
JSS Journal of Statistical Software
September 2023, Volume 107, Issue 5. doi: 10.18637/jss.v107.i05

ARCHModels.jl: Estimating ARCH Models in Julia

Simon A. Broda
Lucerne University of

Applied Sciences and Arts

Marc S. Paolella
University of Zurich

Swiss Finance Institute

Abstract

This paper introduces ARCHModels.jl, a package for the Julia programming language
that implements a number of univariate and multivariate autoregressive conditional het-
eroskedasticity models. This model class is the workhorse tool for modeling the conditional
volatility of financial assets. The distinguishing feature of these models is that they model
the latent volatility as a (deterministic) function of past returns and volatilities. This re-
cursive structure results in loop-heavy code which, due to its just-in-time compiler, Julia
is well-equipped to handle. As such, the entire package is written in Julia, without any
binary dependencies. We benchmark the performance of ARCHModels.jl against popu-
lar implementations in MATLAB, R, and Python, and illustrate its use in a detailed case
study.

Keywords: ARCH, GARCH, CCC, DCC, Value at Risk, Julia.

1. Introduction
Financial returns data at daily or higher frequency display a number of stylized facts, includ-
ing volatility clustering (large, in absolute value, returns tend to cluster together), heavy tails,
and statistical leverage, among others. Modeling these lies at the heart of much of financial
econometrics, because the volatility and conditional distribution of an asset (or a group of as-
sets) are key ingredients in applications such as risk management, portfolio optimization, and
derivative pricing. Autoregressive conditional heteroskedasticity (ARCH) models form the
most widely used class of models for capturing these features. In an ARCH-type model, the
latent volatility σt of the return rt of an asset is modeled in terms of past returns and volatil-
ities. For example, given a sample of daily asset returns {rt}t∈{1,...,T }, the basic generalized
ARCH (GARCH) model, due to Bollerslev (1986), is

rt = σtzt, zt ∼ N(0, 1), σ2
t = ω + αr2

t−1 + βσ2
t−1, ω, α, β > 0, α + β < 1,

where the stationarity condition α + β < 1 keeps the variance from exploding. The GARCH

https://doi.org/10.18637/jss.v107.i05
https://orcid.org/0000-0003-1686-9512
https://orcid.org/0000-0002-5133-6677

2 ARCHModels.jl: ARCH Models in Julia

Figure 1: Volatility clustering (left panel) and heavy tails (right panel) illustrated by way of
daily returns on Apple stock.

model extends the ARCH model (in which β = 0) of Engle (1982), who in 2003 was awarded
a Nobel Memorial Prize in Economic Sciences for its development.
Due to their popularity, the ARCH and GARCH models and their various extensions have
been implemented in many commercial and free programming environments; examples in-
clude Ghalanos’s (2022) rugarch package for R (R Core Team 2023), Sheppard et al.’s (2022)
arch package for Python (Van Rossum 1995), and MATLAB’s (The MathWorks Inc. 2021)
Econometrics toolbox. These implementations all outsource the evaluation of the likelihood
function to a compiled language, because the recursive nature of (1) defies any attempt at
“vectorizing” it, a common recommendation for performant implementations in interpreted
languages. Julia (Bezanson, Edelman, Karpinski, and Shah 2017) is unique among these high-
level languages because its just-in-time compiler allows us to keep even the tight loops in Julia
itself without sacrificing performance. In fact, we show in Section 6 below that our imple-
mentation outperforms those mentioned above. This is partly due to the use of automatic
differentiation for the computation of gradients in maximizing the likelihood, via Optim.jl
(Mogensen and Riseth 2018; Mogensen, Riseth et al. 2023) and ForwardDiff.jl (Revels, Lu-
bin, and Papamarkou 2016; Revels, Lubin, Papamarkou et al. 2023).
A registered Julia package distributed under the permissive MIT License, ARCHModels.jl is
easily installed with Julia’s package manager using the commands below.

julia> using Pkg
julia> Pkg.add("ARCHModels")

ARCHModels.jl implements estimation, model selection, simulation, and Value at Risk cal-
culations for a variety of univariate and multivariate ARCH models, for different choices of
standardized innovation distributions. The conditional mean can be specified as either zero,
an intercept, a linear regression model, or an autoregressive moving average model. The

Journal of Statistical Software 3

package is designed to be easy to extend with other volatility specifications and distribu-
tions, and integrates with the relevant parts of the Julia ecosystem, such as DataFrames.jl
(Bouchet-Valat and Kamiński 2023; Kamiński, White, Bouchet-Valat et al. 2023), Distribu-
tions.jl (Besançon et al. 2021; Lin et al. 2023b), GLM.jl (Bates et al. 2023), HypothesisTests.jl
(Kornblith et al. 2023), and StatsBase.jl (Lin et al. 2023a).
The remainder of the paper is as follows: Section 2 outlines the theory of ARCH models.
Section 3 describes the type hierarchy of ARCHModels.jl, and hence the available models.
Section 4 provides details on the implementation. Section 5 presents a case study detailing the
use of the package. Section 6 offers a comparison with implementations in other languages.
Section 7 concludes.

2. Theoretical background

2.1. ARCH models
Consider a sample of daily asset returns {rt}t∈{1,...,T }. All models covered in this package
share the same basic structure, in that they decompose the return into a conditional mean
and a mean-zero innovation. In the univariate case,

rt = µt + at, µt ≡ E[rt | Ft−1], σ2
t ≡ E[a2

t | Ft−1],

zt ≡ at/σt is identically and independently distributed according to some law with mean zero
and unit variance, and {Ft} is the natural filtration of {rt}, i.e., it encodes information about
past returns.
A complete model requires specifying the conditional mean µt, the density of zt, and the
conditional volatility σt (Section 3.1 details the possible choices for each). ARCH models
specify the latter in terms of past returns, conditional (co-)variances, and potentially other
variables. For concreteness, let zt ∼ N(0, 1) and µt ≡ 0 for now, and let

σ2
t = ω + αa2

t−1 + βσ2
t−1, ω, α, β > 0, α + β < 1. (1)

This yields the GARCH(1, 1) model in (1) (the GARCH(p, q) model generalizes (1) by
including more lags of σ2

t and a2
t). It is evident that large (in absolute value) returns rt = at

increase the next day’s conditional return variance σ2
t . This allows the model to capture the

volatility clustering that is present in the returns of most daily financial returns series. The
left panel of Figure 1 shows this for the daily returns on Apple stock.
A notable feature of the GARCH model, and in fact all ARCH-type models, is that the
conditional volatility σt is completely determined using information available at time t − 1,
i.e., σt is measurable with respect to Ft−1. This feature distinguishes ARCH models from
stochastic volatility models, another popular model class, and makes them comparatively
straightforward to estimate by maximum likelihood. As an aside, a related class of models that
also feature an Ft−1-measurable volatility is that of Generalized Autoregressive Score, or GAS,
models, introduced by Creal, Koopman, and Lucas (2013) and Harvey (2013). The package
ScoreDrivenModels.jl (Bodin, Saavedra, Fernandes, and Street 2020, 2022) implements these
in Julia.
Let fz(z; θ) denote the density of zt, parameterized by the (possibly empty) tuple θ, and let Θ
denote a tuple containing θ along with the parameters in the specifications for µt and σt. For

