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This paper presents the fractional-order projection of a chaotic system, which

delivers a collection of self-excited and hidden chaotic attractors as a function

of a single system parameter. Based on an integer-order chaotic system and the

proposed transformation, the fractional-order chaotic system obtains when the

divergence of integer and fractional vector fields flows in the same direction.

Phase portraits, bifurcation diagrams, and Lyapunov exponents validate the chaos

generation. Apart from these results, two passivity-based fractional control laws

are designed e�ectively for the integer and fractional-order chaotic systems. In

both cases, the synchronization schemes depend on suitable storage functions

given by the fractional Lyapunov theory. Several numerical experiments confirm

the proposed approach and agree well with the mathematical deductions.
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1. Introduction

Because chaos phenomenon is ubiquitous in diverse fields of science, such as electronics,

mechanics, physics, optics, quantum, etc., it is imperative to continue discovering and

analyzing chaotic systems. As well known, the chaotic attractors of dynamical systems can

be classified as self-excited and hidden, which may contain one-scroll, two-scrolls, multi-

wing, and multi-scrolls. In literature, the scientific community has been working hard to

propose novel chaotic systems in discrete (maps) or continuous (flows) domains since

they could mean a step forward in understanding physical phenomena with significant

engineering applications [1–8]. However, there is still a need for new chaotic systems

encompassing recent approaches, like quantum chaos, hidden attractors, multi-stability, and

fractional-order calculus, among others.

In particular, several works have demonstrated that the fractional-order derivatives with

long-term memory, such as Caputo, Riemann-Liouville, and Grünwald-Letnikov, improve

the accuracy of the mathematical models in real-world situations [9–13]. However, most

of those papers have only changed the integer-order derivative for a fractional-order one, a

procedure known as fractionalization. For example, Han et al. explained the co-existence of a

fractional-order chaotic attractor along with its implementation in a Digital Signal Processor

(DSP) [14]. Then, Akgül et al. achieved the synchronization between two fractional-

order chaotic systems based on memristor and memcapacitor, respectively [15]. Next,

Alassafi et al. presented a finite time command filter for obtaining a fuzzy synchronization
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between two fractional-order multi-wing chaotic systems [16].

Dutta et al. introduced a new memductance-based fractional-order

chaotic system and a fixed time synchronization method [17].

Finally, Fiaz et al. showed the synchronization among integer

and fractional-order chaotic systems using the inactive control

methodology [18].

To the authors’ best knowledge, no study has been conducted

on the projection/transformation from an integer-order chaotic

system to the fractional-order domain based on the inner product

of both vector fields, i.e., when the vectors point in the direction

of maximal increase of the function. In this manner, we propose

a novel approach to determine a projection of the gradient vector

field of an integer-order chaotic system onto the vector field

of a fractional-order chaotic system. Projections have proven to

be a valuable mathematical tool for studying dynamical systems.

For instance, Sheu and Capoferri et al. demonstrated quantum

projections and pseudo-differential projections, respectively [19,

20]. Lau et al. and Dorrek et al. revealed projections in

Banach algebras and projection functions of the Alesker-Fourier

transform, respectively [21, 22]. Next, Basso reported both

maximal projection constants and maximal projections in a three-

dimensional subspace [23]. Finally, Baillon et al. and Angelos et al.

documented the conditions for periodic projections and limit cycles

of successive projections in R
n [24, 25]. In fact, the presented

projection/transformation may be helpful to improve the security

of encryption schemes based on chaos since achieving the gradient

vectors evolve in the same direction increases the computational

complexity compared to the traditional fractionalization technique.

Additionally, the second goal of this work is to find

hidden attractors in the proposed integer-order chaotic system.

