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Persistence is key: unresolved
immune dysfunction is lethal
in both COVID-19 and non-
COVID-19 sepsis
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Amy H. Lee2, Uriel Trahtemberg3,4, Andrew J. Baker3,
Claudia C. dos Santos3† and Robert E. W. Hancock1*†

1Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver,
BC, Canada, 2Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby,
BC, Canada, 3Keenan Research Center for Biomedical Science and the Department of Critical Care,
St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada, 4Department of Critical Care,
Galilee Medical Center, Nahariya, Israel
Introduction: Severe COVID-19 and non-COVID-19 pulmonary sepsis share

pathophysiological, immunological, and clinical features, suggesting that severe

COVID-19 is a form of viral sepsis. Our objective was to identify shared gene

expression trajectories strongly associated with eventual mortality between

severe COVID-19 patients and contemporaneous non-COVID-19 sepsis

patients in the intensive care unit (ICU) for potential therapeutic implications.

Methods: Whole blood was drawn from 20 COVID-19 patients and 22 non-

COVID-19 adult sepsis patients at two timepoints: ICU admission and

approximately a week later. RNA-Seq was performed on whole blood to

identify differentially expressed genes and significantly enriched pathways.

Using systems biology methods, drug candidates targeting key genes in the

pathophysiology of COVID-19 and sepsis were identified.

Results: When compared to survivors, non-survivors (irrespective of COVID-19

status) had 3.6-fold more “persistent” genes (genes that stayed up/

downregulated at both timepoints) (4,289 vs. 1,186 genes); these included

persistently downregulated genes in T-cell signaling and persistently

upregulated genes in select innate immune and metabolic pathways, indicating

unresolved immune dysfunction in non-survivors, while resolution of these

processes occurred in survivors. These findings of persistence were further

confirmed using two publicly available datasets of COVID-19 and sepsis

patients. Systems biology methods identified multiple immunomodulatory

drug candidates that could target this persistent immune dysfunction, which

could be repurposed for possible therapeutic use in both COVID-19 and sepsis.
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Discussion: Transcriptional evidence of persistent immune dysfunction was

associated with 28-day mortality in both COVID-19 and non-COVID-19 septic

patients. These findings highlight the opportunity for mitigating common

mechanisms of immune dysfunction with immunomodulatory therapies for

both diseases.
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1 Introduction

As of July 2023, the COVID-19 pandemic has infected >650

million and killed 6-18 million people globally (1, 2). COVID-19

patients who are admitted to the intensive care unit (ICU) have high

mortality rates of up to 32%, with multiple organ failure causing the

majority of these deaths (3). This is strikingly similar to severe sepsis,

which is life-threatening organ failure caused by a dysregulated host

response to infection (4), which is often a bacterial infection but can

also be viral and fungal etiologies. Sepsis is estimated to kill 11 million

people each year and be involved in 1 in 5 deaths globally (5), having

average 30-day mortality rates of 24.4% for sepsis and 34.7% for

septic shock in North America, Europe, and Australia (6), and even

higher in lower and middle income countries (7). Due to similarities

in immune dysfunction, endothelial disruption, cytokine levels, gene

expression, and long-term consequences, there is a growing

consensus that severe COVID-19 should be classified and treated

as a form of viral-associated sepsis (8). We recently have shown that

our sepsis endotypes can accurately classify COVID-19 patients based

on severity (9, 10) and that contemporaneous severe COVID-19 and

non-COVID-19 sepsis patients converge into transcriptionally

indistinguishable mechanisms after a week in the ICU (11).

Despite high mortality rates, no specific treatment for sepsis is

available other than antibiotics and supportive management (e.g.,

fluid resuscitation) (12). The lack of treatments is not due to a lack of

effort, as exemplified by over 30 years of failed sepsis clinical trials

(13). However, these clinical trials focused only on the inflammatory

aspect of sepsis, while it has become evident that a concurrent

immunosuppressive arm of sepsis is also occurring, potentially as a

means to limit life-threatening inflammation (14). Thus, simply using

immunosuppressive/anti-inflammatory therapies for sepsis

patients can exacerbate this immune dysregulation and exposes the

patient to lethal opportunistic pathogens. These concurrent

immunosuppression and inflammation processes are part of a

syndrome termed “Persistent Inflammation, Immunosuppression,

and Catabolism Syndrome” (PICS), that is proposed to occur in

septic ICU patients with disastrous consequences including recurrent

nosocomial infections, poor wound healing, inability of self-care, and

eventual death (15), but has not been definedmechanistically. Further

research into the specific mechanisms underlying why patients

progress to death is critically needed for development of targeted

therapies for sepsis. Previous work in the Hancock Lab found five
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endotypes at early disease presentation, two of which were correlated

with higher mortality rates (Neutrophilic-Suppressive and

Inflammatory), and a cross-cutting mortality signature was

identified (9). Collectively these suggest both mechanistically-

variable and conserved pathways are involved in mortality. In

addition to these genetic biomarkers, many blood biomarkers have

been shown to predict disease severity and mortality in COVID-19,

such as C-reactive protein, procalcitonin, D-dimer, interleukin-6,

lactate dehydrogenase, ferritin, plasma Gas6, lymphopenia, and

thrombocytopenia (16–19), with many previously investigated in

sepsis (20).

There has been an unprecedented level of scientific interest and

funding, as well as success, for the treatment of COVID-19,

resulting in clinical trials discovering effective therapies. The use

of immunomodulators such as corticosteroids (21), tocilizumab

(22), and baricitinib (23) has shown promising effects on reducing

mortality and other severity metrics. If mortality mechanisms are

shared between COVID-19 and sepsis patients, these promising

results will likely have applications to sepsis therapeutics.

Nevertheless, both sepsis and COVID-19 are highly dynamic

diseases (11, 14, 24), requiring analysis of multiple timepoints to

fully understand disease trajectories and uncover additional

pathophysiology that cannot be detected from a single timepoint.

In this study, we aimed to identify shared mechanistic

trajectories related to mortality in severe COVID-19 patients and

contemporaneous non-COVID-19 sepsis patients. Shared gene

expression changes over time could underscore common

mechanisms of injury and/or repair, with broad therapeutic

implications. We showed that persistent immune dysfunction was

highly associated with patients who died regardless of SARS-CoV-2

positivity, a finding that was replicated in other public datasets of

COVID-19 and sepsis patients. Based on this finding of persistence,

we also identified potential treatments targeting these persistent

genes in both COVID-19 and non-COVID-19 sepsis.
2 Materials and methods

2.1 Study design and sample collection

Between March 2020 and February 2021, the prospective

observational “COVID-19 Longitudinal Biomarkers of Lung
frontiersin.org
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Injury” (COLOBILI) study consented and enrolled 42 ICU adult

(>18 years) patients with respiratory deterioration from suspected

COVID-19 at St. Michael’s Hospital (Toronto, Canada) (Table 1).