4 ARCHModels.jl: ARCH Models in Julia

example, in the GARCH(1, 1) model with standard Gaussian errors and µt = 0, Θ = (ω, α, β).
Further, let τ denote the number of pre-sample values needed for computing µt and σt; e.g., in
the GARCH(1, 1) model, τ = 1. Then the log-likelihood, conditional on these τ pre-sample
values, is

ℓ(Θ) ≡ log frτ+1:t|r1:τ (rτ+1:t; Θ)

= log
T∏

t=τ+1
frt|r1:t−1(rt; Θ)

=
T∑

t=τ+1
ℓt(Θ), (2)

where
ℓt(Θ) = − log σt + log fz([rt − µt]/σt; θ)

and rs:t ≡ [rs, rs+1, . . . , rt] denotes a vector containing the returns from period s through t.
The log-likelihood at (2) can be maximized numerically; see Section 4 for details. Notice that
the recursive structure of σt common to all ARCH-type models implies that the computation
of (2) cannot be “vectorized” into a single library call to, say, NumPy (Harris et al. 2020),
a common technique for speeding up numerical calculations in interpreted languages such as
Python. Instead, it requires a loop over t. This is the reason that the rugarch package for
R, the arch package for Python, and MATLAB’s Econometrics toolbox all implement (2) in a
compiled low-level language: Cython (Behnel, Bradshaw, Citro, Dalcin, Seljebotn, and Smith
2011) in the case of arch, C/C++ for rugarch and MATLAB. The just-in-time compiled nature
of Julia obviates this need: ARCHModels.jl is entirely implemented in Julia, and nevertheless
typically faster than the above-mentioned packages, see Section 6.
Many generalizations of the basic (G)ARCH model have been proposed in the literature, and
ARCHModels.jl implements a number of these. For example, one limitation of the standard
GARCH model is that the conditional variance reacts equally strongly to positive and negative
return shocks, because at only enters as its square in (1). Typically however, volatility reacts
more strongly to a negative shock. This phenomenon is known as the statistical leverage effect
and has led to the development of asymmetric ARCH models. Section 3 describes the two
that are available in ARCHModels.jl.
An important aspect in ARCH modeling is model selection, in particular, selecting the right
lag orders. Two widely used approaches are based on minimizing some information crite-
rion, and diagnostic testing. Information criteria embody a tradeoff between model fit and
parsimony, similarly to the adjusted R2 in regression. For example, the AIC (Akaike infor-
mation criterion, Akaike 1974) and BIC (Bayesian information criterion, Schwarz 1978) are
respectively defined as

AIC ≡ −2ℓ(Θ∗) + 2|Θ| and BIC ≡ −2ℓ(Θ∗) + |Θ| log(T),

where Θ∗ denotes the maximum likelihood estimator (MLE) and |Θ| represents the number
of parameters in the model. Given a collection of candidate models, one selects the one that
minimizes one of these. Note that the BIC puts a greater penalty on additional parameters,
and hence tends to select smaller models.

Journal of Statistical Software 5

Diagnostic testing of volatility models generally relies on the estimated conditional volatilities
σ̂t and standardized residuals ẑt ≡ (rt − µ̂t)/σ̂t. For example, the ARCH-LM (Lagrange
multiplier) test of Engle (1982) is based on the R2 of the auxiliary regression

ẑ2
t = γ0 +

p∑
i=1

γiẑ
2
t−i + εt,

where p must be specified by the user. The null hypothesis of the test is that no volatility
clustering remains in the standardized residuals. The test rejects for large values of T · R2.

2.2. Value at Risk
A prominent application of ARCH models, and volatility models in general, is estimating the
Value at Risk (VaR). The VaR of an asset (or portfolio of assets) is a measure of its risk. For
a given level α, it is defined in terms of a quantile of the return distribution, i.e., it solves

P[rt+1 ≤ − VaR(α)
t+1 | Ft] = α.

Intuitively, if VaR(α)
t+1 = 3%, then the loss on the asset or portfolio will only exceed 3% in the

worst 100 ·α% of cases. It should be noted that different definitions of the Value at Risk exist.
The one used here is sometimes known as the return-VaR, because it is defined in terms of
returns, rather than a monetary amount. It is easily converted to what is sometimes known
as the $-VaR by multiplying it by the exposure, i.e., the value of the asset or portfolio.
Banks are mandated to report the 1% Value at Risk of their portfolio to the relevant regulatory
body every two weeks. They can either use the model defined in the Basel Accords to estimate
the VaR, or use their own internal models. In the latter case, they have to demonstrate the
correctness of the model to the regulatory body by backtesting it on historical data. This
amounts to producing VaR forecasts {

V̂aR
(α)
t+1

}
for a set of historical returns, and then analyzing the VaR violations, i.e., those days in the
sample on which the relative loss exceeded the estimated VaR. If the model is correct, then
this should happen on 100 · α% of trading days, on average. In addition, it is desirable that
these violations not cluster in time, i.e., they should not be autocorrelated.
One way to test the correctness of the VaR specification is to use the dynamic quantile test
of Engle and Manganelli (2004). Let

It ≡ 1
{

rt < −V̂aR
(α)
t

}
− α.

The indicator function in the expression above takes the value one if a VaR violation occurred
on day t, and zero otherwise. Engle and Manganelli’s (2004) test regresses the It on an
intercept and p lags of both It and the VaR forecasts themselves. The null hypothesis that
the VaR specification is correct is rejected if the coefficients in this model are jointly significant.

2.3. Multivariate models
Multivariate ARCH models generalize the theory to deal with several assets at once. They
aim to model the joint evolution of the conditional volatilities of several assets, as well as their

6 ARCHModels.jl: ARCH Models in Julia

conditional covariances. These quantities play important roles in, e.g., modeling the VaR of a
portfolio of assets. The general structure of a multivariate ARCH model is a straightforward
extension of the univariate case. It reads

rt = µt + at, µt ≡ E[rt | Ft−1], Σt ≡ E[ata
⊤
t | Ft−1], (3)

where now rt ∈ Rd. In principle, a specific multivariate model is obtained by simply specifying
the dynamics of Σt (along with µt and an error distribution). For example, the natural
generalization of (1) to the multivariate case would be to allow each element of Σt to depend
on each element of both Σt−1 and at−1a⊤

t−1. This results in the so-called VECH model
(Bollerslev, Engle, and Wooldridge 1988)

vech(Σt) = a0 + A1vech(at−1a⊤
t−1) + B1vech(Σt−1),

where A1 and B1 have dimension k ×k, k = d(d+1)/2, and a0 is a k-vector. The model takes
its name from the operator vech(A), which stacks the lower-triangular elements of symmetric
matrix A into a vector. In principle, this model could then be estimated by maximum
likelihood as in the univariate case. Unfortunately, the number of parameters in this model
is O(d4), so this becomes infeasible beyond three or four assets (the curse of dimensionality).
In addition, it is difficult to ensure that the resulting matrices {Σt} are positive definite, as
is required of covariance matrices.
Much research on multivariate ARCH models has focused on solving these two issues, by
imposing more structure on the dynamics of Σt. The class of so-called conditional correlation
models has been particularly successful, and ARCHModels.jl implements two of these: The
CCC (constant conditional correlation) model of Bollerslev (1990), and the DCC (dynamic
conditional correlation) model of Engle (2002); see Section 3.2 for details. One of the two
estimators for the DCC model implemented in the package, due to Engle, Ledoit, and Wolf
(2019), makes estimation feasible for a large number of assets (in the thousands).