A hidden attractor presents a domain of attraction far from

any unstable equilibrium point. Therefore, exploring hidden

attractors is essential to understanding unexpected and disastrous

responses in engineering applications [26–28]. To this end,

various numerical and analytical strategies can be used, such as

numerical continuation algorithms, homotopy methods, etc. In

particular, Munoz-Pacheco et al. [29] introduced an approach

to find hidden attractors using the Bendixson theorem. A

similar strategy is implemented in this work, where the main

difference is that the presented system possesses only a single

parameter. Other procedures to locate hidden attractors are

detailed in Gong et al. [30], Danca and Lampart [31], Wang

et al. [32], Liu et al. [33], Pulido-Luna et al. [34], and Yue

et al. [35]. Certainly, the hidden attractor of the integer-order

system can be projected to the fractional-order domain under the

proposed transformation.

After completing the fractional-order projection, we introduce

a passivity-based control approach to get synchronized responses

between the integer-order system and its fractional-order

projection. Such control strategies take advantage of the energy

dissipation of dynamical systems by considering input and output

variables and a storage function [36–38]. Accordingly, accurate

responses and decreased control efforts can be achieved by using

the dissipation properties of integer-order and fractional-order-

projection systems, which is valuable in engineering applications

as was shown in Shen et al. [39], Wu et al. [40], and Gandarilla

et al. [41]. Nevertheless, most passivity-based synchronization

schemes have been implemented for integer-order systems, such

as Yao et al. [42], Syed and Yogambigai [43], Kaviarasan et al.

[44], Stoorvogel et al. [45], Ihle et al. [46], and Mathiyalagan

et al. [47], which studied the synchronization in complex and

neural networks, respectively. On the other hand, a collection of

passivity-based control for the case of fractional-order systems is

shown in Zambrano-Serrano et al. [48], Qi et al. [49], Xiao et al.

[50], Rajchakit et al. [51], Shafiya and Nagamani [52], and Padmaja

and Balasubramaniam [53]. Based on the previous discussion,

conducting research on fractional-order projection in dynamical

systems is crucial to fully understanding this fascinating and

less-explored topic. The contributions of this work are:

• One of the first times introducing a projection/transformation

of an integer-order chaotic system into the fractional-order

domain based on the inner product of the vector fields under

the condition that both gradients evolve in the same direction.

• The hidden attractor of the novel integer-order chaotic system

is also projected into the fractional-order domain by applying

the proposed approach.

• Based on the fractional-order Lyapunov theory and

appropriate storage functions, a passivity-based fractional

controller is introduced to synchronize the integer-order

chaotic systems with its fractional-order projection.

• The hidden attractor in the integer-order system was located

by determining the divergence of the vector field and the

Bendixson theorem.

The outline of the manuscript is as follows: Section 2 shows the

mathematical foundations of fractional-order calculus. Section 3

presents the novel integer-order chaotic system and the fractional-

order projection system. Phase portraits, bifurcation diagrams, and

Lyapunov exponents are used to validate the chaotic behavior.

Section 4 introduces the passivity-based control strategy, whereas

Section 5 delivers various numerical experiments to demonstrate

the synchronization between identical chaotic systems. Finally,

the discussion and conclusion are given in Sections 6 and

7, respectively.

2. Theoretical background

In this section, the mathematical foundations of fractional-

order calculus are given. More specifically, we define Caputo

derivatives and Riemann-Liouville integrals and derivatives.

Definition 1. [54]. The Riemann-Liouville derivative of order α is

given by:

dα

dtα
f (t) =

1

Ŵ(n− α)

dn

dtn

∫ t

0

f (n)(τ )

(t − τ )α+1−n
dτ (1)

Definition 2. [55]. The Caputo derivative is given by:

dα

dtα
f (t) =

1

Ŵ(n− α)

∫ t

0

f (n)(τ )

(t − τ )α+1−n
dτ (2)

Definition 3. [56]. The left-side Riemann-Liouville integral of

order αi is given by:

0I
αi
t fi(t) =

1

Ŵ(αi)

∫ t

0

fi(τ )

(t − τ )1−αi
dτ (3)
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Definition 4. [57, 58]. The Caputo time-fractional derivative

operator of order α > 1 is defined as:

