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Unveiling challenges in real-time
PCR strategies for detecting
treatment failure: observations
from clinical trials on chronic
Chagas disease
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Ingenierı́a Genética y Biologı́a Molecular Dr Héctor N. Torres (INGEBI), Consejo Nacional de
Investigaciones Cientı́ficas y Técnicas (CONICET), Buenos Aires, Argentina
Chagas disease (CD) caused by Trypanosoma cruzi remains a Neglected Tropical

Disease with limited access to diagnosis and treatment, particularly for

chronically infected patients. Clinical trials are underway to improve treatment

using new drugs or different regimens, and Real-Time PCR is used to assess the

parasitological response as a surrogate biomarker. However, PCR-based

strategies have limitations due to the complex nature of T. cruzi infection. The

parasite exhibits asynchronous replication, different strains and clones, and

diverse tissue tropism, making it challenging to determine optimal timeline

points for monitoring treatment response. This mini-review explores factors

that affect PCR-based monitoring and summarizes the endpoints used in clinical

trials for detecting treatment failure. Serial sampling and cumulative PCR results

may improve sensitivity in detecting parasitemia and treatment failure in

these trials.

KEYWORDS

polymerase chain reaction, Chagas disease, drug resistance, benznidazole, nifurtimox,
dormancy, treatment failure, Trypanosoma cruzi
Introduction

Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, poses a significant

public health threat in many regions worldwide (WHO, 2023). Transmission to humans

primarily occurs through triatomine vectors, but other routes such as in utero transmission,

contaminated meals, blood transfusions, or organ transplants are also possible. CD remains

classified as a Neglected Tropical Disease, with limited access to efficient diagnosis and

treatment, hampering efforts to control its impact on affected populations.

Current available therapies, such as benznidazole (BZN) and nifurtimox (NFX) have

limitations in efficacy and safety, particularly in chronic adult CD patients (Moraes

et al., 2014).
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Clinical trials using different drug regimens and exploring new

drugs in the pharmaceutical industry portfolio are underway to

address this issue (Morillo et al., 2015; Morillo et al., 2017; Villar

et al., 2019; Cafferata et al., 2020; Alonso-Vega et al., 2021; Torrico

et al., 2021; Altcheh et al., 2023).

One of the challenges in assessing treatment efficacy is the

reliance on molecular methods, particularly Real-Time PCR, to

detect parasitic loads in peripheral blood (Schijman et al., 2011;

Moreira et al., 2013; Ramıŕez et al., 2015). These methods have a

limit of detection, and non-detectable findings cannot confirm

parasitological eradication, leading to cure. Only detectable results

can indicate treatment failure. This limitation hampers the ability to

accurately determine the success of therapeutic interventions.

The lifecycle of T. cruzi further complicates the assessment of

treatment effectiveness. Infection begins with motile extracellular

trypomastigotes, which invade different cell types and convert into

amastigotes, replicating in the host cytoplasm. Amastigotes then

convert back to trypomastigotes, breaking the host cell membrane

for parasite dissemination to the interstice and bloodstream. Recent

studies have highlighted the asynchronous nature of intracellular

parasite replication, the occurrence of dormancy and amastigotes’

growth plasticity to adapt and recover from sublethal drug exposure

(Dumoulin and Burleigh, 2018; Sanchez-Valdez et al., 2018; Ward

et al., 2020).

Another critical factor in treatment response is the genetic

diversity and population structure of T. cruzi. CD patients may be

infected with multiple parasite strains and clones, each with

different tissue tropism (Macedo and Pena, 1998). The presence

of parasites in the bloodstream may not necessarily reflect the

ones responsible for clinical manifestations and drug

susceptibilities. Different subpopulations of the parasite may be

responsible for variations in treatment responses observed in

multicenter trials.

