seasonal pCO2 range. Similar patterns exist in the
Takahashi et al. (2014, 2009, 2002) climatologies as well (ap-
proximately 45–50 µatm). Increased wind stress curl drives
stronger gyre circulation in the fall and winter, upwelling
and entraining nutrient- and CO2-rich subsurface waters into
the surface ocean, increasing the non-thermal pCO2 compo-
nent (Fig. 6b) and leading to outgassing (Fig. 6a; Chierici
et al., 2006). Through the spring and summer, biological
drawdown, preconditioned by the upwelled, mixed, and en-
trained nutrients, decreases the surface ocean non-thermal
pCO2 component (Fig. 6b; Harrison et al., 1999), enhanc-
ing uptake (Fig. 6a). Although the seasonal amplitude of the
temperature component is also large in the north, these non-
thermal controls dominate (R(T NT−1) = 0.84).

In the south part of our study area, the North Pacific Cur-
rent region (latitudes south of 52◦ N; Fig. 6a, c) acts as a
strong CO2 sink through the winter, transitioning to a weak
sink through the summer. Whereas in the Alaskan Gyre re-
gion the seasonal cycle of pCO2 is dominantly controlled
by non-thermal drivers (Fig. 6b), the North Pacific Current
region experiences a near-balance between opposing drivers
(Fig. 6c; R(T NT−1) = 1.02). In the North Pacific Current re-
gion, we see a much smaller seasonal amplitude in pCO2
(15 µatm; Fig. 6c), peaking in July with warming and falling
to a minimum in October. The seasonal amplitude is damp-
ened by the competing effect of temperature changes in sol-
ubility and changes in dissolved inorganic carbon concen-
tration through biological drawdown and changing mixed
layer depth (Wong et al., 2010; Sutton et al., 2017). With
minimal seasonal variation in seawater pCO2, the seasonal
change in atmospheric CO2 uptake south of 52◦ N (Fig. 6a)
is dominantly driven by higher wind speed through the winter
months (mean increase of 55 % over summer climatological
values).

4.2 Alaskan Gyre upwelling strength

On sub-decadal to decadal timescales, there is a strong corre-
lation between air–sea CO2 flux anomalies and SSH anoma-
lies in the Alaskan Gyre region of our study area (r2

= 0.93,
p < 0.01; Figs. 7b, c; S8). In this subpolar gyre, prevail-
ing winds cause upwelling driven by Ekman pumping (Gar-
gett, 1991), but the strength varies. During 1998–2002 as
well as 2006–2013, we observe strong winter and spring out-
gassing in the Alaskan Gyre, with flux densities as high as
3.6 mol m−2 yr−1 in January 2000. In these same periods,
anomalously low sea level pressure over the Alaskan Gyre
led to anomalously strong wind stress curl which enhanced
Ekman pumping and depressed SSH (Fig. 7b; Mann and

Lazier, 2006; Hristova et al., 2019). The stronger upwelling
brought CO2-rich subsurface water to the surface (Lager-
loef et al., 1998). Conversely, during the periods of anoma-
lously high sea level pressures and positive SSH anomalies
(2003–2005; 2014–2020; Fig. 7c), there is less upwelling of
CO2-rich subsurface water to the surface, allowing primary
productivity to draw down surface ocean CO2 (McKinley et
al., 2006) and enhancing CO2 uptake from the atmosphere
(Fig. 7b).

Our observation-based findings show strong carbon rela-
tionships with SSH in the Alaskan Gyre, with correlations
between other climate indices being weaker. Over longer
timescales, climate-driven regional ocean fluctuations have
been shown to modulate the Alaskan Gyre surface water in-
organic carbon system (Hauri et al., 2021; Di Lorenzo et
al., 2008). The North Pacific Gyre Oscillation and the Pa-
cific Decadal Oscillation indices have both been shown to
strongly influence the physics, chemistry, and biology of the
Gulf of Alaska ecosystem (Di Lorenzo et al., 2008; Newman
et al., 2016). Hauri et al. (2021) showed that the rate of ocean
acidification in a hindcast model of the Gulf of Alaska was
strongly related to the first empirical orthogonal function of
SSH. We report the same relationship with SSH described in
Hauri et al. (2021) as the dominant control of sub-decadal
patterns on air–sea CO2 fluxes from our observation-based
pCO2 product (Fig. 7). Our estimates of the 12-month run-
ning mean air–sea CO2 flux anomaly in the Alaskan Gyre
region (Fig. 7b) are more weakly correlated to the North Pa-
cific Gyre Oscillation, Pacific Decadal Oscillation, and the
El Niño–Southern Oscillation indices (r2