Whole blood (2.5 mL) was drawn into PaxGene Blood RNA tubes

(BD Biosciences) at admission (Day 1, D1) and Day 7 (D7) in the

ICU. After enrollment, 20 patients were identified to be SARS-CoV-

2 PCR positive (but blood culture negative at both timepoints), and

the remaining 22 SARS-CoV-2 PCR negative patients had ≥2

negative PCR tests. All patients satisfied Sepsis-3 criteria for

sepsis (suspected/confirmed infection with a SOFA score ≥2 at

ICU admission) (4). After the second blood draw, nine patients (4

SARS-CoV-2 positive, 5 negative) died within 28 days in the ICU.

Samples were frozen and transported to Vancouver, Canada, for

RNA extraction (PAXgene Blood RNA Kit; Qiagen) followed by

RNA-Seq. Whole blood from 5 healthy controls from Vancouver,

Canada were processed alongside the patient samples. Further
Frontiers in Immunology 03
details on study design and RNA-Seq methodology can be found

in our previously published protocol (11).
2.2 Bioinformatic and statistical analysis

Differentially expressed (DE) genes were identified between

different patient subgroups using the DESeq2 package (25), with

DE genes defined as having an adjusted p-value <0.05 (Benjamini-

Hochberg correction) and an absolute fold change ≥1.5. The

DESeq2 model included sex and batch as confounders to adjust

for. Up-/down-regulated DE genes were used to identify

significantly enriched pathways/gene sets from the Reactome

pathways database (26) using gene-pair overrepresentation

analysis with SIGORA (Bonferroni adjusted P-value <0.001), and

from the Molecular Signatures Database Hallmark gene sets (27)
TABLE 1 Patient demographics of ICU patients, separated by mortality.

Clinical Variables Non-Survivors (9) Survivors (33) P-value

Patient Demographics

Age 62.4 ± 16.4 (9) 59.2 ± 15 (33) 0.540

Sex (Male) 88.9% (8/9) 72.7% (24/33) 0.416

SARS-CoV-2 (Positive) 44.4% (4/9) 48.5% (16/33) 1.000

Duration of ICU stay (Days) 14.3 ± 4.4 (9) 27.8 ± 23.3 (33) 0.149

Steroids During Hospitalization (Yes) 55.6% (5/9) 51.5% (17/33) 1.000

Body Mass Index 23.7 ± 4.8 (9) 31.1 ± 10.2 (33) 0.021

Illness Pre-Admission (Days) 12.5 ± 12.2 (6) 6.5 ± 7.5 (29) 0.342

Antibiotics Used Pre-Admission (Yes) 0.0% (0/9) 9.1% (3/33) 1.000

Smoker (Yes) 33.3% (3/9) 21.2% (7/33) 0.660

Race 0.771

African origins 11.1% (1/9) 9.1% (3/33)

Asian origins 22.2% (2/9) 30.3% (10/33)

European origins 0% (0/9) 6.1% (2/33)

Latin, Central, South American origins 0% (0/9) 3% (1/33)

North American Aboriginal origins 0% (0/9) 12.1% (4/33)

Other North American origins 33.3% (3/9) 21.2% (7/33)

Unknown 33.3% (3/9) 18.2% (6/33)

Respiratory Comorbidities

Asthma (Yes) 11.1% (1/9) 9.1% (3/33) 1.000

Obstructive Sleep Apnea (Yes) 0.0% (0/9) 18.2% (6/33) 0.312

Pneumonia (Yes) 0.0% (0/9) 12.1% (4/33) 0.561

COPD (Yes) 0.0% (0/9) 15.2% (5/33) 0.567

Bronchiectasis (Yes) 0.0% (0/9) 3.0% (1/33) 1.000

Previous Pulmonary Surgery (Yes) 0.0% (0/9) 6.1% (2/33) 1.000

(Continued)
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TABLE 1 Continued

Clinical Variables Non-Survivors (9) Survivors (33) P-value

Day 1 ICU Variables

SOFA Score 12.2 ± 2.3 (9) 8.8 ± 3.1 (33) 0.006

Glasgow Coma Score 3.9 ± 0.3 (9) 2.5 ± 1.6 (33) 0.017

Respiratory SOFA Score component 2.6 ± 0.7 (9) 2.6 ± 0.9 (31) 0.578

Admission APACHE II Severity Score 30.3 ± 6.6 (9) 24.2 ± 7.7 (33) 0.063

PaO2/FiO2 Ratio 194 ± 85 (9) 187 ± 86 (31) 0.582

On Mechanical Ventilation (Yes) 100.0% (9/9) 81.8% (27/33) 0.312

Given Antibiotics (Yes) 88.9% (8/9) 87.9% (29/33) 1.000

Blood Culture Positive (Yes) 11.1% (1/9) 12.1% (4/33) 1.000

White Blood Cells (103 cells/µL) 15.7 ± 7.2 (9) 9.9 ± 5.4 (33) 0.018

Neutrophils (103 cells/µL) 13.8 ± 6.8 (9) 8.3 ± 5.2 (32) 0.026

Lymphocytes (103 cells/µL) 0.9 ± 0.5 (9) 0.9 ± 0.7 (32) 0.765

Monocytes (103 cells/µL) 0.5 ± 0.4 (9) 0.5 ± 0.4 (32) 0.329

Eosinophils (103 cells/µL) 0 ± 0 (9) 0.1 ± 0.2 (32) 0.021

Platelets (103 platelets/µL) 215.7 ± 121.9 (9) 197.9 ± 102 (33) 0.830

Fibrinogen (g/L) 4.5 ± 1.4 (3) 4.1 ± 2.2 (9) 0.579

D-Dimer (ng/mL) 2373 ± 2296 (3) 2688 ± 1761 (6) 0.604

C-Reactive Protein (mg/L) 44.6 ± 39.6 (2) 122 ± 76.3 (10) 0.107

Lactate (mmol/L) 3 ± 1.9 (9) 1.6 ± 0.8 (28) 0.055

Day 7 ICU Variables

SOFA Score 9 ± 5.2 (9) 6.1 ± 3.7 (33) 0.161

Glasgow Coma Score 3.7 ± 0.5 (9) 2.1 ± 1.3 (33) 0.001

Respiratory SOFA Score component 2.6 ± 0.5 (7) 2.7 ± 0.7 (23) 0.637

PaO2/FiO2 Ratio 218.3 ± 62.6 (7) 177.7 ± 69 (23) 0.230

On Mechanical Ventilation (Yes) 100.0% (9/9) 72.7% (24/33) 0.166

Given Antibiotics (Yes) 77.8% (7/9) 57.6% (19/33) 0.442

Blood Culture Positive (Yes) 0.0% (0/9) 0.0% (0/33) 1.000

White Blood Cells (103 cells/µL) 13.1 ± 2.8 (9) 9.9 ± 3.7 (32) 0.019

Neutrophils (103 cells/µL) 11.1 ± 2.7 (9) 7.5 ± 3.3 (32) 0.007

Lymphocytes (103 cells/µL) 0.9 ± 0.4 (9) 1.3 ± 0.7 (32) 0.244

Monocytes (103 cells/µL) 0.7 ± 0.5 (9) 0.7 ± 0.3 (32) 0.987

Eosinophils (103 cells/µL) 0 ± 0 (9) 0.2 ± 0.2 (32) 0.002

Platelets (103 cells/µL) 178.8 ± 127.7 (9) 312.2 ± 183 (31) 0.033

Fibrinogen (g/L) 1.5 ± 0.8 (3) 6.5 (1) 0.371

D-Dimer (ng/mL) 2061.1 ± 2907.5 (2) NA NA

C-Reactive Protein (mg/L) 515.9 ± 411.7 (2) 422 (1) 1.000

Lactate (mmol/L) 9.8 ± 15.9 (6) 1.5 ± 0.5 (12) 0.372
F
rontiers in Immunology
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For categorical variables, significance was tested using the Chi-squared test with Yates’s correction, or Fisher’s exact test if any expected value was <5, and the percentage and fraction of patients
fitting the category is displayed. For continuous variables, the Wilcoxon Rank-Sum test was used, and the mean ± standard deviation of the variable is displayed, with the number of patients
assessed in brackets. Remdesivir was used in one patient and tocilizumab was used in two patients, all of whom were survivors. Bolded p-values indicated significant differences (p <0.05).
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using overrepresentation analysis from clusterProfiler (28)