3. Available models and type hierarchy

3.1. Univariate type hierarchy

This package represents a univariate ARCH model as an instance of UnivariateARCHModel,
which implements the interface of StatisticalModel from StatsBase.jl.
An instance of UnivariateARCHModel contains a vector of data (such as equity returns),
and encapsulates information about the volatility specification (e.g., ARCH or GARCH), the
mean specification (e.g., whether an intercept is included), and the error distribution. Hence,
the constructor for UnivariateARCHModel takes two mandatory arguments: An instance of
a subtype of UnivariateVolatilitySpec (see below), and a vector of returns. The mean
specification and error distribution can be changed via the keyword arguments meanspec and
dist, which respectively default to a zero mean and a standard Gaussian. For example, to
construct a GARCH(1, 1) model for a vector of returns data, one would run the following.

julia> spec = GARCH{1, 1}([1., .9, .05])
julia> am = UnivariateARCHModel(spec, data)

Journal of Statistical Software 7

It should, however, rarely be necessary to construct a UnivariateARCHModel manually via its
constructor. Typically, instances of it are created by calling fit, selectmodel, or simulate.
Details will be given in Section 5 below.
Since UnivariateARCHModel implements the interface of StatisticalModel from Stats-
Base.jl, one may call aic, bic, coef, coefnames, confint, dof, informationmatrix,
isfitted, loglikelihood, nobs, score, stderror, vcov, etc. on its instances. Other useful
methods include means, volatilities, residuals, and predict.

Volatility specifications

Volatility specifications describe the evolution of σt. They are modeled as subtypes of
UnivariateVolatilitySpec. There is one type for each class of (G)ARCH model, parame-
terized by the number(s) of lags (e.g., p, q for a GARCH(p, q) model).
The simplest volatility specification is given by the ARCH(q) model, due to Engle (1982). It
reads

σ2
t = ω +

q∑
i=1

αia
2
t−i, ω, αi > 0,

q∑
i=1

αi < 1. (4)

The corresponding type is ARCH{q}.
The GARCH(p, q) model, due to Bollerslev (1986), generalizes the ARCH(q) model by in-
cluding lagged values of the squared volatility on the right hand side of (4). This renders the
conditional variance as

σ2
t = ω +

p∑
i=1

βiσ
2
t−i +

q∑
i=1

αia
2
t−i, ω, αi, βi > 0,

max p,q∑
i=1

αi + βi < 1. (5)

It is available as GARCH{p, q}.
The ARCH and GARCH models are special cases of a more general class of models, known
as threshold GARCH (TGARCH), due to Glosten, Jagannathan, and Runkle (1993). The
model is also known as GJR-GARCH in the literature after the initials of the authors, to
avoid confusion with the TGARCH model of Zakoian (1994). The latter essentially uses the
absolute value in place of the square of the residuals in (6) below.
The model takes the form

σ2
t = ω +

o∑
i=1

γia
2
t−i1 {at−i < 0} +

p∑
i=1

βiσ
2
t−i +

q∑
i=1

αia
2
t−i, (6)

where

ω, αi, βi, γi > 0 and
max o,p,q∑

i=1
αi + βi + γi/2 < 1.

The TGARCH model allows the volatility to react differently (typically more strongly) to neg-
ative shocks, a feature known as the (statistical) leverage effect. It is available as
TGARCH{o, p, q}.
Finally, the exponential GARCH (EGARCH) volatility specification, due to Nelson (1991), is

log(σ2
t) = ω +

o∑
i=1

γizt−i +
p∑

i=1
βi log(σ2

t−i) +
q∑

i=1
αi(|zt−i| −

√
2/π), zt = at/σt,

p∑
i=1

βi < 1.

8 ARCHModels.jl: ARCH Models in Julia

Like the TGARCH model, it can account for the leverage effect. The corresponding type is
EGARCH{o, p, q}.
The constructors for the volatility specifications take a coefficient vector as input, where the
order of the parameters is such that all parameters pertaining to the first type parameter
(e.g., p for the GARCH(p, q) model) appear before those pertaining to the second (q), and so
on. For example, an EGARCH(1, 1, 1) model with ω = −0.003, γ1 = −0.03, β1 = 0.99 and
α1 = 0.2 is obtained as follows.

julia> EGARCH{1, 1, 1}([-0.003, -0.03, 0.99, 0.2])

Explicitly creating instances of volatility specifications is only necessary for simulation (see
Section 5). For fitting, passing the type is sufficient.

Mean specifications
Mean specifications serve to specify µt. They are modeled as subtypes of MeanSpec. Their
instances contain the parameters as (possibly empty) vectors. Convenience constructors are
provided where appropriate, though as with volatility specifications, constructing them explic-
itly is only required for simulation, not for fitting. The following specifications are available.
A zero mean, i.e., µt = 0, is available as NoIntercept. An intercept (µt = µ) is obtained as
Intercept. Regression allows one to specify a linear regression model, as in

µt = x⊤
t β.

Unlike the other mean specifications, a regression requires external data, which the constructor
expects as a matrix with observations in rows and variables in columns, as follows.

julia> reg = Regression(ones(100, 1))

This creates a regression model containing one regressor, given by a column of ones. This is
equivalent to including an intercept in the model (the latter is however more memory efficient,
as no design matrix needs to be stored). Another way to create a linear regression with ARCH
errors is to pass a LinearModel or TableRegressionModel from GLM.jl; see Section 5 for an
example.
Finally, an ARMA (autoregressive moving average) model specifies the conditional mean as

µt = c +
p∑

i=1
φirt−i +

q∑
i=1

θiat−i. (7)

ARMA models are popular in time series econometrics because they are able to approximate
the autocorrelation structure of any stationary process. It should be mentioned, however, that
financial returns typically do not exhibit much autocorrelation; in fact, the weak form market
efficiency hypothesis (Fama 1970) implies its absence. Nevertheless, the ARMA model (7) is
available as ARMA{p, q}. The special cases of pure autoregressive and moving average models
are also available, as AR{p} and MA{q}, respectively.

Distributions
Different standardized (mean zero, variance one) distributions for zt are available as sub-
types of StandardizedDistribution. StandardizedDistribution in turn inherits from

Journal of Statistical Software 9

Distribution{Univariate, Continuous} from Distributions.jl, though not the entire in-
terface need necessarily be implemented. Instances of StandardizedDistribution again
hold their parameters as vectors, but convenience constructors are provided. Available distri-
butions include the standard normal (StdNormal) with density

fN (x) ∝ exp(−x2/2),

the standardized Student’s t (StdT) with density

fStdT(x; ν) ∝ (1 + x2/(ν − 2))−(ν+1)/2,

the standardized generalized error distribution (StdGED) with density

fGED(x; p) ∝ exp(−|x · s|p), s =
√

Γ(3/p)/Γ(1/p),

and Hansen’s (1994) skewed t distribution (StdSkewT) with density

fSkewT(x; ν, λ) ∝

(
1 + (bx + a)2(

ν − 2
)(

1 + sign(x + a/b)λ
)2

)−(ν+1)/2

,

where

c = Γ((ν + 1)/2)√
π(ν − 2)Γ(ν/2)

, a = 4λc(ν − 2)/(ν − 1), and b =
√

1 + 3λ2 − a2.

