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Dose distribution prediction for
head-and-neck cancer
radiotherapy using a generative
adversarial network: influence
of input data

Xiaojin Gu1,2*†, Victor I. J. Strijbis1,2†, Ben J. Slotman1,2,
Max R. Dahele1,2 and Wilko F. A. R. Verbakel1,2

1Department of Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam,
Amsterdam, Netherlands, 2Cancer Center Amsterdam, Cancer Treatment and Quality of Life,
Amsterdam, Netherlands
Purpose: A three-dimensional deep generative adversarial network (GAN) was

used to predict dose distributions for locally advanced head and neck cancer

radiotherapy. Given the labor- and time-intensive nature of manual planning

target volume (PTV) and organ-at-risk (OAR) segmentation, we investigated

whether dose distributions could be predicted without the need for fully

segmented datasets.

Materials and methods: GANs were trained/validated/tested using 320/30/35

previously segmented CT datasets and treatment plans. The following input

combinations were used to train and test the models: CT-scan only (C); CT

+PTVboost/elective (CP); CT+PTVs+OARs+body structure (CPOB); PTVs+OARs

+body structure (POB); PTVs+body structure (PB). Mean absolute errors (MAEs)

for the predicted dose distribution and mean doses to individual OARs (individual

salivary glands, individual swallowing structures) were analyzed.

Results: For the five models listed, MAEs were 7.3 Gy, 3.5 Gy, 3.4 Gy, 3.4 Gy, and

3.5 Gy, respectively, without significant differences among CP-CPOB, CP-POB,

CP-PB, among CPOB-POB. Dose volume histograms showed that all four

models that included PTV contours predicted dose distributions that had a

high level of agreement with clinical treatment plans. The best model CPOB

and the worst model PB (except model C) predicted mean dose to within ±3 Gy

of the clinical dose, for 82.6%/88.6%/82.9% and 71.4%/67.1%/72.2% of all OARs,

parotid glands (PG), and submandibular glands (SMG), respectively. The R2 values

(0.17/0.96/0.97/0.95/0.95) of OAR mean doses for each model also indicated

that except for model C, the predictions correlated highly with the clinical dose

distributions. Interestingly model C could reasonably predict the dose in eight

patients, but on average, it performed inadequately.

Conclusion: We demonstrated the influence of the CT scan, and PTV and OAR

contours on dose prediction. Model CP was not statistically different frommodel
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CPOB and represents the minimum data statistically required to adequately

predict the clinical dose distribution in a group of patients.
KEYWORDS

artificial intelligence, machine learning, deep learning, generative adversarial network
(GAN), dose prediction, OAR sparing, radiotherapy
Introduction

Head and neck cancer (HNC) radiotherapy treatment planning

is complex, due to large and irregular planning target volumes

(PTV), multiple prescription/PTV dose levels (e.g., primary tumor

and nodal areas), and a large range of organs at risk (OARs) in close

proximity to the PTVs. It requires extensive contouring of all

relevant target and OAR structures on a planning computed

tomography (CT) scan, which is a labor- and time-intensive

process subject to inter- and intra-observer variation. The

treatment planning process can take several hours to complete

(1), and the dose distribution is dependent on the skills and

experience of the planner and the institution (2, 3). In order to

increase efficiency and reduce variation in quality, automated

treatment planning technologies have been introduced in recent

years (4–6).

Traditionally, automated approaches relied on modeling spatial

relationships between target volumes and OARs (e.g., overlap

volume histograms (7, 8), distance-to-target histograms) in

combination with machine learning algorithms to identify

correlations between predictive volumetric or spatial features and

dosimetry. Important limitations of such knowledge-based

planning approaches are the limited predictability in cases where

the clinical situation is not adequately represented by the library of

patient plans.

More recently, deep learning (DL) has been investigated for

automated treatment planning by using convolutional neural

networks (CNNs) that incorporate contextual information with

precise localization to solve a wide variety of imaging-related

problems (e.g., U-Net (9), ResNet (10)). Given the non-linearity

of source inputs (e.g., CT, PTV, and OAR contours) and the target

output (dose distribution), dose prediction may be regarded as an

image synthesis task (11). While U-Net and its derivatives have

been widely used for dose distribution prediction (12–17),

generative adversarial networks (GANs) are a method to

implicitly learn density functions that estimate the probability

distribution from training data through adversarial learning. A

GAN uses two concurrent generative and discriminative neural

networks to generate realistic predictions (18, 19). The objective of

the generative network is to increase the error rate of the

discriminative network, whereas the discriminator tries to classify

realism. As a result, the GAN learns features of a realistic dose

distribution for given anatomical characteristics and may be more

capable than CNN-based neural networks of predicting dose
02
distributions (20–22). Therefore, for this piece of work, we have

selected a GAN-based approach.