(Benjamini-Hochberg adjusted P-value <0.05). Significantly

enriched pathways/gene sets indicated key dysregulated biological

processes. Gene-drug interactions from the Drug Signatures

Database (29) were also analyzed in a similar fashion as pathway

enrichment using clusterProfiler. Pathway plots, volcano plots, and

fold change heatmaps were generated using pathlinkR (https://

github.com/hancockinformatics/pathlinkR). Confirmatory studies

were done using publicly available datasets GSE196117 (30) and

GSE161918 (28).
3 Results

3.1 Non-survivors had substantially more
persistent genes compared to survivors

To understand the determinants of gene expression variation,

unsupervised principal component analysis (PCA) was used. PCA

summarizes gene expression variation into individual principal

components (PCs), where the PCs are numbered based on the

fraction of variation they describe. PCA of the ICU samples (Figure

S1A) demonstrated that eventual mortality, disease severity (SOFA

score), and sample collection time were significantly correlated with

PC1 (the PC with the largest percentage of variation, 22.5%), while

COVID-19 status was only significantly correlated with the smaller

PC3 (9.1% of variation) (Figure S1B). This suggested that the

pathogen had a smaller impact on overall gene expression

variation when compared to eventual mortality in the ICU and

disease stage. The importance of mortality and sampling time to

gene expression variation prompted a thorough investigation of

gene expression trajectories in survivors and non-survivors.

First, the transcriptional profiles of survivors and non-survivors

were compared to healthy controls to determine whether there were

“persistent” genes, i.e., DE genes that remained consistently up/

downregulated throughout the first week of ICU compared to

healthy controls, indicating unresolved dysfunction (Figure 1B).

Non-survivors had 3.6-fold the number of persistent genes when

compared to survivors (4,289 vs 1,186) (Figure 1A), and this trend

of more persistent genes in non-survivors was present even when

separating into COVID-19 and non-COVID-19 sepsis patients

(Figure S2C). Notable persistent genes found only in non-

survivors included immune genes such as IL1R1/2, IL4R, IRAK3,

ZAP70, and the sepsis mortality gene PCSK9 (29).

Since persistence suggested potential long-term defects that

might be related to genetic differences, we compared these

persistent genes to four genome-wide association studies of sepsis

(31, 32) and COVID-19 severity (33, 34) (Table S2). Fifty persistent

genes overlapped with GWAS identified genes, with almost all (46/

50) found in non-survivors (Table S2). These included sepsis

severity genes such as PCSK9, CACNA2D2, and HEMK1 (31, 32),

and COVID-19 severity genes such as IL10RB, TYK2, and F8 (33,

34) (Table S2). Interestingly, ICAM1 (intercellular adhesion

molecule 1) was found in GWAS studies for both sepsis and

COVID-19 and was also a persistently upregulated gene only in
Frontiers in Immunology 05
non-survivors, suggesting persistent dysregulation of this gene may

be involved in worse outcomes for both diseases. Increased surface

expression of ICAM-1 on leukocytes occurs during inflammation to

promote leukocyte adhesion and extravasation (35). Circulating

ICAM-1, a marker of endothelial damage, has been documented to

be elevated in sepsis and COVID-19 patients, with higher levels

associated with increased severity (36–38).

Persistence also implicated epigenetic regulation; we found 34

genes that overlapped between persistent genes in non-survivors

and differentially methylated genes of sepsis patients identified in a

previous study (39) and those of COVID-19 patients (40, 41)

(Figure S3A), suggesting the potential presence of epigenetic

switches that might be responsible for persistent dysregulation of

genes. Notably, these overlapping genes were mostly immune-

related genes, such as CD177, CD3D, and S100P (Figure S3B, C).

Lastly, the concept of substantially more persistent genes in patients

with worse outcomes was also replicated/validated in 91 samples

from two external longitudinal datasets of critically ill sepsis (30)

and COVID-19 patients (42) (Figure S4).
3.2 Unresolved immune dysfunction was
associated with eventual ICU mortality

We next investigated the functional consequences of persistent

genes in non-survivors. Pathway enrichment identified 46 and 10

unique pathways enriched by persistent genes in non-survivors and

survivors, respectively, with 6 shared pathways (Figure S5). In non-

survivors, these unique Reactome pathways included pathways

from the “Immune System”, “Metabolism”, “Metabolism of

RNA”, “Metabolism of proteins”, and “Organelle biosynthesis and

management” categories, suggesting persistent dysfunction in

multiple aspects of cellular function (Figure S5). Specifically, in

non-survivors, interleukin (IL) and inflammatory pathways (“IL-1

signaling”, “IL-4/13 signaling”, “ER-phagosome pathway”) were

persistently upregulated, while adaptive immune activation

pathways such as “Immunoregulatory interactions between a

lymphoid and a non-lymphoid cell” and “DAP12 signaling” were

persistently downregulated (Figure 1C). This indicated enduring

immune dysfunction in non-survivors, but not in survivors, and

was recapitulated by the Hallmark gene sets “Inflammatory

Response”, “TNFa signaling via NF-kB”, and “IL-6 JAK STAT3

signaling” in non-survivors (Figure 1C). Interestingly, the gene sets

“Cholesterol homeostasis” and “Glycolysis” and the pathway

“Hyaluronan uptake and degradation” were also persistently

upregulated only in non-survivors, highlighting known metabolic

dysfunctions associated with worse outcomes for sepsis (43–45).

The “Coagulation” and “Complement” gene sets and the

“Neutrophil degranulation” and “Platelet degranulation” pathways

were persistently upregulated in all patients (Figure 1C), suggesting

shared immune and coagulation dysfunction among all patients in

the ICU.

Many of these immune pathways (“IL-1 signaling”, “IL-4/13

signaling”, “Neutrophil degranulation”, and “Immunoregulatory

interactions”) were also enriched by persistent genes in the two
frontiersin.org
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validation datasets of COVID-19 and sepsis patients (Figure S4), as

well as in persistent genes of non-survivors even after splitting into

COVID-19 and non-COVID-19 sepsis patients (Figure S2D),

suggesting shared mechanisms of mortality between these two

diseases. This idea of shared mortality mechanisms was further

supported by the comparison of COVID-19 to non-COVID-19

sepsis non-survivors at D1 and D7. There were 275 DE genes at D1

between COVID-19 and non-COVID-19 sepsis non-survivors

(mostly enriching for antiviral pathways, reflective of the

pathogen-specific response), which dropped to just one DE gene

at D7, suggesting a convergence to shared mortality mechanisms

over time (Figures S2A, B).