In addition, it is possible to wrap a continuous univariate distribution from Distributions.jl in
the Standardized wrapper type. Below, we use this feature to re-implement the standardized
normal distribution.

julia> using Distributions: Normal
julia> const MyStdNormal = Standardized{Normal}

MyStdNormal can be used everywhere that a built-in distribution could, albeit with a speed
penalty. Note also that if the underlying distribution (such as Normal in the example above)
contains location and/or scale parameters, then these are no longer identifiable, which implies
that the estimated covariance matrix of the estimators will be singular. A final remark
concerns the domain of the parameters: The estimation process relies on a starting value
for the parameters of the distribution, say θ ≡ (θ1, . . . , θp)⊤. For a distribution wrapped in
Standardized, the starting value for θi is taken to be a small positive value ε. This will
fail if ε is not in the domain of θi. As an example, the standardized Student’s t distribution
is only defined for degrees of freedom larger than 2, because a finite variance is required
for standardization. In that case, it is necessary to define a method for the (non-exported)
function startingvals that returns a feasible vector of starting values, as follows.

julia> import ARCHModels: startingvals
julia> import Distributions: TDist
julia> const MyStdT = Standardized{TDist}
julia> startingvals(::Type{<:MyStdT}, data::Vector{T}) where T = T[3.]

10 ARCHModels.jl: ARCH Models in Julia

3.2. Multivariate type hierarchy

Analogously to the univariate case, an instance of MultivariateARCHModel contains a matrix
of data (with observations in rows and assets in columns), and encapsulates information about
the covariance specification (CCC or DCC), the mean specification, and the error distribu-
tion. Like UnivariateARCHModel, it implements most of the interface of StatisticalModel
and hence supports many of the same methods as UnivariateARCHModels, with a few note-
worthy differences: The prediction targets for predict include covariances and correlations
for respectively predicting Σt and the correlation matrix Rt, and the functions covariances
and correlations respectively return the in-sample estimates of Σt and Rt. Details will be
given in Section 5 below.

Covariance specifications

As discussed, the main challenge in multivariate ARCH modeling is the curse of dimension-
ality: Allowing each of the d(d + 1)/2 free elements of Σt to depend on the past returns
and covariances of all d other assets requires O(d4) parameters, unless additional structure is
imposed. ARCHModels.jl focuses on conditional correlation models to approach this issue.
These decompose Σt as

Σt = DtRtDt,

where Rt is the conditional correlation matrix and Dt is a diagonal matrix containing the
volatilities of the individual assets, which are modeled as univariate ARCH processes. The
dynamics of Σt are modeled as subtypes of MultivariateVolatilitySpec.
It remains, then, to specify the dynamics of the conditional correlations Rt. The dynamic
conditional correlation (DCC) model of Engle (2002) imposes a GARCH-type structure on
these. In particular, for a DCC(p, q) model with covariance targeting,

Rij,t = Qij,t√
Qii,tQjj,t

,

where

Qt ≡ Q̄(1 − ᾱ − β̄) +
p∑

i=1
βiQt−i +

q∑
i=1

αiϵt−iϵ
⊤
t−i,

α, β > 0, α + β < 1, ᾱ ≡
∑q

i=1 αi, β̄ ≡
∑p

i=1 βi, ϵt ≡ D−1
t at, Qt = cov(ϵt | Ft−1), and

Q̄ = cov(ϵt). It is available as DCC{p, q}. Its constructor takes Q̄, a vector of coefficients,
and a vector of UnivariateARCHModels as inputs. For example, a bivariate DCC(1, 1) model
with GARCH(1, 1) dynamics for the individual volatilities is obtained as follows.

julia> DCC{1, 1}([1. .5; .5 1.], [.9, .05], [GARCH{1, 1}([1., .9, .05])
+ for _ in 1:2])

This becomes rather unwieldy if the number of assets is large, but note that as in the univariate
case, manually constructing a model is rarely necessary.
The constant conditional correlation (CCC) model of Bollerslev (1990) models Rt = R as
constant. It is the special case of the DCC model in which p = q = 0. As such, the
constructor has the exact same signature, except that the DCC parameters must be passed
as a zero-length vector as follows.

Journal of Statistical Software 11

julia> CCC([1. .5; .5 1.], Float64[], [GARCH{1, 1}([1., .9, .05])
+ for _ in 1:2])

Mean specifications

The conditional mean of a MultivariateARCHModel is specified by providing vector of uni-
variate MeanSpecs.

Multivariate standardized distributions

Multivariate standardized distributions subtype MultivariateStandardizedDistribution.
Currently, only MultivariateStdNormal is available. Note, however, that under mild regular-
ity conditions, the (quasi-)MLE based on the Gaussian assumption estimates the parameters
of the dynamic covariance specification consistently even if Gaussianity is violated (Jeantheau
1998).

4. Implementation details
ARCH-type models are typically estimated by maximum likelihood, i.e., by maximizing (2)
numerically, conditioned on the τ pre-sample values of rt. Starting the recursion for σt (as
in, e.g., (1) for the simple GARCH(1, 1) model) requires specifying the pre-sample values
of σ2

t . ARCHModels.jl follows a common convention in setting these to the unconditional
sample variance of rt. Other possibilities would have included backcasting the variance, or
substituting the unconditional variance. Different choices made by package authors lead to
slight differences in estimation results, see Section 6.
We maximize the likelihood using the Optim.jl package, using the BFGS algorithm (Broyden
1970; Fletcher 1970; Goldfarb 1970; Shanno 1970) by default. The user may choose a different
algorithm by providing a keyword argument to the fit function. The gradients are obtained
via automatic differentiation based on ForwardDiff.jl, an option exposed by Optim.jl.
The robust standard errors provided by ARCHModels.jl are constructed according to the
general theory of White (1982) and Gourieroux, Monfort, and Trognon (1984), by taking the
square root of the diagonal elements of

Σ̂ = J −1SJ −1, (8)

where, with Θ∗ denoting the MLE,

S ≡
T∑

t=τ+1
[∇ℓt(Θ)∇ℓt(Θ)⊤]Θ=Θ∗ ,

and
J ≡ −[∇∇⊤ℓ(Θ)]Θ=Θ∗

is the observed Fisher information. The scores ∇ℓt(Θ) and Hessian ∇∇⊤ℓ(Θ) are again
obtained by automatic differentiation via ForwardDiff.jl. Other implementations may rely
on finite differences, or on analytic expressions for the scores and Hessian. For example,
Fiorentini, Calzolari, and Panattoni (1996) present the relevant analytic expressions in the

12 ARCHModels.jl: ARCH Models in Julia

GARCH(1, 1) case. Another alternative is to rely on the robust standard errors of Boller-
slev and Wooldridge (1992), which replace the observed information J with the expected
information in (8).
As discussed in Section 3.1, all volatility specifications, such as GARCH{1, 1}, are implemented
as parametric types, parameterized by the lag orders of the model in question. The same is
true for the ARMA{p, q} mean specification. Due to the way that Julia works, this implies
that specialized methods of, e.g., the likelihood function are compiled for each lag order.
This facilitates certain compiler optimizations, such as unrolling some loops over the lag
index that appear in the likelihood function. This is one of the reasons for the excellent
performance of ARCHModels.jl (see Section 6). It does, however, come at the cost of increased
compilation time. While this cost is only paid once per new lag order to be estimated, it
does become noticeable when estimating many models of the same class but with different
lag order parameters, as occurs when using selectmodel for model selection. To mitigate
this, selectmodel estimates so-called subset models. This means that when doing model
selection over, say, the class of TGARCH{o, p, q} models with o, p, and q ranging from 1 to
3, selectmodel will, under the hood, estimate 33 = 27 TGARCH{3, 3, 3} models, but with
some of the coefficients αi, βi, and γi in (6) set to zero. This slows down the estimation of
each individual model, but more than makes up for it in reduced compile time.
Turning to multivariate models, the DCC model is typically estimated in two steps, by first
fitting univariate ARCH models to the individual assets and saving the standardized residuals
{ϵ̂t}, and then estimating the DCC parameters from those, by maximizing the correlation
component of the likelihood