= 0.63, 0.38, 0.22
respectively; p < 0.01). This regional variation in SSH cor-
relating with both observations and models is strong evi-
dence for variations in Alaskan Gyre upwelling strength ex-
plaining regional biogeochemistry on sub-decadal to decadal
timescales. This relationship supports work showing that the
SSH anomaly is an important climate index for the region
(Cummins et al., 2005; Di Lorenzo et al., 2008). This find-
ing also highlights the challenges of representing the regional
seasonal cycle of the northeast Pacific in a climatology within
a reference period dominated by one mode of Alaskan Gyre
upwelling strength.

4.3 Impact of interannual events

On shorter, interannual timescales, basin-wide variability in
air–sea CO2 flux is significantly influenced by the impact of
extreme events, with the underlying sub-decadal and decadal
signal amplifying or dampening these impacts. During per-
sistent marine heat waves in the northeast Pacific since 2013,
we see strong atmospheric CO2 uptake anomalies fueled by
reduced winter mixing and increased surface density stratifi-
cation (Fig. 8; Bond et al., 2015). The strongest marine heat
wave, known as “the Blob”, with sea surface temperature
anomalies greater than 3 ◦C or 4 standard deviations above
normal (Freeland and Ross, 2019), persisted in the northeast
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Figure 7. Alaskan Gyre region of our study area (latitudes north of 52◦ N). (a) Air–sea CO2 fluxes grouped by seasonal 3-month bins along
with the annual average (black line). (b) Air–sea CO2 flux anomalies removing the seasonal cycle (Sect. 2.4) and applying a 12-month running
mean. (c) Sea surface height (SSH) anomalies in the same region removing the seasonal cycle and applying a 12-month running mean. Gray
boxes highlight periods of anomalously high Alaskan Gyre upwelling strength corresponding to negative SSH anomalies. Horizontal dashed
lines mark 0 in each panel. Seasonal groupings in (a) are winter (December, January, February), spring (March, April, May), summer (June,
July, August), and fall (September, October, November).

Pacific from late 2013 to the end of 2015 driven by an anoma-
lous high-pressure atmospheric ridge (Bond et al., 2015; Di
Lorenzo and Mantua, 2016). The ridge was associated with a
significant decline in local wind speed, decreasing the mixing
of deep, colder waters to the surface and raising sea surface
temperatures (Bond et al., 2015; Scannell et al., 2020). The
reduced winter mixed layer deepening and associated lim-
iting of upwelled and entrained nutrient and CO2-rich sub-
surface waters to the surface have been linked to a relief of
ocean acidification (i.e., anomalously high aragonite satura-
tion states; Mogen et al., 2022). There has also been a re-
ported increase in net primary production during the Blob in
both in situ and satellite records (Long et al., 2021; Yu et al.,
2019; Peña et al., 2019). During the Blob, we see strong neg-
ative air–sea CO2 flux anomalies, particularly in the winter
months (October to December 2014 and 2015), indicative of
a 30 % increase in uptake relative to climatological monthly
means. The increased atmospheric CO2 uptake is driven by
reduced winter wind speeds (by approximately 7 %), leading
to limited winter mixed layer deepening and increased sur-
face density stratification, while possibly being enhanced by
the increase in net primary production (Fig. 8b).

Through a second marine heat wave from mid-2018 to
2020 (Chen et al., 2021; Amaya et al., 2020; Scannell et
al., 2020), we see a similar magnitude increase in atmo-

spheric CO2 uptake compared to the Blob event (Fig. 8b).
Through some of the largest SST anomalies (October to De-
cember 2018 and 2019), we observed large negative air–sea
CO2 flux anomalies indicating enhanced atmospheric up-
take of 45 % beyond corresponding climatological monthly
means (Fig. 8b), particularly in the Alaskan Gyre (Fig. 7a, b).
During this marine heat wave, a similar reduction in upper-
ocean mixing and limited wintertime entrainment due to re-
duced wind speed were observed (by approximately 9 %;
Amaya et al., 2020) along with resultant reduced surface
pCO2 (Franco et al., 2021). Increased net primary produc-
tion has also been reported (Long et al., 2021). An unusual
near-surface freshwater anomaly in the Gulf of Alaska dur-
ing 2019 contributed to the intensification of the marine heat
wave by increasing the near-surface buoyancy and density
stratification (Scannell et al., 2020).