To further investigate persistent immune dysfunction,

enrichment using all DE genes of survivors and non-survivors vs.

healthy controls, not just persistent genes, was performed

(Figure 2). This analysis demonstrated that while many of these

pathways were enriched in both survivors and non-survivors at D1,

they were only enriched in non-survivors at D7, suggesting that

initially, all patients had immune dysfunction, but only survivors

appeared to resolve their immune dysfunction and accompanying
Frontiers in Immunology 06
metabolic dysfunction (e.g., glycolysis, hyaluronan metabolism,

cholesterol metabolism) by D7 (Figure 2). Inflammatory

resolution in survivors was also supported by enrichment results

from DE genes that changed over time (Figure 3A). For example,

the “Inflammatory response” gene set was upregulated in all

patients at D1 compared to healthy controls, but only in non-

survivors at D7 (Figure 2). This gene set was downregulated over

time only in survivors (Figure 3A). Overall, this enrichment pattern

highlighted that the general inflammatory response was resolved by

D7 in survivors. A similar pattern underscoring persistent

upregulation of the “IL-1 signaling” and “IL-4/13 signaling”

pathways and the inflammatory gene sets “TNFa signaling via

NF-kB” and “IL6 JAK STAT3 signaling,” was also observed only in

non-survivors (Figures 2, 3A), again supporting an unresolved

inflammatory state in non-survivors but resolution in survivors.

In conjunction with resolving inflammation, survivors also

resolved adaptive immune suppression, which was likely key to

their survival, since a weakened adaptive immune response is

strongly implicated in sepsis and COVID-19 severity/mortality

(46, 47). The “Immunoregulatory interactions” pathway (which
A B

C

FIGURE 1

Non-survivors had substantially more persistent genes than survivors. (A) Number of differentially expressed genes (DEGs) at either Day 1 (D1) or Day
7 (D7) in the ICU for non-survivors and survivors, compared to healthy controls. The fraction of persistent DEGs (DEGs that were up/down-regulated
at both timepoints) among all DEGs is highlighted. (B) Examples of persistently upregulated (PCSK9) or persistently downregulated (ZAP70) genes
only found in non-survivors are shown. Empty circles indicate that the gene was no longer a DEG at that timepoint. (C) Eventually deceased patients
had persistent dysfunction of immune and cellular pathways. A subset of enriched Reactome pathways and Hallmark gene sets from persistently
upregulated (D) and downregulated (∇) genes in patients who eventually were deceased or survived are shown. The total numbers of persistent
genes in each comparison are under each label. All enriched pathways and gene sets can be found in Figures S5 and S6. Pathway plots were
generated using pathlinkR (https://github.com/hancockinformatics/pathlinkR).
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contains B-cell and T-cell activation genes) was persistently

downregulated in non-survivors (Figures 1C, 2); however, this

pathway was downregulated in survivors only at D1. Time

analysis showed that only in survivors was there upregulation

over time of this pathway, as well as T-cell signaling pathways

(“Co-stimulation by the CD28 family”, “Generation of second

messenger molecules”) and adaptive immunity gene sets (“IL2

STAT5 signaling”, “Allograft rejection”) (Figure 3A), consistent

with resolution of adaptive immune suppression in survivors. A

closer examination of canonical T-cell signaling genes supported

this observation: genes such as CD3D/E/G, CD247, ZAP70, LCK,

LAT and ITK were all persistently downregulated in non-survivors,

but were initially downregulated and increased back to normal

levels in survivors by D7 (Figure 3B). CD3D was also a shared

differentially methylated gene observed in sepsis (39) and COVID-

19 (40, 41), suggesting potential epigenetic regulation related to T-

cell dysfunction (Figure S3C). Lastly, using NetworkAnalyst (48), a

functional protein-protein interaction network was created using

DE genes over time, revealing that only survivors had a cluster of

upregulated T-cell signaling genes (Figure 3C). Combined, these

findings highlighted sustained adaptive immune dysfunction as a

key aspect in patients who eventually died, and restoration of such

adaptive deficits was only observed in survivors.

Various confounders that could affect these adaptive immunity

findings were investigated. Corticosteroid use, which can affect

leukocyte function, was unlikely to affect this result, since

survivors and non-survivors did not have significant differences

in the rate of corticosteroid use (Table 1). Differences in leukocyte

populations were observed between survivors and non-survivors

(Table 1), so differential expression analysis was performed after
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correcting for cellular composition estimated by CIBERSORTx, a

cell deconvolution method based on gene expression data (49). Fold

changes for genes before and after correction were highly

significantly correlated (Figure S8A), suggesting that gene

expression variation was not substantially driven by differences in

cell proportions. Indeed, key T cell signaling genes were still

persistently suppressed in non-survivors and resolved over time

only in survivors after correction (Figure S8B).

When individually analyzing COVID-19 and non-COVID-19

sepsis patients, various adaptive immune pathways, including

“Generation of second messenger molecules”, “Costimulation by

the CD28 family”, and “Immunoregulatory interactions”, were still

upregulated over time in survivors, but not non-survivors, of both

groups, while “IL-1 signaling” was downregulated over time in

survivors of both groups (Figure S9). This emphasized a common

adaptive immune recovery and inflammation resolution mechanism

associated with ICU survival. Interestingly, only COVID-19 survivors

had downregulation of antiviral pathways over time (Figure S9),

suggesting that resolution of elevated antiviral responses was a unique

part of survival trajectories in viral sepsis from COVID-19.

While the numbers of survivors and non-survivors were

somewhat unbalanced (reflecting expected mortality rates of

sepsis in the ICU), performing a subset analysis matching equal

numbers of survivors and non-survivors (by age, sex, COVID-19

status, and sequencing batch) resulted in similar results (Figure

S10), with substantially more persistent genes in non-survivors

(4,366 vs. 831). Again, persistent upregulation of “IL-1 signaling”

and “IL-4/13 signaling” and persistent downregulation of

“Immunoregulatory interactions” was seen in non-survivors only,

suggesting that imbalance was not substantially affecting the results.
FIGURE 2

Eventually deceased patients had unresolving immune dysfunction. A subset of significantly enriched Reactome pathways (top) and Hallmark gene
sets (bottom) using differentially expressed (DE) genes from comparing eventually deceased or surviving patients to healthy controls at Day 1 (D1)
and Day 7 (D7). The total numbers of DE genes in each comparison are under each label. All enriched pathways and gene sets shown in Figures S6
and S7. Pathway plots were generated using pathlinkR.
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3.3 Non-survivors had persistent
enrichment of the mortality signature
and were “locked-in” to more severe
sepsis endotypes

A recently published a 38-gene mortality signature derived from

early (emergency room) sepsis patients (9); was then assessed in

these ICU patients. Gene set variation analysis (GSVA), an

unsupervised gene set enrichment calculation methodology (50),

showed that enrichment scores of this signature were significantly

and persistently higher in non-survivors at both D1 and D7

compared to survivors (Figure 4A). Moreover, there was greater

overlap of the mortality signature with persistent genes of non-

survivors (15/38) than those of survivors (3/38) (Figure 4B). This

again indicated that persistent cellular dysfunction in non-survivors

was associated with mortality in both sepsis and COVID-19.