In most previous works (11, 20, 21, 23, 24), dose prediction was

based on an input of CT, PTV contours, and OAR contours. In

contrast, we investigated if clinically acceptable, realistic HNC dose

distributions could be predicted from the patient CT and primary

tumor and lymph node PTVs, without explicit prior knowledge of

the relevant OARs, in comparison with CT scan with OAR

contours. This could circumvent the laborious and error-prone

process of OAR contouring and be of relevance to routine clinical

care, and in other scenarios like the rapid selection of patients most

suitable for proton therapy (25). In addition, we investigated the

added value of the CT itself, and if the neural network (NN) could

recognize the tumor and OARs in the CT without providing any

contours. In total, five different models trained with different

combinations of input data were evaluated.
Materials and methods

Data acquisition

The dataset consisted of 350 patients who had previously been

treated for locally advanced HNC between 2013 and 2018, and 35

patients treated in 2019 that were used as an independent test set.

Each patient had a treatment plan consisting of two full volumetric

modulated arc therapy (VMAT) arcs, delivering 35 fractions of 2 Gy

to PTV-boost (PTV-B) and 1.55 Gy to PTV-elective (PTV-E). All

tumor sites were included. During the selected time period, plans

were made with different versions of the Eclipse treatment planning

system; however, they all consistently aimed to achieve a low mean

dose to the individual salivary glands and swallowing structures.

The volume receiving 95% of the prescribed dose (V95) was ≥99%

for PTV-B and ≥98% for PTV-E. From 2013 to 2014, plans were

made by manually interactively adapting OAR optimization

objectives during optimization. From 2014 to 2017, plans were

made using in-house-developed automated interactive optimization

(AIO) software, which automatically performed what planners

previously had to do manually (6, 26). From 2017, plans were

made using RapidPlan (Varian, a Siemens Healthineers Company,

Palo Alto, CA, USA), which used a model based on previous AIO-

generated plans. It was previously shown that treatment plans

improved over time (27). Oral cavity mean dose reduction was

introduced around 2016 and intensified in 2019.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1251132
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gu et al. 10.3389/fonc.2023.1251132
Each patient in the dataset contains a three-dimensional (3D)

planning CT scan, structure set, and dose distribution. Patients had

to have at least one OAR structure available out of all the individual

salivary glands and swallowing structures (Table 1). CT acquisition

resolutions were [0.80,1.27] mm in-plane and 2.5 mm longitudinal,

and acquisition dimensions were 512 × 512 × [97,228] voxels. The

dose distribution resolutions were 2.5 mm isotropic. OAR contours

of salivary glands and swallowing structures were grouped and

unified into composite salivary glands (CSG) and composite

swallowing structures (CSS), respectively (Table 1). In total, six

structures were used for model training, validation, and testing:

CSG, CSS, spinal canal (SC), PTV-E, PTV-B, and body contour.
Preprocessing

CT Hounsfield units were window-leveled from −200 to +300,

similar to what would be used for head and neck automated
Frontiers in Oncology 03
segmentation tasks (28). Dose was capped at a maximum of 79 Gy.

