Chimica et Natura Acta

p-ISSN: 2355-0864 e-ISSN: 2541-2574

Homepage: http://jurnal.unpad.ac.id/jcena

Steroid dari Kulit Batang Aglaia glabrata dan Aktivitas Sitotoksinya terhadap Sel Kanker Leukemia P-388

Risyandi Anwar¹*, Desi Harneti², Vidia Afina Nuraini⁴, Faizah Maira², Nurlelasari Nurlelasari², Rani Maharani^{2,3}, Unang Supratman^{2,3*}, dan Khalijah Awang⁵

¹Herbal Medicine Research, Department of Pediatric Dentistry, Faculty of Dental Medicine, University of Muhammadiyah Semarang, Jl. Kedungmundu No.18, Kedungmundu, Kec. Tembalang, Kota Semarang, Jawa Tengah 50273, Indonesia

²Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km 21, Jatinangor, 45363, Jawa Barat, Indonesia

³Central Laboratory, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km 21, Jatinangor, 45363, Jawa Barat, Indonesia

⁴Department of Chemical Education, Indonesia Education University, Jalan Setiabudi 229, Bandung 40154, Indonesia.

⁵Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 59100, Malaysia *Penulis korespondensi: unang.supratman@unpad.ac.id

DOI: https://doi.org/10.24198/cna.v11.n2.48980

Abstrak: Steroid saponin baru, β -sitosterol-3-*O*- β -D-galaktopiranosil-(1 \rightarrow 4)- β -D-glukopiranosida (1), bersama dengan empat steroid yang diketahui (2-5) diisolasi dari kulit batang dari *Aglaia glabrata*. Struktur kimia senyawa baru dijelaskan berdasarkan data-data spektroskopi. Semua senyawa diuji aktivitas sitotoksiknya terhadap sel kanker leukemia murine P-388. Diantara senyawa yang diisolasi tersebut, stigmasterol (4) menunjukkan aktivitas sitotoksik terkuat dengan nilai IC₅₀ sebesar 12.2 µg/mL.

Kata kunci: *Aglaia glabrata*, β -sitosterol-3-*O*- β -D-galaktopiranosil-(1 \rightarrow 4)- β -D-glukopiranosida, aktivitas sitotoksik, Meliaceae

Abstract: The new steroidal saponin, β -sitosterol-3-O- β -D-galactopyranosyl-(1 - A)- β -D-glucopyranoside (1), along with four known steroids (2-5) were isolated from the stem bark of Aglaia glabrata. The chemical structures of the new compound was elucidated on the basis of spectroscopic data. All of the compounds were tested for their cytotoxic effects against P-388 murine leukemia cancer cells. Among those isolated compounds, stigmasterol (4) showed strongest cytotoxic activity with IC₅₀ value of 12.2 µg/mL.

Keywords: Aglaia glabrata, β -sitosterol-3-O- β -D-galactopyranosyl- $(1 \rightarrow 4)$ - β -D-glucopyranoside, cytotoxic activity, saponin, Meliaceae

PENDAHULUAN

Genus Aglaia, terdiri dari lebih dari 100 spesies yang sebagian besar tersebar di hutan hujan tropis di wilayah Indo-Malaysia (Ebada et al. 2011; Muellner et al. 2005). Investigasi fitokimia tanaman dalam genus ini sebelumnya telah mengungkapkan adanya berbagai senyawa dengan aktivitas biologis yang menarik, termasuk rokaglamida (Drever et al. 2001; Salim et al. 2007), bisamida (Saifah et al. 1999; Inada et al. 2000; Duong et al. 2007; Julinton et al. 2015), triterpenoid tipe damaran (Roux et al. 1998; Zhang et al. 2010; Harneti et al. 2012), triterpenoid tipe sikloartan (Khalit et al. 1999; Weber et al. 2000; Awang et al. 2012), triterpenoid tipe glabretal (Su et al. 2006), steroid (Yang et al. 2008; Harneti et al. 2014) dan flavonoid (Nugroho et al. 1999). Pada penelitian sebelumnya, telah dijelaskan beberapa

senyawa baru termasuk triterpenoid tipe damaran (Harneti et al. 2012), steroid (Harneti et al. 2014) dan bisamida (Julinton et al. 2015) dari tanaman Aglaia di Indonesia. Dalam pencarian lebih lanjut senyawa sitotoksik baru dari tanaman Aglaia di Indonesia, ekstrak metanol dari kulit batang Aglaia glabrata menunjukkan sitotoksik yang signifikan terhadap sel kanker murine leukimia P-388 dengan nilai IC₅₀ 35 µg/mL. A. glabrata merupakan tumbuhan tingkat tinggi dan tersebar terutama di bagian selatan Pulau Sulawesi di Indonesia (Inada et al. 1997 & Mabberley et al. 1995; Heyne. 1987). Kulit batangnya telah digunakan sebagai obat rakyat Indonesia untuk menurunkan demam dan mengobati luka memar (Mabberley et al. 1995; Syamsuhidayat et al. 1991; Heyne. 1987). Meskipun metabolit sekunder dari spesies Aglaia lain telah diteliti

sebelumnya, namun komposisi kimia dari *A. glabrata* belum banyak dilaporkan. Isolasi, identifikasi struktur, dan evaluasi sitotoksik dari senyawa yang diisolasi ini dijelaskan di sini.