Moreover, certain life-cycle stages may be less sensitive to

treatment, and the ability of parasites to reside in metabolically

distinct tissue compartments can significantly affect drug

susceptibility (Barrett et al., 2019). These complexities highlight

the need for more comprehensive approaches when evaluating

treatment efficacy and drug response in CD.
Parasite life-cycle stages and
drug susceptibility

Benznidazole and nifurtimox exhibit pleiotropic properties with

multiple effects on the target organism. This complexity can give

rise to resistance in various ways. It is important to note that T.cruzi

resistance observed in laboratory settings where in vitro resistance is

generated may differ significantly from the resistance patterns

observed in natural populations. This underscores the need of

considering the interplay between laboratory studies and real-

world observations when addressing drug resistance in T.cruzi.

The intracellular life cycle of T. cruzi in vivo is more intricate

than previously assumed, revealing varying degrees of drug

susceptibility among different parasite stages.
Frontiers in Parasitology 02
The research conducted by Moraes et al. (2014) highlights that

trypomastigote forms have a higher capacity to withstand the

trypanocidal effects of BZN and NFX compared to replicative

epimastigotes and amastigotes. On the other hand, epimastigotes

and amastigotes are more susceptible to a cumulative, trypanocidal,

and trypanostatic impact of these drugs.

Revollo et al. (2019) investigated the susceptibility patterns of T.

cruzi stages to BZN and NFX in vitro using a range of twenty-one T.

cruzi strains from three different DTUs (Discrete Typing Units)

isolated from patients, reservoirs, and triatomines across various

geographical origins (Revollo et al., 1998). On the basis of the

Epidemiological cut-off value (CO wt) (Kahlmeter, 2014), the

authors computed the susceptibility threshold (COwt) of the T.

cruzi life cycle forms against BZN and NFX from a panel of

previously characterized strains and observed that the

trypomastigote form exhibits higher tolerance to the toxic effects

of both drugs compared to the other stages.

The study by Dumoulin and Burleigh (2018) revealed that

intracellular amastigotes have the ability to adjust their

proliferation rates as a survival strategy. They can range from

minimal to rapid growth by accumulating within the G1 phase

and then being released. The variation in doubling times differed

between T.cruzi strains, suggesting that the metabolite levels or

their thresholds, needed to initiate the S phase were also different in

different strains. Treatment with BZN was found to inhibit

amastigote proliferation in a concentration-dependent manner.

Interestingly, when the drug was removed, the recovery of

amastigotes was inversely proportional to the drug concentration

used to treat them (Dumoulin and Burleigh, 2018).
Strain diversity, histotropism and
drug exposure

Studies have shown that T. cruzi strains isolated from

triatomine vectors and vertebrate hosts exhibit multiclonality

(Morel et al., 1986; Oliveira et al., 1998). During the interaction

between the parasite and the human host in the chronic infection,

certain subpopulations of T. cruzi may be selected and their

differential tissue tropism can affect their distribution in the

infected host (Vago et al., 2000). This selective role played by the

human host can be exemplified by studies done in parasite isolates

obtained from clinical samples of the first human CD case reported

by Carlos Chagas: a two year-old girl named Berenice (Chagas,

1909). Indeed, two T. cruzi populations were isolated from Berenice

Soares de Moura: one when she was a 55 years old- woman and

another one when she reached 71 years of age (De Lana et al., 1996).

The zymodeme and schizodeme profiles of these isolates diverged,

which could be attributed to either a reinfection with a different

strain or the presence of a heterogeneous population since the

primary infection. Indeed, as T. cruzi is composed of heterogeneous

populations, it is possible for the same host to be simultaneously

infected by different strains. The clonal histotropic model suggests

that the heterogeneity and multiclonality of a strain determine its

differential tissue tropism, leading to variations in the clinical
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presentation of the disease (Macedo and Pena, 1998). It has been

observed that clones found in patients’ cardiac tissues differed from

those in the esophagus (Vago et al., 2000), and divergent

subpopulations were identified in different tissue slices from the

same heart explant in patients undergoing heart transplant (Burgos

et al., 2010). Additionally, the occasional reactivation of parasites

residing in target tissues may contribute to the dynamic behavior of

T. cruzi infection, resulting in the appearance of new replication

sites in different anatomical locations, as frequently observed in

immunosuppressed patients with Chagas reactivation leading to

panniculitis, myocarditis, or meningoencephalitis (Burgos et al.,

2008; Burgos et al., 2010).