CTs and doses were normalized to [0,1], and structures were binarized

as masks. To accommodate hardware limitations, the dataset was

cropped from the original images. Based on the smallest number of

slices for all patients, the most central 96 slices from each CT scan were

selected and the data was cropped in left–right to retain the middle 256

out of 512 voxels (entire head and neck remained included, shoulders

were removed). Then, in the vertical direction, 256 voxels starting from

the tip of the nose were retained. Finally, this volume was resized to a

128 × 128 × 64 grid using trilinear and nearest-neighbor interpolation

for the real-valued volumes (CT and dose) and binary valued structure

masks, respectively, where the final voxel size was [1.60, 2.55] × [1.60,

2.55] × 3.75 mm. Cropping occasionally resulted in the loss of some

caudal PTV and OAR containing slices resulting in the loss of 5% of

OAR voxels, on average.
Model architecture

Figure 1 shows the architectures of the GAN. The generator is an

adapted deep 3D U-Net. It can take any combinations of CT, PTVs

(PTV-B and PTV-E), OAR structures, and the body contour as input

and outputs a predicted dose distribution. The discriminator takes

the same input channels as the generator together with the clinical

dose distribution as training target and outputs the probability that

the predicted dose cannot be distinguished from a clinical dose

distribution. The discriminator is discarded after training; only the

generator is used for dose prediction.
Model training

The 350 patients in the dataset were randomly split into sets of

320 and 30 for training and validation, respectively. Model training

was done on four NVIDIA GeForce GTX 2080 Ti graphics

processor units (GPUs), each having 11 GB of GPU RAM, using

PyTorch 1.11 and Python 3.9.16. The generator was trained using

the ADAM optimizer (29) with b1 = 0.5 and b2 = 0.999, and the

discriminator was trained with stochastic gradient descent (SGD).

The initial learning rates were 0.001 for both networks, and a

learning rate scheduler to decay by 10% every 20 epochs was applied

to the generator. Batch size = 4 was the maximum number that

could fit in the combined GPU memory. The conditional GAN’s

objective is given by a weighted combination of the adversarial and

reconstruction losses:

LcGAN (G,D) = Ladv(G,D) + l   Lrec(G),

where the adversarial loss Ladv   is given by the binary cross-

entropy loss (19) and the reconstruction loss Lrec is a weighted

combination of the 1 × L1 loss (mean absolute error) and 0.5 × L2

loss (mean squared error) functions, which we named elastic loss,

motivated by the elastic net regularization. The weighting

hyperparameter l was chosen as 10, which gave the best

empirical results among the values of 1, 10, and 100 we

experimented with. For data augmentation, we used random

horizontal flipping to increase the number of training samples.
TABLE 1 Overview of the relevant structures and their percentage
prevalence in the RT data set.

Structure Occurrence

Composite salivary glands*

Parotid gland (L/R) 99%

Submandibular gland (L/R) 83%

Composite swallowing structures*

Lower larynx 76%

Upper larynx 68%

Cricopharynx 70%

Esophagus 61%

Trachea 60%

Thyroid 62%

Upper esophageal sphincter 73%

Inferior pharyngeal constrictor muscle 76%

Medial pharyngeal constrictor muscle 69%

Superior pharyngeal constrictor muscle 73%

Nervous structures

Spinal canal* 98%

Brain stem 44%

Planning target volumes

PTV-E* 100%

PTV-B* 100%

Individual structures

Oral cavity 90%

Body* 100%
* used as single-channel 3D images for model training, validation, and testing. Composite
salivary glands (CSG) and composite swallowing structures (CSS) were unified structures of
the respective subsequent individual structures.
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After model development and hyperparameter tuning based on the

evaluation of the validation set, five experiments were conducted. All

experiments used the same NN architecture with the same

hyperparameters, trained and tested on the same patients; the only

difference was the patient information data used as input. The

experiments were as follows: 1. Model C used only CT as input data, 2.

Model CP used CT and PTVs. 3. Model CPOB used CT, PTVs, OARs, and

body contour. 4. Model POB used PTVs, OARS, and body contour (but no

CT). 5. Model PB used PTVs and body contour as input data (and no CT).

All models were trained for 400 epochs with the same random seed. The

composite OAR contours were used for model training to provide extra

geometric information and were not used in the loss function.

Models were designed to answer the following questions: (C)

How much can an NN learn when only the CT scan is provided as

input? (CP-CPOB) Does the presence of the OAR contours in the

training result in a statistically significant influence on dose

prediction? (CPOB-POB) Does CT data offer significant

improvements for the models? (PB) In case CT data makes a

better model, does it learn from CT pixels where the OARs are,

or does it estimate an approximate position of OARs based on all

the average position of all training data?
Evaluation

Predicted dose distributions for the 35 test patients by the five

models trained with different input data were compared with doses
Frontiers in Oncology 04
from the clinical plans. The mean OAR dose and the mean absolute

dose difference (MAE) in a volume of interest (VOI) were compared,

2D dose distributions were selected, and dose volume histograms

(DVH) are presented. The VOI consisted of the part of the body for

slices containing PTV-E, and where the PTV-E did not reach the

cranial or caudal ends of the crop, two additional slices were added

(7.5 mm). The VOI did not contain any background air and is the

volume, which contains most of the dose. We also performed a

significance test of the MAE in the VOI, to evaluate the statistical

influence of the different types of input data. Wilcoxon significance test

was used for each model tested against the other four models, a = 0.05,

with a Bonferroni correction per set of tests to adjust the p-values.