We next investigated the utility of five endotypes previously

identified in emergency room sepsis patients (9) and validated in

COVID-19 patients (10). Two of the five endotypes were associated

with worse outcomes: Neutrophilic-Suppressive (NPS) and
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Inflammatory (INF). Consistent with this, the majority (7/9) of

eventually deceased patients started as NPS, and most continued as

NPS or transitioned into the other severe outcome endotype INF, with

6/9 deceased patients fitting into either the NPS or INF endotypes at

D7 (Figure 4C). Furthermore, NPS signature enrichment scores

remained persistently elevated over time in non-survivors, but in

survivors significantly decreased over time (Figure 4D), suggesting

that patients who eventually died might be “locked-in” to the more

severe endotypes, and that these emergency room sepsis endotypes are

still useful for stratifying patients at later timepoints in the ICU.

Ultimately, the utility of these sepsis mortality signatures and

endotypes in this group of ICU patients further confirmed shared

mechanisms of mortality between sepsis and COVID-19.
3.4 Repurposed drugs were identified to
target persistent genes and hub genes

We have shown that persistent gene expression changes,

reflective of immune dysfunction, were highly associated with
A B

C

FIGURE 3

Resolution of inflammation and adaptive suppression occurred only in survivors. (A) A subset of significantly enriched Reactome pathways and
Hallmark gene sets using differentially expressed (DE) genes over time. The total numbers of DE genes in each comparison are under each label. All
enriched pathways and gene sets shown in Figures S6 and S7. For one pathway, both directions were enriched (indicated by *); the direction with
the lower adjusted p-value (more significantly enriched) is shown. (B) Persistent suppression of T cell signaling genes was observed in non-survivors.
D = deceased, S = survived, HC = healthy controls. Shading in the heatmap represents fold change. Only DE genes are shown. Significance values
are derived from DESeq2 results: *** = p<0.001, ** = p<0.01, and * = p<0.05. Pathway plots and heatmaps were generated using pathlinkR. (C)
Network analysis of DE genes over time in survivors and non-survivors. Zero-order (i.e., only dysregulated nodes) functional protein-protein
interactions (PPI) networks were drawn using NetworkAnalyst. Dots represent nodes (genes and their protein products) and are colored for
directionality. Lines joining the dots represent known PPI from InnateDB. Differential expression of TCR signaling genes was not seen in non-
survivors but these genes were upregulated over time in survivors (boxed area).
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eventual mortality; however, survivors were able to resolve this

dysfunction. Therefore, currently approved medications that can

target the persistent genes in non-survivors to resolve this

dysfunction might lead to successful and rapid repurposing of

drugs for sepsis and COVID-19 therapy. To identify drugs that

resolve persistent dysfunction, two systems-biology approaches

were utilized, rather than focusing on targeting single genes.

The first approach was to use the Drug Signatures Database

(DSigDB) (29), which is a repository of FDA-approved medications

and their interactions (e.g., antagonism) with genes/proteins. Using

this approach considers the overall systems-level cellular effect of a
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drug rather than its effect on just one target. These drug-gene sets were

enriched using upregulated persistent genes only in non-survivors to

identify possible inhibitors for these processes (Table 2). There was

significant enrichment of numerous anti-inflammatory drugs

including aspirin, sulfasalazine, and numerous corticosteroids

including dexamethasone, likely targeting persistently upregulated

inflammatory pathways. Surprisingly, other enriched drugs included

antipsychotics (thioridazine and pimozide), the anti-arrhythmic agent

flecainide, and various anti-infectives (mefloquine, ribavirin).

The second systems-biology approach was based on network

analysis of persistent genes only found in non-survivors (Figure 5).
A B

DC

FIGURE 4

Non-survivors had persistent enrichment of the mortality signature and were “locked-in” to more severe sepsis endotypes. (A) The gene set variation
analysis (GSVA) enrichment score of our published 38-gene mortality signature (9) was significantly higher in eventually deceased patients compared
to survivors at both D1 and D7 (Wilcoxon rank-sum test, * = p<0.05). (B) Fold changes of mortality signature genes in eventually deceased patients
and survivors relative to healthy controls. Shading in the heatmap represents fold change. Only DE genes are shown. Non-survivors had 15
persistently dysregulated (differentially expressed at D1 and D7) mortality signature genes compared to only 3 in survivors.
(C) Eventually deceased patients were “locked in” to severe endotypes. Five endotypes were derived from differentially expressed genes in a cohort
of emergency room sepsis patients: Neutrophilic-Suppressive (NPS), Inflammatory (INF), Interferon (IFN), Adaptive (ADA), and Innate Host Defense
(IHD) (9). Each patient was classified into an endotype based on which of the five endotypes had the highest GSVA enrichment score. An alluvial
graph demonstrating transition of each patient’s endotype between D1 and D7 is shown. (D) NPS GSVA enrichment scores were persistently high in
eventually deceased patients but significantly decreased in survivors (pair-wise Wilcoxon rank-sum test, * = p<0.05; ** = p<0.01, *** = p<0.001,
**** = p<0.0001, ns = not significant).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1254873
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


An et al. 10.3389/fimmu.2023.1254873
Hub genes/proteins, which are genes in a network with multiple

connections to other genes/proteins, are attractive druggable targets

since they are expected to drive biology by regulating and/or interacting

with multiple dysregulated genes/proteins. The top 15 most

interconnected upregulated hub genes were SIRT7, GRB2, ARRB2,

IKBKG, NEDD8, PPP1CA, HLA-B, NEDD4, STAT3, NFKB1, PXN,
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JUN, ATXN1, ACTB, and NOTCH1 (Figure 5). Approved

pharmaceutical drugs that target these hub genes were obtained from

genecards.org, which sources information from a variety of databases

including DrugBank, PharmGKB, DGIdb, and Novoseek (Table 3).

The drug that covered the most hub genes was dexamethasone (6/15

hub genes), followed by the immunomodulator cyclosporine and
TABLE 2 Enriched drug signatures from the Drug Signatures Database (DSigDB).