∂α

∂tα
f (x, t) =

1

Ŵ(n− α)

∫ t

0

∂n

∂τn
f (x, τ )

(t − τ )α+1−n
dτ . (4)

with n − 1 < α ≤ n for Definition 1, Definition 2, and Definition

4. For α = n, the classical calculus definitions are recovered.

3. Problem formulation

Let us introduce a novel integer-order chaotic system composed

of six terms (three linear, two nonlinear, and one constant) and a

single system parameter, given by:

ẋ1 = −a sign(x2)+ x33,

ẋ2 = −x3 − 1, (5)

ẋ3 = −x1 − x3,

with a ∈ R and xi, i = 1, 2, 3 being state-variables. For f (x) = 0, it is

straightforward to deduce that system (5) has no equilibrium points

when a 6= ±1. To demonstrate that the proposed system generates

chaotic behavior, we compute the Lyapunov exponents by Wolf

algorithm [59, 60]: λ1 = 0.984, λ2 = 0.000, and λ3 = −2.623. Due

to λ1 is positive, the chaotic behavior is confirmed. Figure 1 shows

the hidden attractors of the chaotic system. As a remark, the hidden

attractor is found using the approach given inMunoz-Pacheco et al.

[29] but adapted to the real-valued chaotic system (5). By applying

the Bendixson theorem, the domain of attraction changes when

a = 3.1, i.e., the hidden attractor is discovered. We observe that

the hidden attractor localization is a function only of the system

parameter a, becoming a simple system in the Sprott sense but

with abundant complex behaviors. Figure 2 presents the bifurcation

diagram for variable x1 and x1. From these diagrams, it is noticed

that the mechanism of chaos generation is via period-doubling

bifurcations. Even though a single system parameter controls the

dynamical behaviors, continuous and dense chaos regions suggest

the proposed system is robust against external perturbations. After

the numerical analysis of the integer-order chaotic system, the next

step is obtaining a fractional-order system.

3.1. Fractional-order projection of the
chaotic system with hidden attractor

The main idea of the proposed approach involves a projection

of an integer-order chaotic system onto a fractional-order

domain. It’s important to note that we are not converting the

integer-order system into a fractional-order system, also known

as fractionalization, which involves replacing the integer-order

derivative with a fractional-order operator. This theory has been

thoroughly studied in the literature. On the contrary, we search for

a projection of the gradient of the vector field from the integer-

order chaotic system onto the vector field of the fractional-order

chaotic system, i.e., the gradient vector field of both systems

should point in the same direction. Under this transformation, the

hidden attractor of the integer-order system is also projected to

the fractional-order domain. Let us state Theorem 1 to obtain the

fractional-order projection.

Theorem 1. Consider an integer order chaotic system given by
dX1
dt

= f (X1, t) and a fractional-order chaotic system given

by DαX1 = g(X1, t) where X1 ∈ R
n is the state vector,

f (X1, t) ∈ R
n, g(X1, t) ∈ R

n are the respective vector

fields, and n − 1 ≤ α < n is the fractional-order. By

considering that f (X1, t) = [f1(X1, t), f2(X1, t), f3(X1, t)]
T and

g(X1, t) = [g1(X1, t), g2(X1, t), g3(X1, t)]
T , then the transformation

T (f (X1, t)) = g(X1, t) : R
n → R

n occurs only iff:

T (f (X1, t)) =

{

g(X1, t) ∈ R
n
:

〈

∇T
t

(

X1(0)+

∫ t

0
f (X1, τ )dτ

)

,

∂α+1

∂tα+1
X1

〉

= 1

}

,

(6)

with ∇t = [ ∂
∂t ,

∂
∂t , ...,

∂
∂t ]

T , to guarantee the vector fields of

the integer-order system and fractional-order projected chaotic

system (6) are collinear, i.e., the projection of the vector field f (X1, t)

into ∂α

∂tα X1 must be equal to 1 ∀t ∈ [0, tf ], in which tf is the

final time.