BAHAN DAN METODE

Sampel yang digunakan adalah kulit batang *Aglaia* glabrata dikumpulkan dari Kebun Raya Bogor, Bogor, Provinsi Jawa Barat, Indonesia pada Agustus 2013. Tanaman tersebut diidentifikasi oleh Herbarium Bogoriense, Bogor, Indonesia dengan *specimen* voucher (No. Bo-1295316).

Bahan

Pelarut *n*-heksana, etil asetat, metanol, aseton, kloroform, air (aquades), silika gel G_{60} (70-230 mesh dan 230-400 mesh), ODS RP-18 F₂₅₄, silika del GF₂₅₄ untuk pemisahan senyawa larutan H₂SO₄ 10% sebagai pereaksi penampak noda, seperangkat alat uji sel P-388 (sel P-388, DMSO, dan PBS (*Phophate Buffer Saline*).

Alat

Titik leleh diukur pada peralatan titik leleh elektrotermal dan tidak dikoreksi. Rotasi optik direkam pada polarimeter otomatis ATAGO AP-300. Spektra IR direkam pada spektrum Perkin-Elmer-100 FT-IR di KBr. Spektra massa diperoleh dengan spektrometer massa Water Qtof HR-MS XEVotm. Spektra ¹H- dan ¹³C-NMR diperoleh dengan spektrometer JEOL JNM A-500 menggunakan TMS sebagai standar internal. Pemisahan kromatografi dilakukan pada silika gel 60 (Merck). Pelat kaca PTLC dilapisi dengan silika gel GF₂₅₄ (Merck, 0,25 mm). Pelat KLT dilapisi dengan silika gel GF₂₅₄ (Merck, 0,25 mm) dan deteksi dilakukan dengan menyemprotkan 10% H₂SO₄ dalam etanol, diikuti dengan pemanasan.

Ekstraksi dan Isolasi

Serbuk kulit batang kering (2,5 kg) A. glabrata diekstraksi berturut-turut dengan n-heksana, EtOAc, dan MeOH. Penguapan menghasilkan ekstrak kasar nheksana (39,7 g), EtOAc (27,5 g), dan MeOH (85 g). Ekstrak *n*-heksana. etil asetat dan metanol menunjukkan aktivitas sitotoksik terhadap sel leukemia murine P-388 dengan nilai IC₅₀ masing-masing 40,5, 35,4 dan 45,5 µg/mL. Sebagian dari ekstrak EtOAc (25 g) dipisahkan dengan kromatografi cair vakum menggunakan elusi gradien n-heksana-EtOAc-MeOH meningkatkan dengan polaritas (10%)untuk menghasilkan 21 fraksi (A01–A21). Fraksi A15 (4,3 g) dilakukan kromatografi kolom silika gel menggunakan campuran CHCl₃-aseton (10:0 - 1:1) sebagai pelarut elusi untuk menghasilkan 12 fraksi (A01-A012). Fraksi A04 (160 mg) dipisahkan lebih lanjut dengan kromatografi kolom kilat pada silika gel, dielusi dengan CHCl3:EtOAc (1:1) untuk memberikan senyawa 1 (21,6 mg). Fraksi A06 (2,20 g) dilakukan kromatografi kolom silika gel menggunakan campuran n-heksana-aseton (10:0-7:3) sebagai pelarut elusi

untuk menghasilkan 10 fraksi (C01-C10). Fraksi C04mg) digabungkan dan C06 (245 dilakukan kromatografi kolom gel silika menggunakan campuran n-heksana-EtOAc (10:0 - 1:1) sebagai pelarut elusi untuk menghasilkan 7 fraksi (D01-D07). Fraksi D04 (84 mg) merupakan KLT preparatif pada gel silika GF254, dielusi dengan n-heksana: EtOAc (3:2) dan nheksana: aseton (7:3) menghasilkan senyawa 2 (10,8 mg) dan senyawa 3 (12,5 mg). Fraksi A07-A08 (2,6 g) digabungkan dan dikromatografi pada kolom gel silika menggunakan campuran *n*-heksana-aseton (10:0 - 3:2)sebagai pelarut elusi untuk menghasilkan 15 fraksi (A6.1-A6.15). Fraksi A6.5 (45 mg) dikristalisasi dengan metanol menghasilkan senyawa 4 (18 mg). Fraksi A08-A10 (2,4 g) digabungkan dan difraksinasi dengan kromatografi kolom pada gel silika 60 menggunakan campuran n-heksana-EtOAC (10:0 -1:1) untuk menghasilkan 15 fraksi (A08-1-A08-15). Fraksi A.08-6 (250 mg) dikromatografi pada kolom silika gel menggunakan campuran CHCl3 - MeOH (20:1 - 1:2) menghasilkan senyawa 5 (20,5 mg).