Figure 2 shows the flowchart of the experiment setup. The

different combinations of the input data were used to train different

models. The five models were then tested on the same test set to

make dose predictions. Finally, the five sets of prediction were

evaluated based on the metrics.
Results

Dose volume histograms

Figure 3 shows the dose volume histograms (DVH) for all five

models for four patients, selected from the following: the best case,

q1 (lower quartile), q2 (median), and q3 (upper quartile) of the

average MAE for CPOB in the VOI.
FIGURE 1

Overview of the neural network architecture for a forward pass. Blocks inside the generator and discriminator indicate the image dimensions (block
sizes not in scale), numbers below the blocks indicate channel numbers. The neural network can take any combination of the patient input data, CT
(one channel), OARs (three channels), PTV-E and PTV-B (two channels), and body contour (one channel), where N is the number of channels of the
combined input data. LeakyReLU negative slope = 0.2, dropout rate = 0.5. CT, computed tomography; OAR, organ at risk; PTV, planning target
volume; conv, convolutional layer; trans conv, transposed convolution; batch norm, batch normalization; ReLU, rectified linear activation unit.
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FIGURE 2

The flowchart of the experiments. The five combinations of the input data of CT, PTVs, OARs, and body contour were used to train the five models.
Thereafter, the models were tested on the same test set to make the dose predictions. Finally, the predicted doses were evaluated by the metrics of
dose volume histogram (DVH), mean dose to OARs, mean absolute error (MAE) in the volume of interest (VOI), and qualitative visual inspection on
the predicted doses.
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Mean dose to OARs

Figure 4 shows the mean dose per structure compared with the

clinical mean doses, where none of the OARs above were trained

and tested individually. The R2 scores indicate that the predictions

were highly correlated with the clinical dose distributions; the mean

squared errors illustrate the spread of the predictions. Models

CPOB and POB had the highest correlation and the lowest spread

for all OARs. CPOB achieved for most patients a predicted mean

dose within ±3 Gy from the clinical dose, 82.6%, 88.6%, and 82.9%

for all OARs, PG, and SMG, respectively, whereas POB had for most

patients a deviation within ±6 Gy: 95.1%, 95.7%, and 94.3% for all

OARs, PG, and SMG, respectively.
Mean dose error

Figure 5A shows the mean dose difference between the clinical

and predicted doses for different structures. The greatest differences
Frontiers in Oncology 06
were produced by model C where it was clear that if the model could

not predict the correct tumor extent, it was impossible to predict the

correct dose distribution resulting in PTV mean doses that were too

low and incorrect OAR mean doses. The other four models showed

a mean dose difference close to 0 and less spread. Models CP and

PB, the models without OARs, led to doses in the OARs higher than

in clinical plans, whereas models CPOB and POB, the models with

OARs, more accurately predicted OAR doses. Figure 5B shows the

MAE of the dose in all the voxels in the VOI, which excludes voxels

outside the body and voxels in slices away from PTV-E, whereas the

mean absolute dose errors over the entire dose distribution volume,

i.e., 128 × 128 × 64 voxels, of the five models were 2.45, 1.35, 1.32,

1.31, and 1.35 Gy, respectively. Excluding model C, the remaining

four models had comparable results. Model CPOB trained with the

most comprehensive input data had both the lowest mean and

median and performed significantly better than model PB (p =

0.007, Supplementary Material Table 2). Although model C has in

general a very high MAE, there are a few patients with much lower

MAE where this model manages to predict reasonable dose
FIGURE 3

Dose volume histogram (DVH) of four selected patients for the models C, CP, CPOB, POB, and PB. The patients were selected to show a range of
performances of the CPOB mean absolute error (best/Q1/Q2/Q3) in the volume of interest (VOI: slices containing PTV-E with a 7.5-mm margin in
the body contour). The clinical DVHs are in black color, and the predicted DVHs of the five models are in blue, orange, green, red, and purple,
respectively, for composite salivary glands (CSG, solid), composite swallowing structures (CSS, dashed), oral cavity (dash-dotted), and PTV-B (dotted).
DVHs for individual OARs and PTV-E for Q1 and Q2 can be found in Figures 2 and 3, Supplementary Material.
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distributions. For the models trained with PTVs, the predicted