Proof. Consider the definition of the inner product for two vector

fields f (t) ∈ R
n and g(t) ∈ R

n:

〈

f (t), g(t)
〉

=

∫ t

0
f (τ )Tg(τ )dτ . (7)

Then, the inner product for the vector field f (X1, τ ) ∈ R
n with

the state variable X1 ∈ R
n is given by:

〈

∇T
t

(

X1(0)+

∫ t

0
f (X1, τ )dτ

)

,
∂α+1

∂tα+1
X1

〉

=

∫ t

0

[

∇T
t

∫ t

0
f (X1, τ )dτ

]T
∂α+1

∂tα+1
X1(τ1)dτ1. (8)

By Leibniz’s theorem of multivariable calculus, we have:

= ∇T
t

∫ t

0

∂

∂t

[∫ t

0
f (X1, τ )dτ

]T
∂α

∂tα
X1(τ1)dτ1, (9)

= ∇T
t

∫ t

0
f (X1, τ1)

T ∂α

∂tα
X1(τ1)dτ1, (10)

= f (X1, t)
T ∂α

∂tα
X1(t). (11)

To obtain a collinear projection, the inner product of the two

vector fields must be in the same direction ∀t ∈ [0, tf ], as given by:

f1(X1, t)
∂αx1

∂tα
+ f2(X1, t)

∂αx2

∂tα
+ f3(X1, t)

∂αx3

∂tα
= 1, (12)

where






























∂αx1

∂tα
=

1

f1(X1, t)
,

∂αx2

∂tα
= −f3(X1, t),

∂αx3

∂tα
= f2(X1, t).

(13)
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FIGURE 1

Original and hidden chaotic attractors generated by system (5): (A) x1 − x2, (B) x2 − x3, and (C) x1 − x2 − x3.

The proof is completed.

Using Theorem 1, we can obtain the projection of f (X1, t) into
∂α

∂tα X1. In this manner, system (5) is transformed into a fractional-

order dynamical system with the form of Equation (13) under the

following set of components.















f1(X1, t) = −asign(x2)+ x33,

f2(X1, t) = −x3 − 1,

f3(X1, t) = −x1 − x3.

(14)

Figure 3 illustrates the resulting attractors of the fractional-

order projection system (13)-(14). This figure shows that the

trajectories of the integer-order system are mapped onto a

fractional-order domain, evidencing the usefulness of the proposed

projection. Additionally, It is important to note that not only the

original attractor is projected but also the hidden attractor. As

well known, projections on different vector spaces are common in

quantum mechanics, fluid mechanics, particle systems, optics, and

so forth. So, the results obtained may be useful for such areas. For

the aim of a physical circuit implementation, we refer the reader to

the references [61, 62] as guidelines for designing fractional-order

chaotic systems.

4. Passivity-based synchronization for
identical chaotic systems

In this section, we introduce two control laws based on

passivity to synchronize the integer-order chaotic system with

its fractional-order projection. In the case of the integer-order

system, the passivity-based controller is designed by taking into

consideration the energy and dissipation properties. Therefore,

the controller provides an accurate synchronization between drive

and response systems while the passivity-based control law attains

anti-oscillation properties. It means the control effort does not

possess any oscillation, essential to prevent any harmful events

in physical implementations. Similarly, the dissipative properties

of the fractional-order projection system are considered for

designing an appropriate fractional-order controller. In both

cases, the passivity-based control laws are obtained by the

Lyapunov theory.