Pengujian aktivitas sitotoksik

Sel P-388 ditumbuhkan ke dalam 96-well plate dengan kepadatan sel awal kira-kira 3 x 10⁴ sel cm⁻³. Setelah 24 jam inkubasi untuk perlekatan dan sel, berbagai konsentrasi sampel pertumbuhan ditambahkan. Senyawa yang ditambahkan pertama kali dilarutkan dalam DMSO pada konsentrasi yang dibutuhkan. Enam konsentrasi berikutnya yang diinginkan disiapkan menggunakan PBS (buffer fosfat, pH = 7,30 - 7,65). Sumur kontrol hanya menerima DMSO. Pengujian dihentikan setelah masa inkubasi 48 jam dengan menambahkan reagen MTT [3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; juga disebut sebagai thiazol blue] dan inkubasi dilanjutkan selama 4 jam lagi, di mana larutan MTT- distop yang mengandung SDS (sodium dodecyl sulfate) ditambahkan dan dilakukan inkubasi 24 jam lagi. Kepadatan optik dibaca dengan menggunakan microplate reader pada 550 nm. Nilai IC₅₀ diambil dari grafik persentase sel hidup yang diplot dibandingkan dengan kontrol (%), yang hanya menerima PBS dan DMSO, versus konsentrasi senyawa yang diuji (μ g/mL). Nilai IC₅₀ adalah konsentrasi yang dibutuhkan untuk 50% penghambatan pertumbuhan. Setiap pengujian dan analisis dijalankan dalam rangkap tiga dan dirata-rata.

HASIL DAN PEMBAHASAN

Serbuk kulit batang kering *A. glabrata* diekstraksi berturut-turut dengan *n*-heksana, etil asetat, dan metanol pada suhu kamar. Ekstrak etil asetat difraksinasi dengan kromatografi vakum-cair (KCV)) pada silika gel G_{60} menggunakan elusi gradien. Fraksi KCV kemudian dipisahkan dengan kromatografi kolom fase normal untuk menghasilkan senyawa **1-5**.

Senyawa 1 diperoleh berupa serbuk amorf berwarna putih dan tidak larut baik dalam metanol maupun aseton. Rumus molekulnya ditentukan sebagai C₄₁H₇₀O₁₁ menurut spektrum HR-TOFMS (ditemukan $\ensuremath{\textit{m/z}}\xspace$ 738.9171 $[M]^+$ (dihitung untuk $C_{41}H_{70}O_{11}\ensuremath{\textit{m/z}}\xspace$ 738.9179) dengan tujuh derajat ketidakjenuhan. Spektrum IR menunjukkan adanya gugus hidroksil (3394 cm⁻¹) dan ikatan rangkap terisolasi (1631 cm⁻¹). Spektrum ¹H-NMR (Tabel 1), menampilkan sinyal untuk dua karakteristik singlet dari gugus metil tersier (CH₃-18 dan CH₃-19) yang beresonansi pada $\delta_{\rm H}$ 0,65 dan 0.95 ppm, tiga gugus metil sekunder ($\delta_{\rm H}$ 0.90, 0.80, dan 0.78, masing-masing untuk CH₃-21, CH₃-26, CH₃-27), dan satu metil primer (CH₃-29) beresonansi pada $\delta_{\rm H}$ 0,83 dan sejumlah tumpang tindih proton untuk metin alifatik dan metilena. Selain itu, dua proton anomerik diamati di daerah bidang yang relatif turun pada $\delta_{\rm H}$ 4,21 (1H, d, J = 7,8 Hz, H-1') dan 4,87 (1H, d, J = 7.8 Hz, H-1"). Fungsionalitas tambahan terdiri dari metin teroksigenasi dan metilena beresonansi pada δ_H 3.0-4.9 dan proton olefinik pada $\delta_{\rm H}$ 5.32 (1H, br s, H-6).

Analisis terperinci dari spektra ¹³C dan DEPT 135 NMR mengungkapkan 41 resonansi karbon yang konsisten dengan rumus molekul yang ditentukan, terdiri dari tujuh metin sp³, sebelas metin teroksigenasi termasuk dua karbon anomerik ($\delta_{\rm H}$ 100.8, C-1'dan C-1'') yang sesuai untuk dua unit gula, dua metilen teroksigenasi, metin olefin ($\delta_{\rm C}$ 121,2, C-6), enam metil, dan tiga karbon kuartener, yang konsisten dengan analisis data ¹H NMR (Tabel 1). Fungsionalitas ini menyumbang tiga dari tujuh derajat ketidakjenuhan yang membutuhkan senyawa menjadi struktur tetrasiklik. Data tersebut menunjukkan bahwa senyawa 1 merupakan steroid stigmastan yang memiliki dua glukosa dalam bentuk hemi-asetal.

Kehadiran kerangka stigmastan terutama dikonfirmasi oleh korelasi 1H-1H COSY dan HMBC (Gambar 2). Pada spektrum HMBC, korelasi diamati dari sinyal proton H-6 ke C-8 (δ_C 31.5) dan C-10 (δ_C 36.2), sedangkan korelasi antara H-6 dan H-7 diamati pada spektrum ¹H-¹H COSY, menunjukkan ikatan rangkap terletak di C-5/C-6. Interpretasi ini konsisten dengan Δ^5 spirostana (Agrawal *et al.* 1985). Interpretasi lebih lanjut spektrum HMBC senyawa 1, korelasi dari proton metilen H-1 ($\delta_{\rm H}$ 1.78, m dan 1.85, m) dan H-4 ($\delta_{\rm H}$ 2.09, m dan 2.35, dd, J = 2.6, 13,6 Hz) ke karbon teroksigenasi pada δ_C 76,9 diamati. Korelasi ini mengungkapkan bahwa karbon teroksigenasi terletak di C-3. Proton metin yang terlindung secara khusus pada δ_H 3,46 (H-3) dipecah menjadi triplet dengan konstanta kopling kecil 4,5 Hz. Ini menunjukkan bahwa H-3 tidak menunjukkan korelasi periplanar dengan proton tetangganya, sehingga H-3 berada dalam orientasi ekuatorial, sedangkan atom oksigen yang terikat pada C-3 berada dalam orientasi aksial, menunjukkan konfigurasi β (Agrawal *et al.* 1985).