PTV-E and PTV-B had minimal mean dose differences and the

coverage was comparable with the clinical plans (Figure 3).

Figure 6A shows examples of the predicted in comparison with

the clinical dose distributions for three patients. There are notable

differences between CT only and other results, whereas the
Frontiers in Oncology 07
differences among the other four models are small. For most

patients, model C (CT only) was able to find the location of the

tumor but was often inaccurate in predicting the extension of the

PTVs. Figures 6B, C demonstrate examples of predicted dose

distributions by model C with low and high MAEs in the

VOI, respectively.
FIGURE 4

Predicted versus clinical mean dose to organs at risk (OARs). From left upper to right lower: parotid gland (PG) left and right combined,
submandibular gland (SMG) left and right combined, upper larynx (UL), lower larynx (LL), oral cavity (OC), inferior pharyngeal constrictor muscle
(PCM-I), medial pharyngeal constrictor muscle (PCM-M), superior pharyngeal constrictor muscle (PCM-S), and the entire body contour. Each data
point represents the dose for one OAR for each of the 35 patients in the test set. N indicates the number of clinical contoured OARs. The vertical
distance to the diagonal line shows the error between the predicted and clinical mean doses. For each model, an R2 correlation (left) and a residual
measured in mean squared error (right) are in the legend. The colored lines are the regression lines for mean dose of each model.
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Discussion

Deep learning for radiotherapy dose prediction has been

reported for different tumor sites, but to the best of our

knowledge, the influence of multiple different levels of input

information on the ability to predict dose has not been

(adequately) investigated. We demonstrated that all four models

that included PTV contours predicted dose distributions that had a

high level of agreement with clinical treatment plans. Although

model CPOB, trained with the most comprehensive input data,

produced the best dose predictions, even model CP, trained with

patient CTs and primary tumor and lymph node PTVs and without

explicit prior knowledge of the relevant OARs, achieved results that

were not significantly different than those from the best model. The

results and significance tests showed that for head and neck cancer,

use of CT scans in training and testing adds little to dose prediction

when OARs or PTVs are also used in model training. Somewhat

surprisingly, using only the PTVs and the body contour (model PB)

provided sufficient information for dose prediction, and presumably

the shapes of the dose distributions were learnt and CT scans had

limited added value for model training.

The mean dose to OARs and the shape of the DVHs

demonstrated that the majority of predictions of all models

except model C were consistently in line with the clinical doses

and the PTVs. From the composite OAR structures, the models

CPOB and POB had explicitly learned the OAR locations and sizes

and more accurately predicted doses both in the individual OARs

and in the VOI than the other three models. Although on average
Frontiers in Oncology 08
the predicted OAR doses were comparable with the clinical doses,

there were individual patients with up to 17 Gy higher predicted

dose than clinical, e.g., for the SMG that clinically received 41.4 Gy

(Figure 4). All models predicted too high doses. This SMG was

partly inside the PTV-B; the dose gradient was not steep enough,

unlike the patients in Figure 6A. The overprediction could be

caused by the downsampling resulting in larger voxel sizes, or by

the fact that training samples from 2013 to 2015 had a less

aggressive SMG sparing than in later years. Model POB and PB

predicted comparable results as other models trained with the CT.

As expected, the OARs provided significant information for OAR

sparing (p = .015, Supplementary Material Table 2); however, for

the model PB, with no knowledge of CT nor OARs, it had

comparable results for both the DVH and mean dose to OARs.