−1
2

T∑
t=τ

log|Rt| + ϵ̂⊤R−1
t ϵ̂ − ϵ̂⊤ϵ̂

over {αi}q
i=1 and {βi}p

i=1, treating the volatility parameters of the univariate models as fixed
in this second step. Engle (2002) provides the details and expressions for the standard errors.
By default, this package employs an alternative estimator due to Engle et al. (2019), which
is better suited to large-dimensional problems. It achieves this by i) estimating Q̄ with a
nonlinear shrinkage estimator instead of the sample covariance of ϵ̂t, and ii) estimating the
DCC parameters by maximizing the sum of pairwise log-likelihoods, rather than the joint
log-likelihood over all assets, thereby avoiding the inversion of large matrices during the
optimization. The estimation method is controlled by passing the method keyword to the
fit method or the type constructors. Possible values are :largescale (the default), and
:twostep.

5. Illustrations

5.1. Case study: Univariate modeling

Fitting, model selection, and diagnostic testing

We will be using the data from Bollerslev and Ghysels (1996), available as the constant BG96.
The data consist of daily German mark/British pound exchange rates (1974 observations) and

Journal of Statistical Software 13

are often used in evaluating implementations of (G)ARCH models (see Section 6). We begin
by convincing ourselves that the data exhibit ARCH effects. A quick and dirty way of doing
this is to look at the sample autocorrelation function of the squared returns using the autocor
function that ARCHModels.jl re-exports from StatsBase.jl. Specifically, the following code
returns the vector [.22, .18, .14, .13].

julia> autocor(BG96 .^ 2, 1:4, demean = true)

Using a critical value of 1.96/
√

1974 = 0.044, we see that there is indeed significant autocor-
relation in the squared series.
A more formal test for the presence of volatility clustering is Engle’s (1982) ARCH-LM test.
The call ARCHLMTest(BG96, 1) shows an observed test statistic of 98.12 with a p value of
10−22, so the null is strongly rejected, again providing evidence for the presence of volatility
clustering.
Having established the presence of volatility clustering, we begin our analysis by fitting the
workhorse model of volatility modeling, a GARCH(1, 1) with standard normal errors. The
call fit(GARCH{1, 1}, BG96) returns an instance of UnivariateARCHModel, as described in
Section 3.1. The model is printed as follows.

GARCH{1, 1} model with Gaussian errors, T=1974.

Mean equation parameters:

Estimate Std.Error z value Pr(>|z|)

µ -0.00616637 0.00920163 -0.670139 0.5028

Volatility parameters:

Estimate Std.Error z value Pr(>|z|)

ω 0.0107606 0.00649493 1.65677 0.0976
β1 0.805875 0.0725003 11.1155 <1e-27
α1 0.153411 0.0536586 2.85903 0.0042

The parameters α1 and β1 in the volatility equation are highly significant, again confirming
the presence of volatility clustering.
The fit method supports a number of keyword arguments. The full signature is given below.

fit(
::Type{<:UnivariateVolatilitySpec},
data::Vector;
dist = StdNormal,
meanspec = Intercept,

14 ARCHModels.jl: ARCH Models in Julia

algorithm = BFGS(),
autodiff = :forward,
kwargs...
)

Here, dist is a subtype (not instance) of StandardizedDistribution. The mean specifi-
cation is specified via meanspec and defaults to Intercept. It can be passed as either a
subtype of MeanSpec or an instance thereof (for specifications that require additional data,
such as Regression). If the mean specification in question has a notion of sample size (like
Regression), then this sample size should match that of the data, or an error will be thrown.
The remaining keyword arguments are passed on to the optimizer.
As an example, an EGARCH(1, 1, 1) model with an intercept and Student’s t errors would
be fitted using the code below.

julia> fit(EGARCH{1, 1, 1}, BG96; meanspec = Intercept, dist = StdT)

An alternative approach to fitting a UnivariateVolatilitySpec to BG96 is to first construct
a UnivariateARCHModel containing the data, and then using fit! to modify it in place.

julia> am = UnivariateARCHModel(GARCH{1, 1}([1., 0., 0.]), BG96)
julia> fit!(am)

Calling fit(am) will return a new instance of UnivariateARCHModel instead.
Assuming the GLM.jl and DataFrames.jl packages are installed, it is also possible to pass a
LinearModel (or TableRegressionModel) to fit instead of a data vector. This is equivalent
to using a Regression as a mean specification. In the following example, we fit a linear model
with GARCH(1, 1) errors, where the design matrix consists of a breaking intercept and time
trend.

julia> using GLM, DataFrames
julia> data = DataFrame(B = [ones(1000); zeros(974)], T = 1:1974, Y = BG96)
julia> model = lm(@formula(Y ~ B * T), data)
julia> fit(GARCH{1, 1}, model)

One of the issues in ARCH modeling is selecting the lag order. As discussed in Section 2,
one possibility is to make this choice based on an information criterion. ARCHModels.jl can
automate this procedure, via the selectmodel function. Given a model class (i.e., a subtype
of UnivariateVolatilitySpec), it will return a fitted UnivariateARCHModel, with the lag
length parameters chosen to minimize the desired criterion. The BIC is used by default.
As an example, the following selects the optimal (minimum AIC) EGARCH(o, p, q) model,
where o, p, q ≤ 2, assuming t distributed errors.

julia> selectmodel(EGARCH, BG96; criterion = aic, maxlags = 2, dist = StdT)

For these data, an EGARCH(1, 1, 2) model is selected. Passing the optional keyword argu-
ment show_trace = true will show the criterion for each model after it is estimated. Any
unspecified lag length parameters in the mean specification (such as p and q for ARMA) will
be optimized over as well. For example, the code below returns an ARCH(2)-AR(1) model.

Journal of Statistical Software 15

julia> selectmodel(ARCH, BG96; meanspec = AR, maxlags = 2)

Note, however, that this can result in an explosion of the number of models that must be esti-
mated. For example, selecting the best model from the class of TGARCH(o, p, q)-ARMA(p,
q) models results in maxlags5 models being estimated. It may thus be preferable to fix the
lag length of the mean specification by specifying meanspec = AR{1} instead of meanspec =
AR. Similarly, one may restrict the lag length of the volatility specification and select only
among different mean specifications.
The conditional volatilities σ̂t and standardized residuals ẑt are respectively accessible via
volatilities(::UnivariateARCHModel) and residuals(::UnivariateARCHModel). The
non-standardized residuals ât can be obtained by passing standardized = false as a key-
word argument to residuals.
As discussed in Section 2, one possibility to test a volatility specification is to apply the
ARCH-LM test to the standardized residuals. This is achieved by calling ARCHLMTest on the
estimated UnivariateARCHModel.

julia> am = fit(GARCH{1, 1}, BG96)
julia> ARCHLMTest(am, 4)

By default, the number of lags in the test regression is chosen as the maximum order of the
volatility specification (e.g., max(p, q) for a GARCH(p, q) model). Here, we chose 4 instead.
The test does not reject, indicating that a GARCH(1, 1) specification is sufficient for modeling
the volatility clustering (a common finding).