Drug Class Padj Genes Persistent Genes in Drug-Gene set

Aspirin Non-steroidal
anti-
inflammatory
drug

2.13E-05 86 ACTB, ALDOA, ATP6V0B, B4GALT1, BAX, CAPNS1, CAPZA1, CAPZA2, CCND3, CD44, CDC42,
CEBPB, CFLAR, CHMP1A, CSF3R, CSTA, DENND5A, ETS2, FCER1G, FGR, FLII, FLOT2, FOS, FPR1,
FPR2, G6PD, GABARAP, GHITM, GNB2, HCK, HCLS1, HGF, HSPA1A, ICAM1, IL18, IL1R2, JUN,
LDLR, LYN, MAP2K2, MAP4K4, MAPK1, MAPK3, MLF2, NFKB1, NFKBIA, NFKBIZ, NPEPPS, OSM,
PAG1, PCBP1, PDLIM7, PEF1, PFKFB3, PFN1, POR, PPIB, PPP4C, PRKCB, PXN, RAC1, RALB, RHOG,
S100A11, SAT1, SELL, SERPINA1, SERPINB1, SERPINB2, STAT3, STAT5B, TACC3, TBC1D10B,
TBXAS1, TCIRG1, TGFB1, THBS1, TIMM17B, TMSB4X, TNFRSF1A, TPD52L2, TXNRD1, TYK2,
UBTD1, VAV1, WBP2

Budesonide Corticosteroid 1.85E-03 20 ACSL1, AREG, CEBPD, CPD, CYP1B1, DAPK3, DUSP1, FKBP5, IFNGR1, IL1R2, IL4R, IRAK3,
MAP3K3, NFE2L2, NFKBIA, PER1, SAMSN1, SAP30, STAT3, TLR2

Thioridazine Antipsychotic 1.85E-03 61 ARFGAP3, ARHGEF2, ARID3B, ASAH1, ATXN1, BCL3, CARS1, CD44, CD55, CEBPB, CPNE3,
CSGALNACT1, CSGALNACT2, DENND3, DNAJC3, DUSP1, EPAS1, ETS2, FAM114A1, FOS, FOSL2,
FPR1, GADD45B, GDPD3, GK, H3C6, HRH2, ICAM1, IDI1, IER2, IER3, IL1RL1, IRS2, JUN, JUNB,
KDM7A, KLF5, KLF6, LDLR, MAP2K6, MNT, MSMO1, NDRG1, NEAT1, NFIL3, NFKBIA, NIBAN1,
PIM1, PLEC, PNRC1, PRL, S100P, SAT1, SLC38A2, STX3, SVIL, TNIP1, ULK1, WBP2, WIPI1, ZFP36

Halcinonide Corticosteroid 1.85E-03 13 ACSL1, AREG, CD163, CPD, DUSP1, FKBP5, FPR1, IL1R2, NFE2L2, PER1, SAMSN1, THBS1, TPST1

Podophyllotoxin Antiviral 1.85E-03 77 APOBR, AREG, ARID3B, ARRB2, ASAH1, ATXN1, B4GALT1, BCL2A1, BCL3, CCDC69, CD44, CD55,
CD58, CDK14, CDKN2D, CFLAR, CPD, CRISPLD2, CSNK1D, DENND5A, DUSP1, DYNLT1, EPAS1,
FCGR2A, FPR1, FUT7, GAB2, GK, GPSM2, HGF, IER3, IFNGR1, IFRD1, IFT20, IP6K1, JAK2,
KIAA0930, KIF1B, KIF3C, KLF5, KLF6, KLF7, LAMP2, LITAF, LRP10, MRPL12, NAMPT, NFKB1,
NUMB, PDLIM7, PGS1, PHTF1, RAB31, RABGEF1, RAP2C, RBM47, RIN3, SAMSN1, SAT1, SERPINB1,
SH3GLB1, SLC19A1, SMPDL3A, SSH1, STAT3, STX3, TESK2, THBS1, TNFRSF12A, TPM4, TRIB1,
TUBA4A, UBE2B, UBE2H, WDR1, WIPI1, ZFP36

Betamethasone Corticosteroid 3.96E-03 12 ACSL1, AREG, DUSP1, FKBP5, GLUL, HPGD, IL1R2, IRAK3, IRS2, NFE2L2, SAMSN1, THBS1

Pimozide Antipsychotic 1.22E-02 27 AREG, CD55, CEBPB, DUSP1, ETS2, FOS, GADD45B, H3C6, HIF1A, ICAM1, IER2, JUN, JUNB, KLF6,
LDLR, MAPK1, NCF1C, NDRG1, NFIL3, NFKBIA, NTSR1, PNRC1, PRL, RXRA, SAT1, TRIB1, ZFP36

Flunisolide Corticosteroid 1.31E-02 13 ACSL1, AREG, CD163, CSGALNACT1, DUSP1, ENC1, FKBP5, FPR1, IL1R2, PER1, SAMSN1, THBS1,
TPST1

Ribavirin Antiviral 1.31E-02 12 ACSL1, AREG, CD163, DUSP1, FKBP5, FPR1, IL1R2, IMPDH1, PER1, SAMSN1, THBS1, TPST1

Mefloquine Antimalarial 1.31E-02 32 BCL3, CD55, CEBPB, CSGALNACT2, CYP1B1, DUSP1, FOS, FPR1, GADD45B, GCLM, GK, H3C6, HGF,
ICAM1, IER2, IRS2, JUN, JUNB, KLF6, LDHA, LDLR, MAP1LC3B, NFIL3, NFKBIA, NIBAN1, PER1,
PIM1, PNRC1, SAT1, STX3, TRIB1, ZFP36

Fluorometholone Corticosteroid 2.65E-02 11 ACSL1, AREG, CPD, CYP1B1, DUSP1, FKBP5, FPR1, IL1R2, NFKBIA, PER1, SAMSN1

Dexamethasone Corticosteroid 3.60E-02 59 ABCC2, ACSL1, AREG, CD163, CD44, CD53, CFLAR, CPD, CYP1B1, DUSP1, ETS2, FBRS, FGF13,
FKBP5, FPR1, GRB2, GSR, HGF, HIF1A, HPD, HPGD, ICAM1, IL18, IL1R2, IL6R, INPP1, LDHA, LYN,
MAOA, MAPK1, MAPK3, NAMPT, NCF2, NFE2L2, NFIL3, NFKB1, NFKBIA, PER1, PRCP, PRL, RARA,
RIPOR2, RXRA, SDCBP, SERPINA1, SERPINB2, SLA, SLC22A1, SLCO4C1, SRGN, STAT3, STAT5B,
TGFA, TGFB1, THBS1, TLE4, TLR2, TUBA4A, VIM

Oxprenolol Beta-blocker 3.85E-02 6 HIRA, MAPK1, MAPK3, PPP3R1, RAD23B, SLC22A1

Risedronate Bisphosphonate 3.85E-02 6 CDC42, FDPS, MAPK1, MAPK3, RAC1, RHOA

Sulfasalazine Disease-
modifying anti-
rheumatic drug

3.85E-02 13 ABCC2, BAX, HGF, HIF1A, HPGD, ICAM1, LDHA, MTX1, NFE2L2, NFKB1, NFKBIA, TBXAS1, TPM3

Flecainide Antiarrhythmic 4.60E-02 7 ASAH1, FOS, GDPD3, PGK1, SCN5A, SLC22A1, WIPI1