Our result that marine heat waves cause enhanced CO2
uptake in the northeast Pacific may not be applicable to a
wider region. Mignot et al. (2022) described how the im-
pact of marine heat waves on air–sea CO2 fluxes is the net
result of two competing mechanisms: (1) increased sea sur-
face temperatures reducing the solubility of CO2, increasing
pCO2, and reducing CO2 uptake and (2) increased density
stratification reducing vertical mixing and entrainment, de-
creasing surface dissolved inorganic carbon, and increasing
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Figure 8. Full study-area-averaged interannual variability in (a) pCO2 anomaly removing the seasonal cycle (Sect. 2.4) and long-term trend
(Sect. 4.4). In addition, (b) air–sea CO2 flux anomaly, (c) sea surface temperature anomaly, and (d) chlorophyll-a anomaly all removing
the seasonal cycle. Gray boxes highlight large interannual events including the Blob marine heat wave in 2014–2016, a second marine heat
wave in 2018–2020 (labeled “’18 MHW” in the figure), and a 2008 ocean iron fertilization event following the Kasatochi volcanic eruption
(Kasatochi). Horizontal dashed lines mark 0 in each panel.

CO2 uptake. Their analysis finds that the temperature effect
outweighs the advection effect during persistent marine heat
waves in the North Pacific subtropical gyre, reducing CO2
uptake by 29± 11 %, with the opposite true in the tropical
Pacific (Mignot et al., 2022). However, when looking at our
more localized study area in the northeast Pacific subpolar
gyre, we find instead that the impact of reduced winter mix-
ing (because of decreased winds and increased density strat-
ification) tipped the balance toward enhanced atmospheric
CO2 uptake during these marine heat waves, again advocat-
ing for the need for high-resolution local studies to better
understand local climate change effects.

Through both the Blob and the 2019 marine heat wave, the
Alaskan Gyre was in a period of weak upwelling (Fig. 7c),
leading to a decade-long negative pCO2 anomaly (Fig. 8a),
in addition to the maximum observed 1pCO2 due to the
diverging long-term trend from the atmosphere (Sect. 4.4).
Unraveling the individual influence of these interconnected
drivers (i.e., marine heat waves, sub-decadal variability, and
long-term trend) is not possible with this product but does
prompt future inquiry in combination with regional models
and emerging climate analysis tools (e.g., Chapman et al.,
2022).

We do not observe a large change in atmospheric CO2 up-
take associated with the 2008 basin-wide ocean iron fertil-
ization event. In August 2008, the eruption of the Kasatochi
volcano in the Aleutian Islands, Alaska, USA, dispersed vol-
canic ash over an unusually large area of the subarctic north-
east Pacific, fueling a massive phytoplankton bloom in the
iron-limited region (Langmann et al., 2010; Hamme et al.,
2010). Hamme et al. (2010) reported that enhanced bio-
logical uptake drew down pCO2 by approximately 25 µatm
at Ocean Station Papa. Basin-wide, we see a decrease of
20 µatm from July to August 2008 in the detrended, de-
seasonalized ANN pCO2 following the eruption (Fig. 8a)
with a drawdown of 30 µatm at Ocean Station Papa. The
neural network approach does display a tendency to slightly
overestimate relatively low pCO2 values (Fig. 2a). Because
this basin-wide enhanced primary production and surface
ocean pCO2 decrease lasted only 2 months, its impact on
the air–sea CO2 flux was limited (Fig. 8b). The limited im-
pact could be tied to weaker summer wind speeds and longer
equilibration times (Jones et al., 2014). The eruption oc-
curred during a period of enhanced Alaskan Gyre upwelling
(Fig. 7c), meaning the event was overlaid on top of an already
sub-decadal-length positive pCO2 anomaly (Fig. 8a) perhaps
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dampening the event’s impact. Unfortunately, the lack of di-
rect pCO2 measurements in SOCAT v2021 during this time
prevents us from further investigating the underlying causes.