For synchronization purposes, let us consider system (5) as the

drive system, whereas the response system is given by:

˙̂x1 = −a sign(x̂2)+ x̂33 + u1,

˙̂x2 = −x̂3 − 1+ u2,

˙̂x3 = −x̂1 − x̂3 + u3, (15)

By assuming that:

X1 =







x1
x2
x3






, X2 =







x̂1
x̂2
x̂3






, U =







u1
u2
u3






, (16)
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with X1 ∈ R
3, X2 ∈ R

3 and U ∈ R
3, systems (Equation 5) and

(Equation 15) can be recast as:

Ẋ1 = f (X1) Ẋ2 = f (X2)+ U, (17)

where the error variable is defined by:

e = X1 − X2,

ė = Ẋ1 − Ẋ2 = f (X1)− f (X2)− U, (18)

4.1. Passivity-based synchronization for the
integer-order chaotic system

For the passivity-based synchronization, we design a controller

that uses the passivity Property 1 [63–67]. As a consequence,

FIGURE 2

Bifurcation diagram for the proposed chaotic system (5).

we establish Theorem 2 to find the required passivity-based

control law.

Property 1. A dynamical system in the form of ė = f (e, v, t), where

e is the error variable, v is the dynamic input variable, and t is the

time parameter with output y = e(t), is passive iff the derivative of

the storage function Vs(x) satisfies:

V̇s ≤ yTv. (19)

Theorem 2. For drive and response systems given by Equation (5)

and (15), respectively, the passivity-based condition is fulfilled by

using Property 1 and the control synchronization law:

U = f (X1)− f (X2)+ Kv+
e

‖e‖2
vTK CDαv− v, (20)

under the storage function Vs(X), in which v is the dynamic

input controller with the form of:

v̇ = Ke+ K CDαv, (21)

with K ∈ R
3×3 being a positive definite gain matrix and CDα the

Caputo derivative of order α with 0 < α < 1.

Proof. To find the passivity-based control law, let us consider the

storage function:

Vs =
1

2
eTe+

1

2
vTv. (22)

By taking the derivative of Equation (22), we have:

V̇s ≤ eT
[

Ẋ1 − Ẋ2

]

+ vT
[

Ke+ K CDαv
]

, (23)

resulting in the synchronization controller input (20). Then

Equation (23) becomes:

V̇s ≤ eTv ≤ yTv. (24)

FIGURE 3

Phase portraits of the fractional-order projection Equation (13): (A) Original attractor x1 − x2 (blue color), (B) Hidden attractor x1 − x2 (orange color).
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FIGURE 4

Synchronization results between identical integer-order chaotic systems expressed by Equation (5) under the passivity-based synchronization in

Section 4.1.

FIGURE 5

Synchronization error between drive and response variables for the integer-order case in this figure.
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FIGURE 6

Control e�ort of the input variables u1,u2,u3 for the integer-order case in Figure 4.

To obtain the optimal gain Kmin for the state feedback component

of the dynamic input v, the next outcomes should be considered:

3 =
{

K ∈ R
n×n

:∇ · f (X1)−∇ · f (X2)−∇ · U < 0)
}

,

3m ⊆ 3, (25)

Kmin = inf
K

3m(X1,X2,K).

This completes the proof.

In Section 5.3, we demonstrate the performance of the set (25)

for variations in gain matrix K and sensitivity to the constant

parameter a. In both scenarios, the synchronization becomes

unstable if the gain does not meet the conditions defined in

Equation 25.

4.2. Passivity-based synchronization for the
fractional-order chaotic system

In this scenario, we present Theorem 3. This Theorem relies on

the passivity Property 2 outlined in Zambrano-Serrano et al. [48]

and allows us to derive the synchronization law for the fractional-

order projection system.

Property 2. A dynamical system is passive iff:

2

∫ t

0
yT(s)v(s)ds ≥ −γ

∫ t

0
vT(s)v(s)ds (26)

FIGURE 7

Evolution in time of the drive and response system variables for the

fractional-order projection.

for γ > 0 and the state feedback input v = Ke, in which K is a gain

matrix of appropriate dimensions.

Theorem 3. Let us consider the error variable between the drive

and response system as e = X1 − X2, and system outputs y1 = X1

and y2 = X2 with y = y1 − y2 = e. By assuming a storage function

V(e, v) and using Property 2, the synchronization between the drive
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FIGURE 8

Evolution in time of the error and input variables, respectively, for the fractional-order projection.