It has been reported that the epimastigote and amastigote forms

of TcI strains are significantly less sensitive to BZN or NFX-

mediated growth inhibitory effect compared to those belonging to

TcII and TcV (Revollo et al., 2019). Strains CL (TcVI) and

Colombiana (TcI), known to be susceptible and highly resistant,

respectively, to BZN and NFX in vivo (Filardi and Brener, 1987),

exhibit similar in vitro susceptibility in the amastigote stage

(Canavaci et al., 2010).

In vitro experiments conducted by MacLean et al. (2018)

demonstrated that strain PAH179 (TcV) exhibited marked

resistance to posaconazole. This reduced sensitivity was attributed

to the slow doubling and cycling time of this strain, which resulted

in ergosterol biosynthesis inhibition by posaconazole only after

multiple rounds of division. The lack of effect of posaconazole on

the non-replicative trypomastigote form further supported

this observation.

Characterization of transcriptomic profiles of BZN-resistant T.

cruzi clones has revealed a wide array of genes from different

metabolic pathways associated with the BZ-resistant phenotype.

This indicates that parasite resistance mechanisms are

multifactorial and complex (Garcıá-Huertas et al., 2017; Lima

et al., 2023). Functional analysis has enabled the identification of

relevant biological processes linked to the resistance phenotype,

including changes in RNA processing and translation, antioxidant

defence, as well as inter- and intracellular molecular transport

(Lima et al., 2023).

Parasite genotyping can aid in understanding the differences in

outcomes observed across different trials conducted in various

geographical regions, as well as in detecting naturally resistant

populations (Parrado et al., 2019; Muñoz-Calderón et al., 2023).

Biorepositories containing well-conserved blood samples and

extracted DNAs can be valuable for typing parasite populations

from previous trials. The DNDi-CH-E1224-001 (Ramıŕez et al.,

2022) and TESEO trials (Alonso-Vega et al., 2021) have

incorporated DTU genotyping into their study designs.
Dormancy and treatment failure

Sanchez-Valdez et al. (2018) made a ground breaking discovery

by identifying drug-resistant persister subpopulations in T. cruzi.

These dormant parasites have the unique characteristic of either not

replicating or displaying slow replication rates. Moreover, they

undergo metabolic changes, including reduced DNA synthesis
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and widespread downregulation of protein translation, in

comparison to actively replicating cells (as shown in the studies

by Van den Bergh et al., 2017, and Barrett et al., 2019).

There is a need to consider the potential role of dormancy

mechanisms in the context of chronic infections. As the infection

progresses to its chronic stage the parasite may encounter

conditions that reduce its replication rate. For instance, certain

types of DNA damage in T.cruzi such as double-strand breaks can

trigger cell cycle arrest followed by repair without leading to parasite

cell death. This repair process might inadvertently contribute to a

dormancy-like state, where the parasite remains metabolically

active but exhibits l imited replication (Repolês et al ,

2020).Dormant forms can arise spontaneously, independent of

any drug pressure. Additionally, they possess a remarkable

resilience to compounds that are highly effective against the

actively replicating parasites.

The inability of trypanocidal drugs to completely eradicate

replicative amastigote nests suggests the occurrence of transient

dormancy within a specific subpopulation among the intracellular

amastigote forms. These dormant cells can enter a state of

quiescence during drug treatment and have the potential to

resume replication once the treatment is stopped. Taylor and

coworkers (2020) have hypothesized that the presence of such

dormant nests may function as a form of intracellular “herd-

protection,” where those parasite cells situated in an inner core of

an amastigote nest would be less exposed to the drug compared to

those amastigotes located at the periphery. As a result, the drug

concentration within the host cell may be depleted before it can

effectively target the core amastigotes, contributing to the survival

and persistence of the dormant parasites. Such a phenomenon

would pose challenges in completely eradicating T. cruzi infections

and underscore the need for novel therapeutic approaches targeting

these drug-resistant persister subpopulations.