4.4 Air–sea CO2 flux trend

Overall, the northeast Pacific Ocean CO2 sink became more
negative (i.e., become a larger sink; Fig. 9b) from 1998 to
2020 at a rate of −0.043± 0.004 mol m−2 yr−2. Looking at
the start and end of the time series, the average flux from
1998 to 2002 appeared to be a small atmospheric CO2 sink at
−0.7± 0.6 mol m−2 yr−1, compared to the sink from 2016–
2020 at−1.6±0.8 mol m−2 yr−1. Regionally, we do not see a
statistically significant trend in the satellite-based ocean sur-
face wind speed data over this time (p > 0.1; Mears et al.,
2019). However, the time series endpoints are representa-
tive of different Alaskan Gyre upwelling modes (Fig. 7c),
with the time series starting in a sub-decadal-length posi-
tive pCO2 anomaly and ending during a decade-long neg-
ative pCO2 anomaly. Decadal trends will be sensitive to the
start and endpoint of the time series (e.g., Fay and McKinley,
2013). We caution that our trend results may not be represen-
tative of longer time periods (i.e., from industrial onset).

Taking the full study area de-seasonalized (Sect. 2.4), av-
eraged pCO2, we calculated trends based on shorter time
series within our data using different monthly time series
start and end dates (Fig. 10). Based on pCO2 data time se-
ries ranges greater than 10 years (between 1998 and 2020),
87 % of trends are less than the atmospheric trend with a
mean of 1.59± 0.27 µatm yr−1 (N = 9222 at a monthly time
step; Fig. 10). In the remaining 13 % of total time series start
and end date combinations, there is a pronounced very steep
trend exceeding the atmospheric rate of increase. Date com-
binations resulting in trends exceeding the atmospheric in-
crease could be partly attributed to start and end dates co-
inciding with periods of weak and strong Alaskan Gyre up-
welling, respectively. These upwelling modes induce nega-
tive and positive pCO2 anomalies, which further amplify the
observed trend. However, the Alaskan Gyre region makes up
only about 25 % of the total study area (region north of 52◦ N;
Sect. 4.2), and trends in Fig. 10 represent the ANN-NEP full
spatial domain.

The rate of change in the air–sea CO2 flux over the study
period is largely due to the increasing gradient with the at-
mosphere (Fig. 9a). Over the full study area from 1998–2020,
the ANN-NEP pCO2 trend is 1.4± 0.1 µatm yr−1. The Land-
schützer et al. (2020b) global product trend in the region is
similar at 1.5± 0.1 µatm yr−1. At Ocean Station Papa, the
ANN-NEP pCO2 trend is 1.5± 0.1 µatm yr−1, in agreement
with the observed trend based on discrete samples collected
one to three times per year (1.6± 0.8 µatm yr−1 between
1990–2019; Franco et al., 2021). The oceanpCO2 trend is not
as rapid as the atmospheric increase of 2.12± 0.03 µatm yr−1

over the same period (Fig. 9a). Sutton et al. (2017) also re-
ported a lag with the atmosphere at Ocean Station Papa with

a1pCO2 trend of−1.5±0.9 µatm yr−1 from the 2007–2014
mooring pCO2 data. The ANN-NEP 1pCO2 trend at Ocean
Station Papa is −0.67± 0.05 µatm yr−1.

The observed lag in the increase in surface ocean pCO2
with respect to atmospheric pCO2, causing an increasing
air–sea gradient (1pCO2), may be attributed to interaction
with subsurface water. We find a strong spatial correlation
between the trend in 1pCO2 and the calculated average ver-
tical velocity associated with Ekman pumping (r2

= 0.64,
p < 0.01; Fig. 11b). Ekman pumping was calculated using
the MATLAB Climate Toolbox Ekman function (Greene et
al., 2019, 2017; Kessler, 2002) from monthly 1/4◦ spatial-
resolution Cross-Calibrated Multiplatform zonal and merid-
ional ocean surface wind speeds (Mears et al., 2019) inter-
polated to 1/12◦. Fay and McKinley (2013) describe regions
impacted by upwelling from depth having shallower pCO2
trends and greater divergence from the atmosphere based
on models and observations. Dissolved inorganic carbon in-
creases with depth, causing enhanced vertical mixing to in-
crease surface ocean pCO2 over the seasonal cycle (Sect. 4.1
to 4.3). However, in the long term, dissolved inorganic car-
bon is increasing most in surface waters, due to direct uptake
of atmospheric CO2, and least at depth. The supply to the
surface of subsurface waters with low anthropogenic carbon
causes a lag in the rate of increase in surface ocean pCO2.
The anthropogenic carbon signals in the intermediate to deep
waters in this region are some of the smallest in the global
ocean due to circulation patterns (Sabine et al., 2004; Gru-
ber et al., 2019; Carter et al., 2019; Clement and Gruber,
2018). Regions within our study area with a greater connec-
tion between surface and deep waters, such as the center of
the Alaskan Gyre in the north (Van Scoy et al., 1991), are ex-
periencing the largest divergence from the atmosphere. With
a joint increase in projected future wind speeds (Zheng et
al., 2016; Young and Ribal, 2019; Wanninkhof and Triñanes,
2017) and a growing 1pCO2, the region is likely to become
a stronger net annual sink for atmospheric CO2.