FIGURE 9

Time response of system variables x, y, z with their respective errors for Experiment-1 for gain K variations.

TABLE 1 Root mean square error of the system variables by varying gain

K with a = 2.5 in Experiment 1.

Variable RMSE K =
0.0018I3×3

RMSE K =
50I3×3

RMSE K =
1× 10−6I3×3

x1 0.00737952 0.645784 0.00998121

x2 0 0 0

x3 7.37952×10−7 6.45784×10−5 9.98121×10−7

and response systems is achieved if and only if the following control

law is obtained:

u = g(X1)− g(X2)− v. (27)

where the auxiliary input variable is given as v = Ke with the gain

matrix K ∈ R
3×3.

Proof. Let us consider the following storage function in order that

the passivity condition of Property 2 can be satisfied.

V = eTe+ CD−αvTv. (28)

Next, the fractional-order derivative of Equation (28) yields:

CDαV ≤ 2eT CDαe+ 2vTv. (29)

By considering the error variable e = X1 − X2 and system

outputs y1 and y2, Equation (29) becomes

CDαV ≤ 2eT
[

g(X1)− g(X2)− u
]

+ 2vTv, (30)
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FIGURE 10

Time response of system variables x, y, z with their respective errors for Experiment-1 for parameter a variations.

and substituting the control law Equation (27) in Equation (30),

we have:

CDαV ≤ 2eTv+ 2vTv,

CDαV ≤ 2yTv+ 2vTv. (31)

Then, we obtain the following expression by integrating both

sides of Equation (31),

D−1 CDαV ≤ 2

∫ t

0
yT(s)v(s)ds+ 2

∫ t

0
vT(s)v(s)ds. (32)

Assuming CD−(1−α)V ≥ 0 [68], Equation (32) becomes:

2

∫ t

0
y(s)v(s)ds ≥ −2

∫ t

0
vT(s)v(s)ds. (33)

Therefore, the passivity condition is fulfilled, and the proof

is completed.

5. Numerical experiments

In the following sections, we present several numerical

experiments for chaos synchronization. First, the synchronization

between integer-order chaotic systems is given. Next, we analyze

the synchronization scheme for the proposed fractional-order

projection. To gain a better understanding of the performance of

the presented passivity-based controllers, we test various scenarios,

including different initial conditions and fractional orders. In

addition, we also demonstrate the performance of the set (25)

for variations in gain matrix K and sensitivity to the constant

parameter a. All simulations are computed on a PC with an Intel

Centrino processor running the GNU software Octave 4.2.2.

5.1. Experiment 1: integer-order scenario

By setting a derivative order α = 0.95 for the fractional-order

controller and the constant parameter a = 2.5, the numerical

TABLE 2 Root mean square error of the system variables by varying

parameter a in Experiment-1.

Variable RMSE
a = 2.5

RMSE
a = 1

RMSE a = 10

x1 0.00737952 1.92416 1.3832

x2 0 1.1058 26.7284

x3 7.37952×10−7 1.06005 0.988323

results for the passivity-based synchronization using Theorem (2)

are shown in Figures 4–6. In this case, the simulations are

computed with initial conditions X2(0) = [0.1, 0.1, 0.1]T and

X1(0) = [0.09, 0.1005, 0.095]T for the response and drive systems,

respectively, and a gain matrix K as follows:

K =







0.0018 0 0

0 0.0018 0

0 0 0.0018






. (34)

Figure 4 illustrates how the response system variables x̂1, x̂2,

and x̂3 track the evolution of the drive chaotic system. From these

results, we observe that the error is minimal when the passivity-

based controller proposed in Section 4.1 is applied, as corroborated

in Figure 5. Despite the piecewise continuous function in system

(5), the passivity-based controller drives the error variable to zero.