In vitro studies using TUNEL assays and 5-ethynyl-2’-

deoxyuridine (EdU) labeling have shown that replicating

amastigotes, amastigote-to-trypomastigote differentiating forms

and non-replicative trypomastigotes can coexist concurrently in a

same host cell. The dynamics of parasite replication in each host cell

does not follow a predictable or tightly regulated pattern, either in

vitro or in vivo, at any phase of the disease or in specific infected

tissues (Taylor et al., 2020).

Barrett et al. (2019) conducted a review of mechanisms used

by protozoan parasite stages to enter a dormant state and

establish persistent infections. To study the proliferation of T.

cruzi in the colon of chronically infected mice, they incorporated

EdU into DNA to track the replication status. By imaging

infection foci at the single-cell level, they discovered that T.

cruzi parasites were three times more likely to be in the S-phase

during the acute stage of murine infection in the colon compared

to the chronic stage. This finding suggested that a lower rate of

parasite replication was associated with chronic colonic

infections. Interestingly, the majority of infected murine cells

did not survive T. cruzi infection for more than 14 days,

indicating that persistence involved regular cycles of

replication, host cell lysis, and reinfection (as mentioned in the

study by Ward et al., 2020). This insight sheds light on the
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dynamics of T. cruzi infection and the potential mechanisms of

persistence within the host.
Clinical trials endpoints and
measuring outcomes using
Real Time PCR

Real-Time PCR remains the main laboratory tool for assessing

treatment efficacy in clinical trials for Chagas disease. It is crucial to

have well-standardized DNA extraction methods and commercially

available Real-Time PCR kits, accompanied by internal and external

quality controls (Ramıŕez et al., 2015; Ramıŕez et al., 2017) and

reliable standard curves for quantification for expressing parasitic

loads or target gene copies per unit of sample volume (Ramıŕez et al,

2015; Muñoz-Calderón et al., 2021). Quantitative PCR would

permit establishing a minimal difference in parasitic loads

between subsequent samples of a same patient under follow-up to

interpret it as a true decrease or increase in parasitemia and

accordingly treatment response improvement or failure.

In clinical practice, the concept of the “minimum clinically

significant difference” (MCID) is often used to determine whether a

change in a measured parameter, such as parasitic load, is

meaningful from a clinical perspective. The MCID is the smallest

change in a measurement that is considered to be clinically relevant

and not just due to random variability. This depends on several

factors, including the specific parasite population, DTU or strain
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being studied, the testing method used, and the clinical context. It is

essential to consider the sensitivity and precision of the testing

method, the variability in the measurement, and the natural course

of the disease. However, this has not been done in the context of

Chagas disease trials, yet.

Harmonization and agreement on criteria for using PCR in

clinical trials for Chagas disease can be challenging due to various

factors, including scientific, practical, and logistical considerations.

Some debatable points that may arise during discussions and

negotiations for harmonization are presented in Table 1.

The minimum set of PCR timepoints required to detect

treatment failure early needs to be agreed upon by the

community involved in Chagas disease trials. Some trials have

included a positive PCR result at baseline as an inclusion

criterion for patients in a treatment arm. The clinical sensitivity

of PCR in the chronic stage varies between 50% and 70% and is

dependent on the geographical region. This has been observed by

comparing PCR positivity and parasitic loads in baseline samples

from patients enrolled in multicentric trials. For example, in the

BENEFIT trial, treatment with benznidazole (BZN) was effective for

patients from Argentina and Brazil (80% of the study population)

but not for participants from Colombia and El Salvador (Morillo

et al., 2015). This difference could be related to the distribution of

parasite strains and DTUs (Discrete Typing Units), which can have

different gene dosage for the molecular targets used in PCR.

Furthermore, in certain regions, such as Minas Gerais, Brazil,

primary resistant strains may prevail.
TABLE 1 Debatable points regarding harmonization and agreement on criteria for using Polymerase Chain Reaction (PCR) in clinical trials for Chagas disease.