5 Conclusions

Using a high-resolution regional neural network approach,
we represent pCO2 measurement variability well in the
northeast Pacific Ocean. We interpolated sparse observations
using nonlinear relationships developed with a neural net-
work approach based on predictor data from satellite and re-
analysis products to create a continuous monthly pCO2 es-
timate at a 1/12◦× 1/12◦ spatial resolution. Using a cross-
evaluation ensemble approach we were able to produce a ro-
bust pCO2 product that represents regional variability with
an uncertainty of 12 µatm. We found that stepping to a signif-
icantly higher spatial resolution, compared to typical open-
ocean observation-based pCO2 products (1/4 or 1◦ spatial
resolution), led to nearly no loss in performance despite a
much lower ratio of gridded pCO2 observations compared
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Figure 9. Full study-area-averaged long-term trends in (a) ANN-NEP surface ocean pCO2 (solid line) and atmospheric pCO2 (dashed line)
and (b) air–sea CO2 flux density.

Figure 10. Full study-area-averaged pCO2 anomaly (removing the
seasonal cycle; Sect. 2.4) linear trend calculated using different
monthly time series start and end dates. Time series start from dates
on the left and end on a date along the top. The dashed black line
indicates equal start and end dates. Trend values are only shown for
time series of at least a 5-year duration. Red areas represent nega-
tive pCO2 trends; gold areas represent trends greater than the atmo-
spheric rate of increase (2.12± 0.01 µatm yr−1). The purple dotted
line indicates a 10-year time series duration.

to the total number of grid cells. The most important param-
eter for reducing overfitting across regional pCO2 products
with different spatial resolutions was the internal division of
training data. Higher-resolution products require more direct
training data and fewer data to internally evaluate, while still
comparing them to independent withheld data. This work
shows that high-resolution, high-performance, observation-

based neural-network-derived pCO2 products can be devel-
oped when reducing the complexity of controlling processes
by focusing on specific regions. However, chosen predictor
variables need to be regionally specific considering “process-
focused” influences on the local carbon system. Our re-
ported optimization of the internal data division ratio be-
tween network training and evaluation data indicates the im-
portance of this choice when moving to a higher spatial reso-
lution. Increased spatial resolution will be necessary to cap-
ture variability in regions strongly influenced by mesoscale
processes, enabling the resolution of oceanographic features
such as eddies, upwelling regimes, and gyre system gradi-
ents.

We report pronounced variability in marine CO2 up-
take in the northeast Pacific Ocean dominantly driven by
the control of Alaskan Gyre upwelling and connectivity to
subsurface waters. Overall, the open-ocean northeast Pa-
cific acted as a net sink for atmospheric CO2 from 1998
to 2020 with an average basin-wide air–sea CO2 flux of
−1.2± 1.4 mol m−2 yr−1 but with pronounced seasonality.
In the northern Alaskan Gyre region, wintertime upwelling
and entrainment lead to significant outgassing. In the south-
ern North Pacific Current region, the seasonal flux cycle is
largely driven by wind speed where the seasonal change in
surface ocean pCO2 remains small. Based on our product,
the upwelling strength of the Alaskan Gyre dominates air–
sea CO2 flux variability in that region on sub-decadal to
decadal timescales. During prolonged periods of enhanced
gyre upwelling, we see strong winter outgassing driven by
upwelled and entrained CO2-rich subsurface waters. Dur-
ing periods of weak gyre upwelling, the northern part of
our study area acts as a sink for atmospheric CO2 year-
round. During two recent marine heat waves we see enhanced
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Figure 11. (a) Trend in 1pCO2 where more negative (darker) values indicate an increasing gradient with the atmosphere and a lag in the
pCO2 increase in the surface ocean. Black crosshatches show grid cells with an insignificant calculated trend (outside the 95 % confidence
level; p ≥ 0.05). (b) Calculated average vertical velocity associated with Ekman pumping (calculated from zonal and meridional wind speed)
where negative (blue) values indicate downwelling and positive (green) values indicate upwelling. Ocean Station Papa is shown for reference.