While most other research using deep learning for dose

prediction has used CT scans together with PTVs and OARs (14,

20), similar to our model CPOB, we observed from models CP and

CPOB that when the CT was present in training and testing, the

OAR contours did not result a statistically significant influence (p =

.175, Supplementary Material Table 2) in the VOI. However, when

the CT was absent, OAR structures made a statistically significant

difference (p = .015, Supplementary Material Table 2) of the dose

prediction for model POB over PB. There are limited published data

demonstrating that NNs are capable of dose prediction without the

need of the CT scans (17, 30). The results suggest that sufficient

information had already been distilled from the CT in the OAR

contours to predict dose distributions close to the clinically accepted

ones. When CT scans are excluded from the training, the data
FIGURE 5

(A) (Left): Mean absolute dose error (MAE) over all voxels in the volume of interest for all five models on the test set. Mean values of each boxplot
were 7.3, 3.5, 3.4, 3.4, and 3.5 Gy. Each dot represents a patient in the test set. The vertical axis shows the voxel-wise MAE between the clinical and
predicted doses. In the boxplots, the lower and upper whiskers indicate the 1.5× the interquartile range<Q1 and >Q3, respectively, the data points
outside the whiskers are considered outliers. (B) (Right): Mean dose differences (clinical – predicted) of individual structures. CPOB had the lowest
mean dose differences for the OARs: 2.8, 2.8, 4.6, 2.7, 4.1, 3.1, 3.1, and 2.7 Gy. G, parotid gland (left and right combined); SMG, submandibular gland
(left and right combined); LL, lower larynx; UL, upper larynx; OC, oral cavity: PCM-I, inferior pharyngeal constrictor muscle; medial pharyngeal
constrictor muscle; PCM-S, superior pharyngeal constrictor muscle.
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distribution of PTV and OAR contours becomes binary resulting in

a lower complexity and stronger gradients to update the parameters

in the NNs. When the OARs are not part of the input, the model can

learn their location and size from the CT scan and the PTV but

seems to do this only to a limited extent (CP results were worse than

CPOB). The results of the PB model indicated that the model has

implicitly learned the typical location of OAR and the locations

where the dose needs a steeper gradient, only from the PTV and

body contours. The reason that this model performed slightly worse

than model POB is probably that the exact location and size of the

OAR cannot be estimated for individual patients.

When CT was the only input for our architecture, the majority

of the dose predictions were not adequate. Large deviations in PTV-

B were observed in the DVH, and predicted dose distributions of all

35 test patients assumed a bilateral PTV-E, which resulted in a high

mean dose error when the PTV-E was unilateral, probably because

most training cases had a bilateral PTV-E. Although the model

seemed to recognize the location of the primary tumor for 25 out of

35 test patients based on visual inspection, it had difficulties in
Frontiers in Oncology 09
detecting from only the CT scan the extent of the tumor and which

lymph node levels needed to be included for elective irradiation. In a

minority of cases (8 out of 35 test patients, with lowest MAEs,

Figure 5A), the model was able to better locate the tumor position

and extent and the predicted-clinical DVH were in closer

agreement. While others have investigated dose prediction using

CT scans only and achieved good results (21, 24), this was for

rectum and prostate cancer. Both have rather less complex PTVs

than HNC and fewer OARs. For HNC, the extent of lymph node

irradiation depends on the size and location of primary tumor and

the presence of positive lymph nodes are more difficult to determine

from only a CT scan. The performance of a model without any

contours could possibly be improved with the addition of magnetic

resonance imaging (MRI) data, which in general better shows the

extent of the tumor. The enhanced tissue-tumor contrast of MRI

could also provide extra information, and different types of MRI

scans can highlight different types of tissues that could help the

models to detect gross tumor volume (GTV). Including other

modalities such as positron emission tomography (PET) can
A

B C

FIGURE 6

(A) (Up): Dose prediction comparison for a single slice for 3 patients with mean absolute dose errors in the volume of interest for model CPOB
around the mean (3.62, 3.32, and 3.29 Gy). From left to right, CT with PTV-elective (green) and PTV-boost (red) contours, dose distributions of
clinical, models C, CP, CPOB, POB, and PB. The CT scans above are displayed in the original resolution, which is better than the input to the models.
(B) (Down-Left): Dose distributions predicted by model C of two patients with a small MAE in VOI (4.7 and 4.8 Gy). (C) (Down-right): Dose
distributions predicted by model C of two patients with a large MAE in VOI (11.2 and 12.4 Gy). CT, computed tomography; OAR, organ at risk; PTV,
planning target volume; MAE, mean absolute error; VOI, volume of interest.
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further improve GTV segmentation (31). In practice, incorporating

MRI may pose challenges, including that (1) MRIs may not be

available for all patients; (2) many centers do not acquire MRIs in

the same position as the planning CTs, which makes registration

more difficult; (3) clinical MRIs may not image the same volume as

the CTs and may not image the entire PTV; and (4) there are many

possible MRI sequences, delivering all differences in images, and

different sequences may have been used for different patients.