In Figure 7, the control effort of input variables U1, U2 and U3 is

displayed. It is evident that synchronization has been successfully

achieved with low control efforts. This is particularly significant

when the synchronization scheme is intended for a hardware

implementation. In this manner, the novel integer-order chaotic

system (5) can be synchronized efficiently by using Theorem 2,

which considers the dissipation properties of the closed-loop

system. It is important to mention that dissipation plays a critical

role in synchronizing the drive and response variables with low

control efforts.
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FIGURE 11

Time response of system variables x, y, z with their respective errors for Experiment-2 for gain K variations.

TABLE 3 Root mean square error of the system variables by varying gain

K with a = 2.5 in Experiment 2.

Variable RMSE K =
100I3×3

RMSE
K = I3×3

RMSE
K = 140I3×3

x1 0.0595249 0.349557 0.0958705

x2 0.028196 0.16558 0.0454123

x3 0.0971196 0.57033 0.15642

5.2. Experiment 2: fractional-order scenario

In this subsection, we conduct a numerical experiment to

demonstrate the synchronization of the transformed/projected

fractional-order chaotic system. In this case, we have chosen initial

conditions X1(0) = [2, 1,−3]T for drive system and X2(0) =

[0.1, 0.1, 0.1]T for response system with a = 2.5. It is worth noting

that the fractional order of the projection system (13)–(13) is set as

α = 0.998, whereas the fractional order of the controller given in

Theorem 3 is selected as α = 0.95. In addition, the gain matrix K

in Equation (27) is given by:

K =







100 0 0

0 100 0

0 0 100






. (35)

Figure 7 shows the synchronization between system variables

(x1, x̂1), (x2, x̂2), and (x3, x̂3), respectively. Figure 8 displays the

error variables along with the control effort of the input variables

U1, U2 and U3 to obtain synchronized behaviors. In this numerical

experiment, we confirm that the fractional-order passivity-based

controller can stabilize the fractional-order chaotic projection

system, no matter the type of attractor, i.e., hidden or self-

excited attractor. From Figure 8, we also note that the error

variables converge to zero in a finite time. In this manner, the

proposed passivity-based controller leads the system variables to

be synchronized efficiently. An important outcome is that having

an appropriate gain matrix K in Equation (27) can avoid undesired

oscillations in control inputs. This can be advantageous in various

engineering applications. In conclusion, the proposed passivity-

based controller synchronizes the drive and response systems by the

Caputo derivative of the Lyapunov function, similar to the results

observed in the integer order scenario.

5.3. Experiment 3: gain sensitivity analysis

Since the matrix gain K and the system parameter a can be

altered by perturbations, we perform a sensitivity analysis for both

parameters. The idea consists of selecting different values for both

parameters and computing the resulting error between response

and drive systems. It is essential to mention that the sensitivity

analysis is based on the set 3 in Equation (25) to demonstrate

the optimal gain region for the state feedback component of the

dynamic input, i.e., the range where the controller is stable or

unstable. Thus, we study the following cases:

• The gain K is varied for the controller in Section 4.1,

implemented in Experiment-1.

• The parameter a is varied for the controller in Section 4.1,

implemented in Experiment-1.

• The gain K is varied for the controller in Section 4.2,

implemented in Experiment-2.

• The parameter a is varied for the controller in Section 4.2,

implemented in Experiment-2.

Figure 9 and Table 1 present the synchronized state variables,

error variables, and Root Mean Square Error (RMSE), respectively.

We discovered that the RMSE is at its lowest level when K is set

to 0.0018. As K increases, the RMSE increases as well, but when

the gain K approaches zero, there are only minor fluctuations in

the RMSE. It is important to remark that the RMSE is zero for the

variable x2 because we have used positive definite diagonal matrices

in Experiment-1. Once the optimal gain K has been determined,
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FIGURE 12

Time response of system variables x, y, z with their respective errors for Experiment-2 for parameter a variations.

TABLE 4 Root mean square error of the system variables by varying

parameter a in Experiment-2.