CO2 uptake due to limited wintertime entrainment of subsur-
face waters resulting from weaker winds. However, we ob-
served minimal impact on atmospheric CO2 uptake follow-
ing a 2008 volcanic eruption, with air–sea CO2 flux anoma-
lies linked to enhanced biological uptake via iron fertiliza-
tion lasting only 2 months. The gradient between the north-
east Pacific surface ocean pCO2 and atmospheric CO2 is in-
creasing, pushing the region towards becoming an enhanced
sink for atmospheric CO2. We see the largest increase in the
gradient (and thus potential for greater future uptake) at the
center of the Alaskan Gyre where, through upwelling, there
is a strong connection with subsurface waters low in anthro-
pogenic CO2.

The regional, high-resolution pCO2 product created here
could serve as a valuable baseline for regional models (e.g.,
Pilcher et al., 2018; Hauri et al., 2020). The pCO2 product
and associated air–sea CO2 flux estimates offer continuous
coverage in sparsely sampled regions informed by patterns in
well-sampled neighboring waters. The product could be used
to aid in model evaluation, for data assimilation, to constrain
initial conditions, to enhance carbon flux process understand-
ing, and to improve regional climate change projections.

Our analysis illustrates the complex interplay between fac-
tors driving air–sea CO2 flux variability at varying temporal
scales across the study domain and within broad subregions
(Alaskan Gyre and North Pacific Current regions) allowing
us to suggest what resources will be needed to make fur-
ther advances. Improvement in estimated pCO2 would bene-
fit from an increase in the number of pCO2 observations used
for training. We recommend prioritizing additional measure-
ments in the northern Alaskan Gyre region in future observa-
tional programs. Our estimated fluxes in the gyre are large
(both uptake and outgassing), but observations are sparse,
leading to the largest standard deviations between our cross-

evaluation ensemble members (Fig. S4). The impact of sub-
decadal to decadal variability on the trend in surface ocean
pCO2 and in regional atmospheric CO2 uptake emphasizes
the importance of long-duration time series sites and pro-
grams to capture the natural cycles of variability and accu-
rately estimate change. Our findings and estimated pCO2
product serve as environmental baselines, which could be
used to inform future marine carbon dioxide removal in the
northeast Pacific at the basin and regional scale. However,
use of our product at the individual grid cell level is not en-
couraged as errors likely remain high, whereas over broader
regions these errors average away. Our study serves as an im-
portant initial step in creating a complete carbon budget for
the northeast Pacific, with coastal, pelagic, and benthic car-
bon stocks and fluxes still to be resolved.

Code and data availability. All data used are publicly available.
ANN-NEP pCO2 and air–sea CO2 flux fields are available through
the National Center for Environmental Information (NCEI Ac-
cession 0277836; https://doi.org/10.25921/c1w8-6v02, Duke et al.,
2023a). pCO2 data are from the Surface Ocean CO2 Atlas (SO-
CAT) v2021 (available at https://www.socat.info/, Bakker et al.,
2016), and additional data are from the Fisheries and Oceans
Canada February 2019 Line P cruise (available at https://www.
waterproperties.ca/linep/, Water Properties Group, 2022). Sea sur-
face temperature and chlorophyll a are from the European Space
Agency Climate Change Initiative (available at https://climate.
esa.int/en/odp/#/dashboard, European Space Agency, 2019). Sea
surface salinity, sea surface height, and mixed layer depth are
from the Copernicus Marine Environment Monitoring Service
(available at https://data.marine.copernicus.eu/product/GLOBAL_
MULTIYEAR_PHY_001_030/description, E.U. Copernicus Ma-
rine Service, 2022). Ocean surface wind data are from the Cross-
Calibrated Multiplatform version 2 Wind Vector Analysis Product
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(available at https://www.remss.com/measurements/ccmp/, Mears
et al., 2019).

Supplement. The supplement related to this article is available on-
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