Value at Risk prediction

Basic in-sample estimates for the Value at Risk implied by an estimated UnivariateARCHModel
can be obtained using VaRs.

julia> am = fit(GARCH{1, 1}, BG96)
julia> vars = VaRs(am, 0.05)

The 0.05 here specifies that the 5% VaR is sought. The code snippet below then produces
the graph in Figure 2.

julia> using Plots
julia> plot(-BG96, legend = :none, xlabel = "\$t\$", ylabel = "\$-r_t\$")
julia> plot!(vars, color = :purple)

The predict(am::UnivariateARCHModel) method can be used to construct one-step ahead
forecasts for a number of quantities. Its signature is given below.

predict(
am::UnivariateARCHModel,
what = :volatility,
horizon = 1;
level = 0.01
)

16 ARCHModels.jl: ARCH Models in Julia

Figure 2: 5% Value at Risk for the Bollerslev and Ghysels (1996) data.

The optional argument what controls which object is predicted. The choices are :volatility
(the default), :variance, :return, and :VaR. The VaR level can be controlled with the
keyword argument level.
One way to use predict is in a backtesting exercise. The following code snippet constructs
out-of-sample VaR forecasts V̂aRt for the Bollerslev and Ghysels (1996) data by re-estimating
the model in a rolling window fashion.

julia> T = length(BG96)
julia> windowsize = 1000
julia> vars = similar(BG96)
julia> for t = windowsize:T-1

m = fit(GARCH{1, 1}, BG96[t-(windowsize-1):t])
vars[t+1] = predict(m, :VaR; level = 0.05)

end

Remarkably, estimating these 974 GARCH(1, 1) models and predicting the Value at Risk for
each takes but 1.5 seconds in total. Decorating the loop with Threads.@threads to enable
multithreading reduces this further, to around .15 seconds using 12 threads; see Section 6
for detailed benchmarks. As discussed in Section 2, the correctness of the VaR specification
can then be tested using Engle and Manganelli’s (2004) dynamic quantile test. The test is
available as DQTest. Calling the following shows that the test fails to reject its null hypothesis
that the specification is correct with a p value of 0.74.

julia> DQTest(BG96[windowsize+1:end], vars[windowsize+1:end], 0.05)

Simulation

To simulate from a UnivariateARCHModel, the simulate function is used. It requires specify-
ing the UnivariateVolatilitySpec (and optionally the distribution and mean specification),
and the desired number of observations T . As an example, simulating a GARCH(1, 1) model
with an intercept and errors following a standardized t distribution is achieved as follows.

Journal of Statistical Software 17

julia> am3 = simulate(GARCH{1, 1}([1., .9, .05]), 1000;
+ warmup = 500, meanspec = Intercept(5.), dist = StdT(3.))

Here, the keyword argument warmup = 500 specifies that 500 pre-sample values should be
simulated (and later discarded), 100 being the default. Alternatively, it is possible to pass an
existing UnivariateARCHModel to simulate. In this case, passing T is optional; it defaults
to the sample size of the provided model. Hence, simulate(am3) returns a new model simu-
lated from am3 above. Alternatively, simulate!(am3) modifies am3 in place. All simulation
functions accept a keyword argument rng, to allow the user to specify a random number
generator (and thus a seed value) by passing an AbstractRNG from the Random standard
library module.
Care must be taken if the mean specification has a notion of sample size, as in the case of
Regression: Because the sample size must match that of the data to be simulated, one must
pass warmup = 0, or an error will be thrown.

5.2. Multivariate modeling

In this section, the percentage returns on 29 stocks from the Dow Jones Industrial Average
(DJIA) from 2008-03-19 through 2019-04-11, available as DOW29, will be used.
Fitting a multivariate ARCH model proceeds similarly to the univariate case, by passing the
type of the multivariate ARCH specification to fit. If the lag length (and in the case of
the DCC model, the univariate specification) is left unspecified, then these default to 1 (and
GARCH). In other words, the invocations fit(DCC, DOW29), fit(DCC{1, 1}, DOW29), and
fit(DCC{1, 1, GARCH{1, 1}}, DOW29) are all equivalent. All three return an object of type
MultivariateARCHModel.
As in the univariate case, fit supports a number of keyword arguments. The full signature
is given below.

fit(
spec,
data;
method = :largescale,
dist = MultivariateStdNormal,
meanspec = Intercept,
algorithm = BFGS(),
autodiff = :forward,
kwargs...
)

Their meaning is similar to the univariate case. In particular, meanspec can be any univariate
mean specification. The estimation method can be specified by passing either :twostep or
:largescale for method, which respectively refer to the methods of Engle (1982) and Engle
et al. (2019). As discussed in Section 4, the latter sacrifices some amount of statistical
efficiency for much-improved computational speed and is the default. Again paralleling the
univariate case, one may also construct a MultivariateARCHModel by hand and then call
fit or fit! on it, but this is rather cumbersome, as it requires specifying all the parameters

18 ARCHModels.jl: ARCH Models in Julia

of the covariance specification; in the case of the CCC and DCC models, this includes the
parameters of the univariate volatility models.
One-step ahead forecasts of the covariance or correlation matrix are obtained by respectively
passing what = :covariance (the default) or what = :correlation to predict.
In the multivariate case, there are three types of residuals that can be considered: The un-
standardized residuals, ât; the devolatized residuals, ϵ̂t, where ϵ̂it ≡ âit/σ̂it; and the decorre-
lated residuals ẑt ≡ Σ̂−1/2

t ât. When called on a MultivariateARCHModel, residuals returns
{ẑt} by default. Passing decorrelated = false returns {ϵ̂t}, and passing standardized =
false returns {ât} (note that decorrelated = true implies standardized = true).

6. Comparison with other packages

6.1. Univariate: GARCH(1, 1)

In this section, we compare the results produced by ARCHModels.jl to those obtained with
the rugarch package for R, the arch package for Python, and with MATLAB’s Econometrics
toolbox. As mentioned, the de-facto standard when comparing implementations of GARCH
models is to use the daily German mark/British pound exchange rates from Bollerslev and
Ghysels (1996). This goes back to Brooks, Burke, and Persand (2001), whose results we will
use as a benchmark.
Brooks et al. (2001) fit a GARCH(1, 1) model with an intercept to the data and give the
following estimates (rounded to three significant digits, t statistics in parentheses): µ =
−0.00619(−0.67), ω = 0.0108(1.66), α1 = 0.153(2.86), and β1 = 0.806(11.11). Note that
these values should not necessarily be considered the “correct” estimates, because as discussed
in Section 4, the results will generally depend on the implementation (e.g., treatment of
presample values, choice of optimization algorithm and starting values).
The estimates obtained by the various packages are given in Table 1. It is seen that the
differences in parameter estimates between packages are generally small. MATLAB matches
those of Brooks et al. (2001) to the given precision, and ARCHModels.jl and rugarch are
generally close. The estimates produced by Python’s arch package are noticeably different
when using the default settings. The reason is that arch treats presample values differently
by default. However, its fit method accepts an optional argument backcast. When this is
set to the sample variance of the data, then the estimates match those of ARCHModels.jl to
the given precision.
ARCHModels.jl, R’s rugarch, and Python’s arch all produce robust standard errors, and
the results do not differ much. ARCHModels.jl (and arch after passing the same optional
argument as before) track Brooks et al. (2001) most closely. MATLAB is the exception in
that it does not produce robust standard errors, instead relying on the “outer product of
gradients“ estimate of the covariance matrix, i.e., instead of Σ̂ = J −1SJ −1 as in (8), it uses
Σ̂ = S−1.
The most striking observation in Table 1 is the difference in runtime between packages:
ARCHModels.jl takes 2.69 ms to fit the GARCH(1, 1) model to these 1,974 observations,
with Python’s arch package taking 5.43 times as long, MATLAB taking 9.94 times as long,
and R’s rugarch package taking 32.97 times as long (though to be fair, the output of the latter