Dalam spektrum HMBC, korelasi diamati dari sinyal proton H-19 ke C-9 dan C-10, memungkinkan lokasi gugus metil tersier ini melekat pada C-10. Gugus metil tersier lainnya ditetapkan berdasarkan korelasi dari H-18 ke C-17, C-14, C-12, dan C-13, dan dari H-17 ke C-18, menunjukkan bahwa gugus metil dari C-18 adalah melekat pada C-13. Meskipun C-18 dan C-19 diklasifikasikan sebagai gugus metil tersier, mereka beresonansi pada pergeseran kimia yang berbeda. Karbon metil sudut C-18 ($\delta_{\rm C}$ 11.7) menunjukkan sinyal pada daerah medan yang relatif tinggi daripada C-19 ($\delta_{\rm C}$ 19.2) karena terdapat interaksi γ -gauche.

Rantai samping struktur tetrasiklik disimpulkan dari spektrum HMQC, ¹H-¹H COSY, dan HMBC. Dalam spektrum HMBC, korelasi muncul dari proton metil pada $\delta_{\rm H}$ 0,90 (H-21) menjadi karbon metilen pada C-22 $(\delta_{\rm C} 33,5)$ dan karbon metin sp³ pada C-20 ($\delta_{\rm C} 35,5$). Selanjutnya, korelasi proton vicinal H-20 dan H-21 diamati dalam spektrum $^{1}\mathrm{H}^{-1}\mathrm{H}$ COSY. mengungkapkan gugus metil sekunder C-21 melekat pada C-20. Pada spektrum HMBC, proton metil tersier dari H-26 (\delta_H 0.80) dan H-27 (\delta_H 0.78) berkorelasi dengan sinyal karbon pada C-24 dan C-25, sedangkan spektrum ¹H-¹H COSY menunjukkan korelasi antara H -25 dan H-26, menunjukkan bahwa kelompok metil C-26 dan C-27 berada dalam posisi geminal melekat pada C-25. Gugus metil lain ditetapkan menurut korelasi yang diamati dari sinyal proton pada $\delta_{\rm C}$ 0,83 (m, CH₃-29) menjadi karbon metin pada C-24 (δ_{C} 45.2) dan karbon metilen pada C-28 (δ_C 22,7), sedangkan proton metilena beresonansi pada $\delta_{\rm C}$ 1,17 dan 1,26 (m, H-28) menunjukkan korelasi dengan karbon metil pada δ_C 11,8 (C-29), serta C-23, C-24, dan C-25, menunjukkan bahwa etil kelompok melekat pada C-24. Korelasi HMBC lebih lanjut antara proton metin pada δ_H 1.07 (H-17) dan karbon pada $\delta_{\rm C}$ 19.0 (C-21) dan 35.5 (C-20) memungkinkan penugasan rantai samping yang melekat pada inti steroid pada C-17. Data tersebut di atas mengungkapkan bahwa aglikon ditentukan sebagai β-sitosterol yang terkait erat dengan data yang dilaporkan (Pateh et al. 2009; Jaju et al. 2009; Wang et al. 2009).

Kehadiran gugus gula ditetapkan berdasarkan resonansi proton anomerik yang relatif terlindung pada $\delta_{\rm H}$ 4.21 (d, J = 7.8, H-1'), menunjukkan korelasi dengan sinyal karbon pada δ_C 100.8 (C-1') di HMQC spektrum. Selanjutnya, proton teroksigenasi lainnya diamati memiliki korelasi dengan sinyal karbon pada $\delta_{\rm C} > 60$ ppm. Pergeseran kimia untuk karbon anomerik ini tergantung pada konfigurasinya (Agrawal et al., 1985). Menurut Qiu et al. (2000), gugus gula memiliki konfigurasi β yang menunjukkan munculnya sinyal karbon anomerik pada $\delta_{\rm C} \geq 99$ ppm, sedangkan konfigurasi α menunjukkan nilai $\delta_{\rm C} \leq 94$ ppm yang lebih kecil. Selain itu, nilai konstanta kopling dapat diterapkan secara umum untuk mengevaluasi konfigurasi anomerik (Agrawal et al., 1985). Nilai konstanta kopling (3J) untuk C-1' adalah 7,8 Hz menunjukkan kopling trans-diaxial, sehingga memungkinkan hubungan β-glikosidik untuk kelompok gula pertama (Tchinda et al. 2002). Lebih lanjut dikonfirmasi dalam spektrum HMBC dengan korelasi antara H-1' dan C-3 aglikon. Korelasi ini, dalam ____