Issue Key point of agreement Points Needing Discussion

PCR as
surrogate
marker of
treatment
response

A positive PCR result after treatment is an effective marker of treatment failure. Is there a clinical benefit in falling parasitic load?

Inclusion
Criteria

There is no consensus regarding the need of a PCR positive result for enrollment
of a patient in a trial

Inclusion criteria should be only to have a positive baseline
PCR result.
Should patients with positive serology but non detectable PCR
results also be enrolled?

Endpoint-
measuring
outcomes

There is no consensus regarding the optimal timeline points to use PCR for
monitoring treatment response

What is the recommended minimum number of timeline
points to best measure efficacy among different studies?

PCR related
methodology

In multicenter trials it is recommended to use a same standardized operative
procedure including sample volume, sample collection, storage and
transportation, DNA extraction method and Real Time PCR protocol or
commercial kit

If similar PCR related reagents cannot be acquired in different
sites participating in a multicenter trial, should a pilot study be
done to harmonize techniques and enable comparison of
results among the different PCR settings?
Would be external quality control assurance a valid strategy for
this purpose?

PCR output A qualitative PCR positive result is valid enough to address treatment failure Is it necessary to provide quantitative PCR results expressed as
parasitic loads for monitoring treatment response in clinical
trials?
Should a “minimum clinically significant difference” (MCID) in
parasitic loads be established for addressing improvement or
failure of treatment?

Geographical
factors

Treatment failure detection vary by geography, even within a same country. Is this variability due to T. cruzi genetic diversity, including
natural drug resistance and/or due to the immunological host
background, and to which extent can this variability be
attributed to PCR technical issues?
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Serial sampling studies have been conducted in an attempt to

increase the clinical sensitivity of PCR for detecting parasitic loads

in pre-treated chronic Chagas disease patients (Parrado et al., 2019).

In the DNDi-CH-E1224-001 trial, up to three samples were

collected at each timepoint. Samples 1 and 2 were collected on

the same day, with the former containing 10 ml and the second one

containing 5 ml of blood in both cases mixed with one volume of

the stabilizing agent. A third sample (10 ml) was collected seven

days later if the PCR results from the previous two ones were non-

detectable. The timing of the third sample collection was based on

the assumption that T. cruzi intracellular replication generally lasts

for 4-5 days, although it can be slower for certain isolates

(Dumoulin and Burleigh, 2018).

Comparison of PCR positivity between individual samples did

not show significant differences, indicating that collecting 5 ml or 10

ml of blood did not impact PCR results in that cohort of chronically

infected patients. However, when cumulative results from the

combination of the first two samples were computed, higher PCR

positivity rates were observed in both cohorts. In cases where

samples 1 and 2 were PCR negative, the inclusion of the third

sample collected one week later increased sensitivity. Indeed,

increasing the number of samples during screening allows

enrolling a higher number of patients within the same

project period.

In the MSF-DNDi PCR Sampling Optimization Study (Parrado

et al., 2019), three samples were taken from all patients regardless of

the PCR results in the first two. No statistical differences were

observed when testing individual samples. However, when the

cumulative PCR positivity of sample 1 plus 2 was compared to

the positivity of either of them as a single test, an increase in

sensitivity was observed. This was also true when considering the

combination of all three samples, resulting in higher PCR

positivity rates.

The fluctuation of PCR positivity and non-detectable results can

be attributed to the low parasitic burden in chronic Chagas disease

patients, which often falls below the limits of detection and

quantification of available PCR techniques. In the DNDi-CH-

E1224-001 trial, quantitative PCR results showed fluctuations in

parasitic loads among positive PCR samples from the same patient,

with some samples falling below the limit of quantification. The

decision on the optimal opportunity to take an additional sample

for PCR testing is currently based on operational and logistical

factors rather than in the probability of detecting a particular

percentage of additional positives based on the replicative

dynamics of the parasite population. This is also applicable to the

detection of treatment failure, as conducting more PCR

determinations increases the chances of detecting failures.