We used composite OAR structures to better generalize the

DVH analysis for individual patients. Plans often need to make a

trade-off between OARs to spare, e.g., parotid or submandibular

glands, sparing at the cost of the oral cavity and pharyngeal

constructor muscles. Without this knowledge for individual

patients, the use of composite structures may represent the overall

quality of the dose prediction better than if individual OARs had

been used, and it requires fewer input channels for training. Over

time, OAR sparing has evolved in complexity and now includes

many more OARs as the focus changes from sparing only the

parotid glands to also minimizing the risk of damage to the

submandibular glands, to reduce xerostomia and minimize the

dose to the swallowing apparatus in order to reduce dysphagia.

Even without using individual OARs for training and testing, the

predicted mean doses evaluated on individual OARs were close to

those of the clinical plans (Figure 5). For the best model, only 17.4%

of all OARs deviated by more than 3 Gy from the clinical plans. This

is better than the dose prediction using RapidPlan, a knowledge-

based planning system, where 22.5% of head and neck OAR

deviated by more than 3 Gy (27). The variations in our deep

learning dose prediction were also substantially lower than the

variation in planning between radiation therapy centers (3).

Models C, CP, and PB had to learn the position of OARs

implicitly from the clinical dose distributions. Using two individual

NNs for OAR segmentation and dose prediction could achieve better

performance, because the weights of the NNs can be independent for

the corresponding tasks. Since our study is meant to investigate the

influence of input data for dose prediction, we have not yet

experimented if our methods would benefit segmentation tasks.

The models were trained with elastic loss function, a combination

of the L1 and the L2 loss, which penalizes highly predicted doses on

OARs in L2 loss’s quadratic term to encourage OAR sparing (for

details, see Supplementary Material).

This study has its limitations. First, dose distribution has been

predicted, but we have not shown how to convert this to a

deliverable treatment plan. Second, the dataset was cropped and

had larger voxel sizes than the original. This could be particularly a

limitation for smaller OARs. However, we have not tested the

influence of voxel size. Third, we used the central 96 slices in this

study, with the length of 24 cm, such that on average 5% of OARs

were excluded from the dataset, although the greatest dose

differences were not observed at the caudal end. Furthermore, the

clinical plans in the training and validation sets were drawn from a

time span of 7 years, and the ability of OAR sparing may have

changed overtime (32). As it was not known how many cases were
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needed for training, we opted for a sufficiently large training set,

which necessitated the long period. Finally, none of the clinical

plans used for training and testing were curated to ensure an

optimal OAR sparing. Having a curated, consistent training and

test set could possibly improve the models (and facilitate a smaller

dataset). However, we have assumed that by having a sufficiently

large training set, we could mitigate this.

Our model CP, trained only with CT scans and PTVs, was not

statistically different from model CPOB, which was trained with

OAR contours. This represents the minimum data statistically

required to adequately predict the clinical dose distribution. This

paper takes one step forward in (1) understanding how AI dose

prediction works (i.e., what input data is important) and (2)

achieving fully autonomous AI generated head and neck

treatment plans, which could help to overcome limitations in

time, manpower, experience, and financing. All the clinician need

to do is to generate GTV/CTV boost (33), and CTV elective and

OARs can be automatically generated (34, 35).
Conclusions

In this study, we used deep generative adversarial networks to

predict dose distributions for head and neck radiotherapy treatment

planning and achieved results that were highly similar to the clinical

plans. We demonstrated the influence of the CT scan and PTV and

OAR contours and showed that CT scans give limited additional

benefit when OARs were used; PTVs provide sufficient information

for OAR sparing; and models trained together with OARs have the

lowest mean absolute dose differences. Our model CP, trained only

with CT scans and PTVs, was not statistically different from model

CPOB, which was trained with OAR contours.
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