Rimexolone Corticosteroid 4.88E-02 15 AREG, CYP1B1, DUSP1, FAM53C, FGR, FKBP5, FPR1, IL1R2, JUN, NDRG1, PER1, PFKFB3, SLC11A1,
THBS1, TPST1
Upregulated persistent genes unique to non-survivors were used for enrichment. Drug-gene sets from DSigDB were significantly enriched if they had a Benjamini-Hochberg adjusted p-value
<0.05 and q-value <0.2, based on the default settings of the enricher function in clusterProfiler. Only FDA-approved drugs were used for enrichment (1202 drugs with bioassay results).
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proteasome inhibitor bortezomib (4/15 hub genes), and a variety of

drugs with immunomodulatory function were also identified (e.g.,

tacrolimus, thalidomide, sulfasalazine, and infliximab). Interestingly,

ICAM1, which was the only persistent gene seen in both GWAS of

sepsis and COVID-19 (Table S2), has known protein-protein

interactions with the two hub genes NFKB1 and STAT3 and was also

part of drug-gene sets of aspirin, thioridazine, pimozide, mefloquine,

dexamethasone, and sulfasalazine (Table 2), suggesting these

repurposed drugs may also modulate ICAM1. Several of the top

persistently downregulated hub genes were ribosomal proteins (RPS6,

RPS8, RPL5) indicating that ribosomal dysfunction might be another

area to target therapeutically (Figure 5). Other persistently

downregulated hub genes included CAND1, ITGA4, PAN2, ILF3,

EEF1A1, SIRT1, FYN, IL7R, SMAD3, and NCL; finding drugs that

can activate these hub genes/proteinsmay also be useful therapeutically.
4 Discussion

By analyzing COVID-19 and non-COVID-19 sepsis patients

longitudinally, we showed that, based on gene expression data,

persistent immune dysfunction occurred in patients who eventually
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died, while partial immune resolution occurred in survivors,

regardless of COVID-19 status. This persistent immune

dysfunction involved both inflammatory and immunosuppressive

components (Figures 1C, 2, 3A), as observed in both COVID-19

and non-COVID-19 sepsis non-survivors (Figure S2C, D) and in

external datasets of COVID-19 and sepsis patients (Figure S4).

While differences in the early antiviral response existed between

these two groups (Figures S2B, S9), consistent with our previous

work (11), overall, the underlying persistent immune dysfunction

involved in mortality was highly conserved in both COVID-19 and

non-COVID-19 sepsis (Figure S2D). The connection between

persistence and mortality was further supported by persistent

enrichment of our published mortality signature (Figure 4A) and

the results from the endotype analysis, where most non-survivors

remained associated with the high severity endotypes NPS and INF

throughout disease (Figure 4C).

Persistently dysregulated inflammatory processes included

inflammatory processes involving IL-1, IL-6, TNFa, and

complement that failed to resolve in patients who died (Figures 1,

2). Interestingly, IL-4 and IL-13 signaling was also persistently

upregulated in non-survivors (Figures 1, 2); this could be reflective

of a transition towards Type-2 immunity, which could occur during
FIGURE 5

Protein interaction network of persistent genes in deceased patients highlight potential hub genes for drug targeting. Zero-order (i.e., only
dysregulated nodes) functional protein-protein interactions (PPI) networks were drawn using NetworkAnalyst. Dots represent nodes (genes and their
protein products) and are coloured red for upregulated and green for downregulated. Lines joining the dots represent known PPI from InnateDB.
Hub genes, which are genes with multiple interactions, are displayed as the largest nodes (size related to hub degree) and are labelled. Hub genes
are attractive targets for drugs as they are expected to regulate or interact with multiple other dysregulated genes and proteins during severe
disease. Drugs with known interactions with the top 15 upregulated hubs (circled in blue) are listed in Table 3.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1254873
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


An et al. 10.3389/fimmu.2023.1254873
increased pathogen burden (51) and is associated with poor

outcomes in sepsis (52). In addition, this shift could be reflective

of cellular reprogramming (CR): the process by which innate

immune cells such as monocytes or macrophages lose their ability

to respond appropriately to pathogens (53, 54), which could be

highly detrimental during infection. CR macrophages have certain

properties aligned with the Type-2 immunity associated M2
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macrophage phenotype, and we previously showed that a CR

gene signature predicted severe sepsis and organ failure (55).

Adaptive immune deficits centered around persistent T-cell

dysfunction in non-survivors, but reversal/correction of this

dysfunction occurred in survivors (Figure 3). Overall, this

persistence was consistent with the general concept of PICS, but

this syndrome has only been described to date by using blood
TABLE 3 Drugs that target hub genes in network of persistent genes in deceased patients.

Gene Description Degree Drugs targeting the Hub proteins

SIRT7 sirtuin 7 141 Nicotinamide

GRB2 growth factor
receptor bound
protein 2

109 Pegadamase, Carbamoylcholine, Dexamethasone, Dopamine, Estradiol, Inositol, Letrozole, Tamoxifen

ARRB2 arrestin beta 2 70 Buprenorphine, Fentanyl, Methamphetamine, Tramadol, Dopamine, Isoprenaline, Morphine

IKBKG inhibitor of
nuclear factor
kappa B kinase
regulatory subunit
gamma

66 Artesunate, Primaquine, Pyrimethamine, Sulfadoxine, Zinc

NEDD8 NEDD8 ubiquitin
like modifier

65 NA

PPP1CA protein
phosphatase 1
catalytic subunit
alpha

61 Cantharidin, Cyclosporine, Tacrolimus, Phosphoric acid

HLA-B major
histocompatibility
complex, class I, B

55 Abacavir, Carbamazepine, Acetazolamide, Amoxicillin, Carbimazole, Clavulanic acid, Clindamycin, Dapsone,
Flucoxacillin, Fosphenytoin, Methazolamide, Methimazole, Minocycline, Oxcarbazepine, Pazopanib, Phenytoin,
Ribavirin, Sulfasalazine, Ticlopidine, Trichloroethylene, Allopurinol, Benzylpenicillin, Infliximab, Interferon-beta-1a,
Lamotrigine, Nevirapine, Peginterferon alfa, Phenobarbital, Phenoxymethylpenicillin, Propylthiouracil, Clozapine,
Lamivudine, Stavudine, Thalidomide, Antipyrine, Busulfan, Chenodeoxycholic acid, Chlorzoxazone, Cholesterol,
Cimetidine, Cyclosporine, Dexamethasone, Tacrolimus, Testosterone, Tolbutamide, Ursodeoxycholic acid, Iron, Zinc

NEDD4 NEDD4 E3
ubiquitin protein
ligase

49 Warfarin, Phosphoric acid, Pyrophosphoric acid

STAT3 signal transducer
and activator of
transcription 3

48 Niclosamide, Rituximab, Acitretin, Acalabrutinib, Amphotericin B, Clotrimazole, Durvalumab, Miconazole,
Tremelimumab, Omacetaxine mepesuccinate, Celecoxib, Digoxin, Ouabain, Pyrimethamine, Bortezomib, Cholesterol,
Cisplatin, Curcumin, Cyclosporine, Dactinomycin, Dasatinib, Dexamethasone, Docetaxel, Doxorubicin, Erlotinib,
Filgrastim, Gefitinib, Heparin, Imatinib, Iron, Losartan, Metformin, Mifepristone, Paclitaxel, Parthenolide, Ribavirin,
Rosiglitazone, Rosuvastatin, Sirolimus, Sorafenib, Sulindac, Tamoxifen, Testosterone, Thalidomide, Valsartan