Variable RMSE
a = 2.5

RMSE
a = 10

RMSE
a = 1× 10−6

x1 0.0595249 0.205377 0.776843

x2 0.028196 0.0755178 5.80058

x3 0.0971196 0.0971196 0.0971196

the next step is varying the system parameter a. Figure 10 and

Table 2 give the RMSE for distinct values of a. It can be noticed that

the variations in the system parameter provoke higher errors. In

conclusion, the parameter a significantly affects the passivity-based

controller given in Experimen-1.

For the sensitivity analysis in Experiment-2, Figure 11 and

Table 3 summarizes the findings. Analogous to the previous

experiment, an optimal value of gain K reduces RMSE. For

instance, the smallest RMSE is obtained for K = 100I3×3 with a =

2.5 as shown in Table 3. However, when K is set to I3×3, the settling

time is shorter, while the error continues to be bounded to some

extent (Figure 11). Finally, Figure 12 shows the synchronization

and error results, whereas Table 4 presents the RMSE for variations

of the system parameter a in Experiment-2. By using the optimal

gain K = 100I3×3 determined previously, the constant parameter

is specified to different values as given in Table 4. We found that

the smallest RMSE is obtained for the typical value, i.e., a = 2.5.

Otherwise, the RMSE remains lower if a increases. But when a tends

to zero, the error rises as shown in Figure 12.

6. Discussion

Based on theoretical and experimental results from the previous

sections, it is clear that a novel chaotic system has been discovered.

Since the system equations contain no unnecessary terms and the

system parameter has a minimum of digits; it can be considered

elegant in the sense of Sprott [69, 70]. In particular, the bifurcation

diagrams present dense regions where chaos arises, even if the

system possesses just one parameter. By Bendixson theorem, the

hidden attractor is located for a certain value of parameter a.

One of the most important contributions is that the integer-order

chaotic system is projected into the fractional-order domain. As

was demonstrated in Section 3.1, the proposed approach is not a

conversion from an integer-order to a fractional-order dynamical

system. We aim to project an integer-order dynamical system

into a fractional-order dynamical system via T (f (X1)) = g(X1):

R
n → R

n. This projection consists of the inner product between

the integer-order and fractional-order dynamical systems, i.e.,

the projection drives the gradient vector field of the integer-

order system to flow in the same direction as the vector field of

the fractional-order system. In fact, the hidden chaotic attractor,

obtained in the original integer-order chaotic system, is also

projected into the fractional-order chaotic system.

On the other hand, the passivity-based control for the

integer order chaotic system is done by considering the energy

dissipation properties of the error dynamics between the drive and

response state variables as given in Section 4.1. Simulation results

confirm that this approach achieves accurate synchronization.

One noteworthy aspect of this passivity-based controller is the

inclusion of a fractional-order term that effectively reduces

oscillations in input variables, making it a valuable tool in

practical implementations. In addition, a passivity-based control

law is also proposed for the fractional-order chaotic system in

Section 4.2. Based on Property 2, a fractional-order controller is

implemented to obtain synchronized behaviors in the fractional-

order projection system.

7. Conclusion

In this paper, a novel integer-order chaotic system and its

projection into the fractional-order domain have been reported.

We have demonstrated that a successful projection of an integer-

order chaotic system into a fractional-order system depends on the

inner product of both vector fields, i.e., the gradient vector fields

should point in the direction of maximal increase. Additionally,

two suitable passivity-based controllers were derived using the
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energy dissipation properties of the error dynamics. Several

experimental simulations proved that synchronization is achieved

satisfactorily for integer-order and fractional-order chaotic

systems, respectively.

A potential application of the proposed projection is in

modeling the chaotic behavior in physical systems such as optical

and quantum systems. On the other hand, the two passivity-based

control strategies are suitable for hardware implementation, for

instance, using electronic circuits, because they may require low-

count components. Thus, both control strategies can be helpful for

chaotic synchronization in secure communications. The passivity-

based controllers will be extended for the underactuated case in

future works. This means the synchronization will be analyzed

when only one or two control inputs are considered.
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