Tabel 1. Data ¹ H dan ¹³ C NMR senyawa 1-5		
Position	¹³ C NMR	¹ H NMR
robhion	$\delta_{\rm c}$ (mult)	$\delta_{\rm H}$ (integral mult J Hz)
1	36.8 (t)	1 78 (1H m)
1	50.0 (1)	1.85(1H m)
2	31.4(t)	1.03 (111, 11) 1 52 (1H m)
2	51. 4 (t)	1.92(1H, H)
3	76 9 (d)	3.46(1H + 4.5)
4	38.3(t)	2.09(1H m)
·	50.5 (t)	2.05 (111, 11) 2 35 (1H dd 2 6 13 6)
5	140.5(s)	-
6	121 2 (d)	5.32(1 H br s)
7	29.3(t)	1 69 (1H m)
	->(1)	1.80 (1H, m)
8	31.5 (d)	1.94 (1H, m)
9	49.6 (d)	0.89(1H, m)
10	36.2(s)	-
11	20.7 (t)	1.38 (1H, m)
	()	1.50 (1H, m)
12	39.2 (t)	1.13 (1H, m)
		2.80 (1H, m)
13	41.9 (s)	-
14	56.2 (d)	1.01 (1H, m)
15	23.9 (t)	1.24 (1H, m)
		1.59 (1H, m)
16	27.8 (t)	1.25 (1H, m)
		1.59 (1H, m)
17	55.4 (d)	1.07 (1H, dd, 1.9, 3.2)
18	11.7 (q)	0.65 (3H, s)
19	19.2 (q)	0.95 (3H, s)
20	35.5 (d)	1.35 (1H, m)
21	19.0 (q)	0.90 (3H, d, 6.5)
22	33.5 (t)	0.99 (1H, m)
		1.50 (1H, m)
23	25.5 (t)	1.14 (1H, m)
		1.77 (1H, m)
24	45.2 (d)	0.91 (1H, d, 6.5)
25	28.7 (d)	1.63 (1H, dd, 6.5, 11.7)
26	19.7 (q)	0.80 (3H, d, 6.5)
27	18.6 (q)	0.78 (3H, d, 6.5)
28	22.7 (t)	1.17(1H, m)
20	11.0 ()	1.26 (1H, m)
29	11.8 (q)	0.83 (3H, d, 6.7)
l'	100.8 (d)	4.21 (1H, d, 7.8)
2'	73.5 (d)	2.89 (1H, dd, 3.9, 7.8)
3'	76.8 (d)	3.06 (1H, m)
4'	76.9 (d)	3.13 (1H, dd, 3.9, 9.1)
5'	70.1 (d)	3.03 (1H, dd, 5.8, 9.1)
6'	61.1 (t)	3.64 (1H, dd, 5.8, 9.7)
		3.40 (1H, m)
1''	100.8 (d)	4.87 (1H, d, 7.8)
2''	73.5 (d)	2.89 (1H, dd, 3.9, 7.8)
3''	76.8 (d)	3.06 (1H, m)
4''	76.9 (d)	4.89 (1H, d, 5.2)
5''	70.1 (d)	4.43 (1H, t, 5.2)
6''	61.1 (t)	3.64 (1H, dd, 5.8, 9.7)
		3.40 (1H, m)

kombinasi dengan pergeseran kimia C-3 yang relatif ke bawah (δ_C 76,9) menyarankan gugus gula terkait pada C-3 karena sebagian besar saponin memiliki bagian gula di situs ini (Agrawal *et al.* 1985).

Jenis gula yang berikatan dengan aglikon dikenali berdasarkan nilai konstanta vicinal coupling (³J). Hubungan Karplus memberikan nilai perkiraan untuk ^{3}J sebagai fungsi sudut dihedral antara proton. Proton vicinal pada kedua orientasi aksial memiliki ${}^{3}Jaa \approx 12$ Hz yang jauh lebih besar dari ${}^{3}Jee \approx {}^{3}Jae \approx 2-5$ Hz. Dalam molekul dengan heteroatom (gula piranosa). kopling vicinal lebih kecil, dengan nilai tipikal ${}^{3}Jaa \approx 9$ Hz dan ³Jae \approx 4 Hz (Tchinda *et al.*, 2002). Proton H-1'/H-2' memiliki nilai ³J sebesar 7,8 Hz, menunjukkan kopling trans-diaxial. Besarnya nilai tetapan vicinal coupling J = 9.1Hz juga diamati untuk H-4'/H-5', menunjukkan konformasi glukosa. Kehadiran unit heksosa juga dikonfirmasi dalam spektrum HMBC dengan korelasi antara H-2' dan C-1', C-3', dan C-4'. Korelasi juga diamati dari H-3' ke C-5', dari H-4' ke C-2'dan C-5', dan dari H-5' ke C-3' dan C-4'. Konektivitas proton glukosa terungkap dalam spektrum ¹ H- ¹ H COSY oleh puncak silang dari proton vicinal H-1' ke H-2'dan H-3' ke H-2'.

Sinyal proton anomerik lain dari bagian gula kedua muncul sebagai doublet pada $\delta_{\rm H}$ 4,87 (H-1"); konstanta kopling J = 7.8 Hz menunjukkan konfigurasi β dari residu gula kedua. Jumlah sinval anomerik menentukan jumlah monosakarida (Agrawal et al., 1985). Satusatunya perbedaan dibandingkan dengan glukosa pertama adalah konstanta kopling H-4''dan H-5" tampak lebih kecil (J = 5,2 Hz), menunjukkan kopling aksial-ekuator. Akibatnya, kelompok gula kedua ditugaskan sebagai galaktosa. Posisi galaktosa diungkapkan oleh korelasi yang diamati dari H-1" dengan karbon oxymethine glukosa pada $\delta_{\rm C}$ 76.8, menunjukkan hubungan interglikosidik $\beta(1\rightarrow 4)$. Selain nilai pergeseran kimia C-4'(8c 76.8) dibandingkan dengan C-4 (δ_C 70.3) dari metil glikosida menunjukkan gula terikat pada karbon ini. Dengan demikian, senyawa **1** ditentukan sebagai saponin baru dan diberi nama β -sitosterol-3-O- β -D-galaktopiranosil(1 \rightarrow 4)- β -D-glukopiranosida.