Journal of Statistical Software 19

Brooks et al. ARCHModels.jl rugarch arch arch† MATLAB

Coefficients
µ · 102 −0.619 −0.617 −0.618 −0.608 −0.617 −0.619
ω · 101 0.108 0.108 0.108 0.099 0.108 0.108
α 0.153 0.153 0.153 0.145 0.153 0.153
β 0.806 0.806 0.806 0.817 0.806 0.806

t statistics
µ −0.67 −0.67 −0.69 −0.66 −0.67 −0.73
ω 1.66 1.66 1.66 1.56 1.66 8.13
α 2.86 2.86 3.11 2.61 2.86 10.96
β 11.11 11.12 11.65 10.97 11.12 48.67

Runtime
Absolute (ms) 2.687 88.584 14.600 26.701
Relative 1.0 32.97 5.43 9.94
† arch_model(data).fit(backcast = np.var(data))

Table 1: Estimation results and runtime for fitting a GARCH(1, 1) to the Bollerslev and
Ghysels (1996) data with various packages.

contains a considerable amount of additional information, such as non-robust standard errors
and a number of tests). While the differences in absolute runtimes may seem small enough to
not make these speedups noticeable in practice, it should be noted that there are situations in
which a model needs to be estimated thousands (e.g., univariate backtesting) or even millions
(e.g., multivariate backtesting of large-dimensional CCC/DCC models) of times.
As all four packages implement the “hot loop”, i.e., the log-likelihood function, in a compiled
language (Julia in the case of Julia, Cython in the case of arch, C/C++ for the others),
Julia’s advantage likely results from a combination of the use of automatic differentiation for
gradients, method specialization on type parameters, and the fact that fewer context switches
are needed because both the optimizer and the likelihood function are implemented in Julia.

6.2. Multivariate: DCC(1, 1)

In this section, we compare our implementation of the multivariate DCC model with that of
the R package rmgarch (Galanos 2022). We exclude MATLAB and Python from this compar-
ison, as MATLAB has no built-in support for multivariate models, and there does not appear
to exist a widely used package for Python.
Unlike in the univariate case, there is no generally accepted benchmark dataset. As such,
we fit a DCC(1, 1) model to the percentage returns on 29 stocks from the DJIA from 2008-
03-19 through 2019-04-11. As discussed, these are available as DOW29 in ARCHModels.jl. A
simple GARCH(1, 1) model with an intercept in the mean equation is used for the univariate
specifications. We exclude computing the standard errors and t statistics from the runtime;
both packages have options for doing this, because the operation is costly. Table 2 shows the
results.

20 ARCHModels.jl: ARCH Models in Julia

ARCHModels.jl† ARCHModels.jl‡ rmgarch
Coefficients

α 0.057 0.008 0.006
β 0.888 0.956 0.965

t statistics
α 1.98 3.98 5.83
β 12.98 58.24 105.47

Runtime (w/o standard errors)
Absolute (s) 21.5 · 10−3 3.91 9.35
Relative 0.006 1.0 2.4
† fit(DCC, DOW29)
‡ fit(DCC, DOW29; method = :twostep)

Table 2: Estimation results and runtime for fitting a DCC(1, 1) to the DJIA data with
ARCHModels.jl and rmgarch.

As described in Section 4, ARCHModels.jl implements two different algorithms for fitting
DCC models. The :twostep algorithm corresponds to the one used in rmgarch, and the es-
timation results are similar. The difference in runtime between the packages is much smaller
than in the univariate case. This is because the runtime is dominated by repeatedly invert-
ing the 29-dimensional correlation matrix within the likelihood (estimating the 29 univariate
models is parallelized in both packages). Using the default :largescale algorithm in ARCH-
Models.jl is around 180 times faster, because it avoids having to invert large matrices.

7. Summary and discussion

We have introduced ARCHModels.jl, a package for estimating, simulating, and testing ARCH-
type models in the Julia programming language. The package is entirely written in Julia and
makes ample use of its features, including, but not limited to, parametric types and au-
tomatic differentiation, while its modular design makes it easy to extend with additional
models or error distributions. ARCHModels.jl is able to reproduce benchmark estimation re-
sults available in the literature, and outperforms some alternative implementations in terms
of computational speed.

Computational details

The package versions used throughout the paper are ARCHModels.jl 2.3.3 on Julia 1.8.5,
rugarch 1.4-9 and rmgarch 1.3-9, both utilizing compiled Cython binaries, on R 4.2.2, arch
5.3.1 on Python 3.10.9, and the Econometrics toolbox of MATLAB R2021b. All timings,
including those in Tables 1 and 2, have been obtained with Ubuntu 20.04 running on an
AMD Ryzen 9 3900X with 32 GB of RAM, with Julia, R, and Python running inside Docker
(Merkel 2014) containers.

Journal of Statistical Software 21

Acknowledgments
Simon Broda has received funding from the European Union’s Horizon 2020 research and
innovation program under Marie Skłodowska-Curie grant agreement No 750559. The authors
would like to thank two anonymous referees for their insightful comments, which have helped
improve the paper.

References

Akaike H (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions
on Automatic Control, 19, 716–723. doi:10.1109/tac.1974.1100705.

Bates D, Noack A, Kornblith S, Bouchet-Valat M, Borregaard MK, Arslan A, White JM,
Kleinschmidt D, Alday P, Lynch G, Dunning I, Mogensen PK, Lendle S, Aluthge D, Def-
febach P, Calderón JBS, Patnaik A, Born B, Setzler B, Kamiński B (2023). GLM.jl: Gen-
eralized Linear Models in Julia. doi:10.5281/zenodo.7734970. Julia package version 1.8.2,
URL https://github.com/JuliaStats/GLM.jl.

Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K (2011). “Cython: The Best
of Both Worlds.” Computing in Science & Engineering, 13(2), 31–39. doi:10.1109/mcse.
2010.118.

Besançon M, Papamarkou T, Anthoff D, Arslan A, Byrne S, Lin D, Pearson J (2021). “Distri-
butions.jl: Definition and Modeling of Probability Distributions in the JuliaStats Ecosys-
tem.” Journal of Statistical Software, 98(16), 1–30. doi:10.18637/jss.v098.i16.

Bezanson J, Edelman A, Karpinski S, Shah VB (2017). “Julia: A Fresh Approach to Numerical
Computing.” SIAM Review, 59(1), 65–98. doi:10.1137/141000671.

Bodin G, Saavedra R, Fernandes C, Street A (2020). “ScoreDrivenModels.jl: A Julia Package
for Generalized Autoregressive Score Models.” Technical Report 2008.05506, arXiv.org E-
Print Archive. doi:10.48550/arXiv.2008.05506.

Bodin G, Saavedra R, Fernandes C, Street A (2022). ScoreDrivenModels.jl: A Julia Package
for Generalized Autoregressive Score Models. Julia package version 0.2.1, URL https:
//github.com/LAMPSPUC/ScoreDrivenModels.jl.