NFKB1 nuclear factor
kappa B subunit 1

48 Sulfasalazine, Donepezil, Glycyrrhizic acid, Racephedrine, Triflusal, Benfotiamine, Deoxycholic acid, Erdosteine,
Artesunate, Baclofen, Bortezomib, Chlorambucil, Chlorpropamide, Disulfiram, Hydrocortisone, Hydroquinone,
Masoprocol, Mitoxantrone, Nifedipine, Parthenolide, Protriptyline, Rutin, Sulfaphenazole, Thalidomide, Triamcinolone,
Etoposide

PXN paxillin 46 Lovastatin, Acetylcholine, Carbamoylcholine, Cholesterol, Colchicine, Dasatinib, Dexamethasone, Doxycycline, Heparin,
Losartan, Potassium, Progesterone, Valproic acid

JUN Jun proto-
oncogene, AP-1
transcription
factor subunit

45 Vinblastine, Adapalene, Irbesartan, Racephedrine, Atomoxetine, Bupropion, Cinnarizine, Ciprofibrate, Clofibrate,
Clotrimazole, Colchicine, Cupric chloride, Diphenhydramine, Fenofibrate, Gemfibrozil, Methimazole, Quinapril,
Sertraline, Tropisetron, Lipoic acid, Anethole, Bexarotene, Bortezomib, Cerivastatin, Chenodeoxycholic acid,
Chloramphenicol, Curcumin, Cyclosporine, Cytarabine, Dactinomycin, Dexamethasone, Dicoumarol, Etoposide,
Mifepristone, Pioglitazone, Raloxifene, Rosiglitazone, Selenious acid, Sirolimus, Tamoxifen, Troglitazone

ATXN1 ataxin 1 42 Testosterone

ACTB actin beta 41 Cyclophosphamide, Ethinylestradiol

NOTCH1 notch receptor 1 40 Dexamethasone, Bortezomib, Everolimus, Hydrocortisone, Mercaptopurine, Methotrexate, Paclitaxel, Prednisolone,
Ribociclib, Temozolomide, Doxorubicin, Doxycycline, Sirolimus
The top 15 upregulated hub genes, based on hub degree (how many interactions it had in the network) are listed below. Approved drugs that target these genes were obtained from genecards.org,
which sources information from a variety of databases including DrugBank, PharmGKB, DGIdb, and Novoseek, with evidence of interaction or an inferred relationship. The protein interaction
network is in Figure 5.
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cytokine/protein markers and changes in specific cell populations

(56). This is the first gene expression study showing that persistent

gene expression analogous to PICS occurred similarly in both sepsis

and severe COVID-19 ICU patients with worse outcomes.

Currently, it is unclear what enables some patients to correct

their immune dysfunction, although this could involve individual

factors such as natural immunity, predisposing conditions, or

underlying patient genetics. Additionally, the idea of persistence

is consistent with epigenetic mechanisms, and multiple immune

genes were found both in persistent genes and differentially

methylated genes in sepsis and COVID-19 (Figure S3). However,

since non-survivors had persistently dysregulated pathways that

resolved in survivors, this indicated that there may be treatable

traits and pharmacological methods that could reverse persistence

and decrease mortality. Currently-approved and in-trial

immunomodulatory therapies for COVID-19 include

corticosteroids such as dexamethasone (21), IL-6 signaling

inhibitors such as tocilizumab (57) and baricitinib (23), the

recombinant IL-1 receptor antagonist anakinra (58), and the

complement inhibitor vilobelimab (59); these all target enriched

pathways/gene sets that were observed to be persistently

dysregulated in non-survivors (“Inflammatory response”, “IL-6

JAK STAT3 signaling”, “IL-1 signaling”, and “Complement”)

(Figures 1, 2). Thus, targeting persistent genes and mechanisms

appears to be a valid approach to find additional therapies. The

identification of dexamethasone, a known effective treatment for

COVID-19 (and for subsets of septic shock (60)), using both drug-

gene set enrichment (Table 2) and network hub genes (Table 3),

supported the validity of these methods for identifying

potential repurposed drugs for sepsis and COVID-19. Other

potential immunomodulators that could address the persistent

inflammation included aspirin, sulfasalazine, and cyclosporine.

There were also other drugs identified without evident

immunomodulator functions, including the anti-psychotic

thioridazine and the anti-arrhythmic flecainide, which have

demonstrated survival benefits in mouse and rat sepsis models,

respectively, likely through off-target inhibition of the NF-kB
pathway (61, 62). These identified drugs should be further

assessed in vitro, in vivo, and in clinical trials for potential efficacy.

While these identified drugs primarily dampen inflammatory

mechanisms, it is also important to address the adaptive immune

deficits observed in this cohort, since only focusing on anti-

inflammatory therapies has not proven to be successful in sepsis

(13). Thus, treatments that aim to restore adaptive suppression,

focusing on T-cell functions/numbers should also be considered.

They could be potentially concurrently administered with anti-

inflammatories, or selectively applied to patients that require more

immune stimulation rather than anti-inflammation based on

underlying gene expression profiles or clinical variables. Therapies

that addresses adaptive immune suppression could include

checkpoint inhibitors (63) and IL-7 (64), which are currently being

evaluated for sepsis and perhaps should also be considered for severe

COVID-19. For example, IL7Rwas one of the top downregulated hub

genes (Figure 5), further supporting potential use of IL-7. Monitoring

immune function longitudinally throughout hospitalization (e.g.,

using gene-expression panels, cytokine measurements) could
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identify patients that fail to resolve immune dysfunction within the

first week of ICU hospitalization, which could inform healthcare

providers to consider additional care or enrollment into

immunomodulatory clinical trials. As shown in this cohort, the

time at which a patient is on their disease timeline (in this case, D1

or D7 in the ICU) needs to be considered when evaluating therapies.

There are some limitations to this study. First, these results are

from a single cohort of mostly male patients and, while the major

finding of persistence has been confirmed by re-analysis of other

studies (30, 42) (Figure S4), they should be validated in larger, sex-

balanced studies. Despite the modest sample size, thousands of DE

genes were still identified, suggesting that the study was adequately

powered for finding gene expression differences. Critically, these

samples were paired with two timepoints, enabling patient indexing,

which can help to eliminate various sources of patient heterogeneity

and potential confounders that could potentially overshadow true DE

changes. It is also possible that bulk RNA-Seq results could be altered

by different cell proportions. However, even after adjusting with cell

proportion data, similar patterns of differential expression were

observed (Figure S8). Multiple other potential confounders were also

addressed, including corticosteroid use, COVID-19 status (Figures S2,

S9), and sample imbalance (Figure S10), all of which showed no

substantial effects on the gene expression patterns observed.

In summary, mortality in both sepsis and COVID-19 was highly

associated with persistent immune dysfunction during the first week

in the ICU, with both inflammatory and immunosuppressive

components. To improve outcomes, these patients require novel

immunomodulatory treatments to treat immune dysfunction

throughout the ICU stay, with multiple immunomodulatory drug

candidates identified for further in vitro and in vivo testing.
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