Pola fragmentasi juga diselidiki untuk memastikan struktur senyawa saponin yang memiliki dua bagian gula. Dalam ESI-MS, ion molekuler [M]+ (m/z 738.9171) menghasilkan ion fragmen utama pada m/z 577.7930, 415.1431, dan 396.2939 yang dihasilkan dari hilangnya satu galaktosil, satu glukosil, dan satu molekul air secara berturut-turut. Ion fragmen pada m/z 415.1431 dianggap sebagai ion diagnostik untuk aglikon β -sitosterol (Jaju *et al.* 2009; Zhang *et al.* 2014).

Perbandingan spektrum ¹H dan ¹³C dari senyawa hasil isolasi dengan literatur (Jaju *et al.* 2009), mengungkapkan bahwa kedua senyawa tersebut berkerabat dekat baik pada gugus aglikon maupun glukosa yang terikat langsung pada C-3 aglikon. Namun, perbedaan utama muncul dari berbagai jenis hubungan interglikosidik. Pergeseran kimia C-2' dari glu (δ_C 81.3) yang dilaporkan dalam literatur lebih terlindung dibandingkan dengan senyawa yang diisolasi, menunjukkan hubungan interglikosidik $\beta(1\rightarrow 2)$. Perbedaan lain dihasilkan dari monosakarida yang berbeda di mana sitosterol dari literatur yang dilaporkan memiliki dua unit glikosil.

Senyawa yang telah diketahui, stigmast-5-en-3 β ,4 β -diol (**2**) (Kimura *et al.* 1995), stigmasterol-3-*O*- β -D-glukosida (**3**) (Tchinda *et al.* 2002; Wang *et al.* 2009; Donfack *et al.* 2012), stigmasterol (**4**) (Chaturvedula & Prakash 2012), dan stigmasterol 3-*O*- β -D-glukosida (**5**) (Tchinda *et al.* 2002; Wang *et al.* 2009 & Donfack *et al.* 2012) diidentifikasi dengan membandingkan data spektroskopi mereka dengan nilai yang dilaporkan.

Hasil uji sitotoksik dari lima senyawa yang diisolasi 1-5 terhadap sel leukemia murine P-388 dilakukan sesuai dengan metode yang dijelaskan dalam makalah dan Alley *et al.*, 1998) dan digunakan Artonin E (IC₅₀

Gambar 1. Senyawa (1) β -sitosterol-3-*O*- β -D-galaktopiranosil(1 \rightarrow 4)- β -D-glukopiranosida, (2) stigmast-5-en-3 β ,4 β -diol, (3) stigmasterol-3-*O*- β -D-glukosida, stigmasterol (4) stigmasterol, (5)dan stigmasterol 3-*O*- β -D-glukosida (5).

Gambar 2. Spektrum korelasi HMBC dan ¹H-¹H COSY senyawa (1).

Tabel 2. Uji sitotoksik senyawa 1-5 terhadap sel P-388 murine leukemia.

Compounds	IC ₅₀ (µM)
β-sitosterol-3-O-β-D-galactopyranosyl(1→4)-β-D- glucopyranosida (1)	45.8
stigmast-5-en-3β,4β-diol (2)	46.2
stigmasterol-3- O - β -D-glucosida (3)	52.0
stigmasterol (4)	12.2
stigmasterol 3-O-β-D-glucosidea (5)	51.8
Artonin E (positif control)	0.20

0,3 μ g /mL) sebagai kontrol positif (Hakim *et al.*, 2007). Aktivitas sitotoksisitas senyawa **1-5** ditunjukkan pada Tabel 2. Di antara senyawa tersebut, stigmasterol (4), tidak adanya bagian gula menunjukkan aktivitas terkuat, sedangkan stigmast-5-en-3,4 β -diol (2), adanya gugus hidroksil pada cincin A menunjukkan aktivitas yang lemah. Hasil ini menunjukkan bahwa keberadaan gula dan gugus hidroksil dalam struktur steroid dapat menurunkan aktivitas sitotoksik.

KESIMPULAN

Hasil isolasi ekstrak etil asetat dari kulit batang *A. glabrata* didapatkan lima senyawa golongan steroid yaitu (1) β -sitosterol-3-*O*- β -Dgalaktopiranosil(1 \rightarrow 4)- β -D-glukopiranosida merupakan senyawa baru, (2) senyawa stigmast-5-en-

 3β ,4β-diol, (**3**) stigmasterol-3-*O*-β-D-glukosida, (**4**) stigmasterol, dan (**5**) stigmasterol 3-*O*-β-D-glukosida dimana senyawa (**4**) aktivitas sitotoksik terkuat dengan nilai IC₅₀ sebesar 12.2 µg/mL.