In reported clinical trials, the measurement of DNAemia at the

end of treatment (EOT) regimens was not useful for assessing

treatment response. In the DNDi-CH-E1224-001 trial, there was a

rapid response in all treatment arms at EOT, but differences in the

degree of treatment failure became clear approximately 100 days

after treatment initiation. Parasitemia appeared to remain dynamic

for up to 6 months after treatment and became more stable

afterward. This is likely because some time was needed for

refractory or resistant parasite populations to reach a detectable
Frontiers in Parasitology 05
parasitic load threshold in the bloodstream using available

PCR procedures.

Different clinical trials have used PCR as an endpoint to

evaluate treatment efficacy. In the BENDITA trial, sustained

parasitological clearance at six months, defined as persistent

negative qualitative PCR results since EOT, was the primary

endpoint (Torrico et al., 2018).

The STOP CHAGAS trial evaluated the proportion of subjects

with persistent negative PCR by day 180 as the primary efficacy

outcome, with negative PCR at 360 days as a secondary outcome

(Morillo et al., 2015; Morillo et al., 2017). The EQUITY trial

assessed the proportion of enrolled patients testing positive at

least once in up to three independent PCR assays, separated by

seven days between each, carried out between 12 and 18 months

after randomization (Villar et al., 2019).

Currently, clinical trials include PCR measurements at six and

twelve months after EOT as common timepoints for post-treatment

PCR assessments (Table 2).
Novel molecular techniques
potentially useful for monitoring
parasitological response to treatment

In recent years, the landscape of DNA amplification and

detection techniques has expanded to included highly sensitive

isothermal amplification methods such as Loop mediated

isothermal amplification (LAMP) and CRISPR-Cas12 technology.

Cas12 is a a RNA-guided endonuclease enzyme found in CRISPR-

Cas systems, which has been harnessed for its ability to target specific

DNA sequences (You et al., 2022). When paired with a guide RNA

complementary to the target DNA, Cas12 can be activated upon

binding to the target resulting in a collateral cleavage activity that

generates detectable signals, such as fluorescence. LAMP employs a

set of four to six primers designed to recognize multiple distinct

regions on the target DNA enabling a strand-displacement DNA

synthesis process. A T.cruzi LAMP prototype kit (Besuschio et al.,

2017; Besuschio et al., 2020) has been already tested in blood samples

from CD patients under treatment, with promising sensitivity and

specificity and high agreement with Real Time PCR used as a

comparator test (Muñoz-Calderon et al., 2022).
Final remarks

In conclusion, the complexity of T.cruzi infection, including the

coexistence of multiple clones, strains, and discrete typing units in a

specific geographic region and patient cohort, as well as the

differential histotropism and lack of synchrony among life-stage

cycles, poses challenges in predicting an optimal timeline for Real-

Time PCR monitoring and assessing the overall parasitological

response to treatment. Given these complexities, it is reasonable

to maintain PCR tests at baseline, as well as at six and twelve

months post-treatment, in order to facilitate the comparison of

parasitological responses among different drugs and treatment
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CLINICAL TRIAL

ID
COUNTRY CLINICAL SETTING DESIGN

BETTY Argentina
Seropositive women with a live birth during

pospartum

double-blind, non-inferiority, randomized

controlled

BZN

EQUITY* Colombia
20-65 years old Seropositive without

apparent symptoms/ signs cardiomyopathy
randomized concealed blind,, parallel group

NFX

BZN

PLA

MULTIBENZ
Argentina, Brazil

Colombia, Spain

Chronic Phase randomized, noninferiority double blind

multicenter

BZN

NUESTROBEN # Argentina
18-60 years asymptomatic chronic Chagas

disease

phase III, open-label, preospective non-

randomized, multicenter, non-inferiority

BZN

TESEO Bolivia Adults chronic phase
open-label, randomized, prospective, phase

II

BZN

NFX

# the dates to perform the PCR controls after EOT varies depending on the duration of each treatment arm
*3X : 3 independent PCR assays separated by 7 days or more between 12 and 18 months of follow-up
Grey boxes represent time line points for PCR analysis.
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regimens. This approach allows for a more comprehensive

evaluation of treatment efficacy and response in CD clinical trials.
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