UCAPAN TERIMA KASIH

Ucapan rasa terimakasih kepada Pusat Penelitian Kimia, Lembaga Ilmu Pengetahuan Indonesia (LIPI) untuk pengukuran NMR, Laboratorium Sentral Universitas Padjadjaran untuk pengukuran HR-TOFMS, penelitian berasal dana Universitas Muhammadiyah, Semarang, skema penelitain Kerjasama luarnegeri No.

0001/UNIMUS.L/PT/PJ.INT/2022 atas nama Risyandi Anwar.

DAFTAR PUSTAKA

- Agrawal, P. K., Jain, D. C., Gupta, R. K. & Thakur, R. S. (1985). Carbon-13 NMR spectroscopy of steroidal sapogenins and steroidal saponins. Phytochemistry. 24(11): 2479-2496.
- Alley, M. C., Scudiero, D. A., Monks, A., Hursey, M. L., Czerwinski, M.J., Fine, D. L., Abbott, B. J., Mayo, J. G., Shoemaker, R. H. & Boyd., M. R., (1988). Feasibility of drug screening with panels of tumor cell lines using a microculturetetrazolium assay. Cancer research, 48(3): 589-601
- Awang, K., Loong, X. M., Leong, K. H., Supratman, U., Litaudon, M., Mukhtar, M. R. & Mohamad, K. (2012). Triterpenes and steroids from the leaves of *Aglaia exima* (Meliaceae). *Fitoterapia*. 83(8): 1391-1395.
- Chaturvedula, P.S.P and Prakash, I. (2012). Isolation of stigmasterol and b-sitosterol from the dichloromethane extract of Rubus suavissimus. *International Current Pharmaceutical Journal*. 1(9): 239-242.
- Donfack, A. R. N., Toyang, N. J., Wabo, H. K., Tane, P, Awouafack, M. D, Kikuchi, H, Tomokou, J. D. D, Kuiate, J. R., and Oshima, Y. (2012). Stigmastane derivatives from the roots of Vernonia guineensis and their antimicrobial activity. *Phytochemistry Letters*. 5(3): 596-599.

- Dreyer, M., Nugroho, B.W., Bohnenstengel, F.I., Ebel, R., Wray, V., Witte, L., Bringmann, G., Muhlbacher, J., Herold, M., Hung, P.D., Kiet, L.C. & Proksch, P. (2001). New Insecticidal Rocaglamide Derivatives and Related Compounds from Aglaia o ligophylla. *Journal* of Natural Products. 64(4): 415-420.
- Duong, T.N., Edrada, R.A., Ebel, R., Wray, V., Frank, W., Duong, A.T., Lin, W.H., Proksch, P. (2007). Putrescine bisamides from Aglaia gigantea. *Journal of Natural Products*. **70(10)**: 1640-1643.
- Ebada, S. S., Lajkiewicz, N., Porco, J. A., Li-Weber, M. & Proksch, P. (2011). Chemistry and biology of rocaglamides (= flavaglines) and related derivatives from aglaia species (meliaceae). *Progress in the Chemistry of Organic Natural Products.* 94: 1-58.
- Hakim, E. H., Achmad, S. A., Juliawaty, L. D., Makmur, L., Syah, Y. M., Aimi, A., Kitajima, M., Takayama, H. & Ghisalberti, E. L. (2007). Prenylated flavonoids and related compounds of the Indonesian Artocarpus (Moraceae). Journal of Natural Medicines. 60: 161-184.
- Harneti, D., Supriadin, A., Ulfah, M., Safari, A., Supratman, U., Awang, K. & Hayashi, H. (2014). Cytotoxic constituents from the bark of Aglaia eximia (Meliaceae). Phytochemistry Letters. 8: 28-31.
- Harneti, D., Tjokronegoro, R., Safari, A., Supratman, U., Loong, X, M., Mukhtar, M, R Mohamad, K., Awang, K. & Hayashi., H., (2012). Cytotoxic triterpenoids from the bark of *Aglaia smithii* (Meliaceae). *Phytochemistry Letters*. 5(3): 496-499.
- Heyne, K. (1987). *Tumbuhan Berguna Indonesia I.* Badan Penelitian dan Pengembangan Kehutanan, Departemen Kehutanan. Jakarta.
- Inada, A., Shono, K., Murata, H., Inatomi, Y., Darnaedi, D. & Nakanishi, T. (2000). Three putrescine bisamides from the leaves of Aglaia grandis. *Phytochemistry*. 53(8): 1091-1095.
- Jaju, S.B., Indurwade, N.H., Sakarkar, D.M., Ali, M., Fuloria, N.K. & Duragkar, N.J. (2009). Isolation of β-sitosterodiglucoside and β-sitosteryl arabinoside from rhizomes Alpinia galanga. *Asian Journal of Chemistry*. 21(3): 2350-2356.
- Julinton, S., Purnamasari, M., Darwati., Harneti, D., Mayanti, T., Supratman, U., Awang, K. & Hayashi, H. (2015). New bisamide compounds from the bark of *Aglaia eximia* (Meliaceae). *Phytochemistry Letters*. **13**: 297-301.
- Khalit, M., Martin, M. T., Leroy, E., Tempete, C., Sevenet, T., Awang, K. & Pais, M. (1999). Argenteanones CE and argenteanols BE, cytotoxic cycloartanes from *Aglaia argentea*. *Phytochemistry*. **51**: 1031-1037.
- Kimura, Y., Akihisa, T., Yasukawa, K., Takido, M. & Tamura, T., (1995). Structures of five hydroxylated sterols from the seeds of

Trichosanthes kirilowi Maxim. *Chemical and Pharmaceutical Bulletin*. **43(10)**: 1813-1817.

- Mabberley, D. J., Pannell, C. M. & Sing, A. M. (1995). Dysoxylum. *Meliaceae*. *Flora Malesiana ser. I*. **12**(**1**): 1-407.
- Muellner, A. N., Samuel, R., Chase, M. W., Pannell, C. M. & Greger, H. (2005). Aglaia (Meliaceae): an evaluation of taxonomic concepts based on DNA data and secondary metabolites. American Journal of Botany. 92(3): 534-543.
- Nugroho, B. W., Edrada, R. A., Wray, V., Witte, L., Bringmann, G., Gehling, M. & Proksch, P. (1999). An insecticidal rocaglamide derivatives and related compounds from *Aglaia odorata* (Meliaceae). *Phytochemistry*. **51**(3): 367-376.
- Pateh, U. U., Haruna, A. K., Garba, M., Iliya, I., Sule, I. M., Abubakar, M. S. & Ambi, A. A. (2009). Isolation of stigmasterol, β-sitosterol and 2hydroxyhexadecanoic acid methyl ester from the rhizomes of Stylochiton lancifolius Pyer and Kotchy (Araceae). Nigerian Journal of Pharmaceutical Sciences. 8(1): 19-25.
- Qiu, S.X., H. Nguyen, T.X. Le, Q.G. Jian, L.Emil, C. Tran, Djaja, C. Jon, Pezzuto, Y. Dong, Y. Mai, Huong, H. Harry. (2000). A pregnane steroid from Aglaia lawii and structure confirmation of cabralediol monoacetat by X-ray chrystalography. *Phytochemistry*. **45**(6): 1225-1228.
- Roux, D., Martin, M. T., Adeline, M. T., Sevenet, T., Hadi, A. H. A. & Pais, M. (1998). Foveolins A and B, dammarane triterpenes from Aglaia foveolata. *Phytochemistry*. **49(6)**: 1745-1748.
- Sahidin, Hakim, E.H., Juliawaty, L.D., Syah, Y.M., Din, L.B., Ghisalberti, E.L., Latip, J., Said, I.M. & Achmad, S,A., (2005). Cytotoxic properties of oligostilbenoids from the tree barks of Hopea dryobalanoides. *Zeitschrift für Naturforschung* C. 60(9-10): 723-727.
- Saifah, E., Suttisri, R., Shamsub, S., Pengsuparp, T. & Lipipun, V. (1999). Bisamides from Aglaia edulis. Phytochemistry. 52(6): 1085-1088.
- Salim, A.A., Chai, B.H., Rachman, I., Riswan, S., Kardono, L.B.S., Farnsworth, N.R., Blanco, E.J.C. & Kinghorn, A.D. (2007). Constituents of the leaves and stem bark of Aglaia foveolata. *Tetrahedron.* 63(33): 7926-7934.
- Su, B.N., Chai, H., Mi, Q., Riswan, S., Kardono, L.B.S., Afriastini, J.J., Santarsiero, B.D., Mesecar, A.D., Farnsworth, N.R., Cordell, G.A., Swanson, S.M. & Kinghorn, A.D. (2006). Activity-guided isolation of cytotoxic constituents from the bark of Aglaia crassinervia collected in Indonesia. *Bioorganic* and Medicinal Chemistry. 14(4): 960-972.
- Syamsuhidayat, S. S. & Hutapea, J. R. (1991). *Inventaris Tanaman Obat Indonesia (I)*. Departemen Kesehatan RI, Badan Penelitian dan Pengembangan Kesehatan. Jakarta.

- Tchinda, A. T., Tsopmo, A., Tane, P., Ayafor, J. F., Connolly, J. D. & Sterner, O. (2002). Vernoguinosterol and vernoguinoside, trypanocidal stigmastane derivatives from Vernonia guineensis (Asteraceae). Phytochemistry. 59(4): 371-374.
- Wang, Y., Lai, D., Zhang, Y., Kang, A., Cao, Y. & Sun, W. (2009). Study of steroidal saponins in Dioscorea zingiberensis CH Wright. *Journal of Natural Products (India).* 2: 123-132.
- Weber, S., Puripattanavong, J., Brecht, V. & Frahm, A. W. (2000). Phytochemical investigation of Aglaia rubiginosa. *Journal of Natural Products*. 63(5): 636-642
- Yang, S. M., Fu, W. W., Wang, D. X., Tan, C. H. & Zhu, D. Y. (2008). Two new pregnanes from

Aglaia perviridis Hiern. *Journal Of Asian Natural Products Research*. **10(5)**: 459-462.

- Zhang, X., Liang, J., Liu, J., Zhao, Y., Gao, J., Sun, W. & Ito, Y. (2014). Quality control and identification of steroid saponins from Dioscorea zingiberensis CH Wright by fingerprint with HPLC-ELSD and HPLC-ESI-Quadrupole/Time-of-fight tandem mass spectrometry. *Journal Of Pharmaceutical and Biomedical Analysis.* **91**: 46-59.
- Zhang, F., Wang, J. S., Gu, Y. C. & Kong, L. Y. (2010). Triterpenoids from Aglaia abbreviata and their cytotoxic activities. Journal of Natural Products. 73(12): 2042-2046.