Bollerslev T (1986). “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of
Econometrics, 31, 307–327. doi:10.1016/0304-4076(86)90063-1.

Bollerslev T (1990). “Modelling the Coherence in Short-Run Nominal Exchange Rates: A
Multivariate Generalized ARCH Model.” The Review of Economics and Statistics, 72(3),
498–505. doi:10.2307/2109358.

Bollerslev T, Engle RF, Wooldridge JM (1988). “A Capital Asset Pricing Model with Time-
Varying Covariances.” Journal of Political Economy, 96(1), 116–131. doi:10.1086/261527.

Bollerslev T, Ghysels E (1996). “Periodic Autoregressive Conditional Heteroscedasticity.”
Journal of Business & Economic Statistics, 14, 139–151. doi:10.1080/07350015.1996.
10524640.

https://doi.org/10.1109/tac.1974.1100705
https://doi.org/10.5281/zenodo.7734970
https://github.com/JuliaStats/GLM.jl
https://doi.org/10.1109/mcse.2010.118
https://doi.org/10.1109/mcse.2010.118
https://doi.org/10.18637/jss.v098.i16
https://doi.org/10.1137/141000671
https://doi.org/10.48550/arXiv.2008.05506
https://github.com/LAMPSPUC/ScoreDrivenModels.jl
https://github.com/LAMPSPUC/ScoreDrivenModels.jl
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.2307/2109358
https://doi.org/10.1086/261527
https://doi.org/10.1080/07350015.1996.10524640
https://doi.org/10.1080/07350015.1996.10524640

22 ARCHModels.jl: ARCH Models in Julia

Bollerslev T, Wooldridge JM (1992). “Quasi-Maximum Likelihood Estimation and Inference
in Dynamic Models with Time-Varying Covariances.” Econometric Reviews, 11, 143–172.
doi:10.1080/07474939208800229.

Bouchet-Valat M, Kamiński B (2023). “DataFrames.jl: Flexible and Fast Tabular Data in
Julia.” Journal of Statistical Software, 107(4), 1–32. doi:10.18637/jss.v107.i04.

Brooks C, Burke S, Persand G (2001). “Benchmarks and the Accuracy of GARCH Model Es-
timation.” International Journal of Forecasting, 17, 45–56. doi:10.1016/s0169-2070(00)
00070-4.

Broyden CG (1970). “The Convergence of a Class of Double-Rank Minimization Algorithms
1. General Considerations.” IMA Journal of Applied Mathematics, 6, 76–90. doi:10.1093/
imamat/6.1.76.

Creal D, Koopman SJ, Lucas A (2013). “Generalized Autoregressive Score Models with
Applications.” Journal of Applied Econometrics, 28(5), 777–795. doi:10.1002/jae.1279.

Engle RF (1982). “Autoregressive Conditional Heteroscedasticity with Estimates of the Vari-
ance of United Kingdom Inflation.” Econometrica, 50(4), 987–1007. doi:10.2307/1912773.

Engle RF (2002). “Dynamic Conditional Correlation.” Journal of Business & Economic
Statistics, 20(3), 339–350. doi:10.1198/073500102288618487.

Engle RF, Ledoit O, Wolf M (2019). “Large Dynamic Covariance Matrices.” Journal of
Business & Economic Statistics, 37(2), 363–375. doi:10.1080/07350015.2017.1345683.

Engle RF, Manganelli S (2004). “CAViaR.” Journal of Business & Economic Statistics, 22(4),
367–381. doi:10.1198/073500104000000370.

Fama E (1970). “Efficient Capital Markets: A Review of Theory and Empirical Work.”
Journal of Finance, 25, 383–417. doi:10.2307/2325486.

Fiorentini G, Calzolari G, Panattoni L (1996). “Analytic Derivatives and the Computation of
GARCH Estimates.” Journal of Applied Econometrics, 11, 399–417. doi:10.1002/(sici)
1099-1255(199607)11:4<399::aid-jae401>3.0.co;2-r.

Fletcher R (1970). “A New Approach to Variable Metric Algorithms.” The Computer Journal,
13, 317–322. doi:10.1093/comjnl/13.3.317.

Galanos A (2022). rmgarch: Multivariate GARCH Models. R package version 1.3-9., URL
https://CRAN.R-project.org/package=rmgarch.

Ghalanos A (2022). rugarch: Univariate GARCH Models. R package version 1.4-9., URL
https://CRAN.R-project.org/package=rugarch.

Glosten LR, Jagannathan R, Runkle DE (1993). “On the Relation Between the Expected
Value and the Volatility of the Nominal Excess Return on Stocks.” The Journal of Finance,
48, 1779–1801. doi:10.1111/j.1540-6261.1993.tb05128.x.

Goldfarb D (1970). “A Family of Variable-Metric Methods Derived by Variational Means.”
Mathematics of Computation, 24, 23–26. doi:10.1090/s0025-5718-1970-0258249-6.

https://doi.org/10.1080/07474939208800229
https://doi.org/10.18637/jss.v107.i04
https://doi.org/10.1016/s0169-2070(00)00070-4
https://doi.org/10.1016/s0169-2070(00)00070-4
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1002/jae.1279
https://doi.org/10.2307/1912773
https://doi.org/10.1198/073500102288618487
https://doi.org/10.1080/07350015.2017.1345683
https://doi.org/10.1198/073500104000000370
https://doi.org/10.2307/2325486
https://doi.org/10.1002/(sici)1099-1255(199607)11:4<399::aid-jae401>3.0.co;2-r
https://doi.org/10.1002/(sici)1099-1255(199607)11:4<399::aid-jae401>3.0.co;2-r
https://doi.org/10.1093/comjnl/13.3.317
https://CRAN.R-project.org/package=rmgarch
https://CRAN.R-project.org/package=rugarch
https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
https://doi.org/10.1090/s0025-5718-1970-0258249-6

Journal of Statistical Software 23

Gourieroux C, Monfort A, Trognon A (1984). “Pseudo Maximum Likelihood Methods: The-
ory.” Econometrica, 52, 681–700. doi:10.2307/1913471.

Hansen BE (1994). “Autoregressive Conditional Density Estimation.” International Economic
Review, 35, 705–730. doi:10.2307/2527081.

Harris CR, Millman KJ, Van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser
E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, Van Kerkwijk MH, Brett M,
Haldane A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy
T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE (2020). “Array Programming with
NumPy.” Nature, 585(7825), 357–362. doi:10.1038/s41586-020-2649-2.

Harvey AC (2013). Dynamic Models for Volatility and Heavy Tails: with Applications to
Financial and Economic Time Series. Econometric Society Monographs. Cambridge Uni-
versity Press, Cambridge. doi:10.1017/cbo9781139540933.

Jeantheau T (1998). “Strong Consistency of Estimators for Multivariate Arch Models.” Econo-
metric Theory, 14, 70–86. doi:10.1017/S0266466698141038.

Kamiński B, White JM, Bouchet-Valat M, et al. (2023). DataFrames.jl: In-Memory Tabular
Data in Julia. doi:10.5281/zenodo.8129187. Julia package version 1.6.0, URL https:
//github.com/JuliaData/DataFrames.jl.

Kornblith S, et al. (2023). HypothesisTests.jl: Hypothesis Tests for Julia. Julia package
version 0.11.0, URL https://github.com/JuliaStats/HypothesisTests.jl.

Lin D, Byrne S, Noack A, Bates D, White JM, Kornblith S, et al. (2023a). StatsBase.jl: Basic
Statistics for Julia. Julia package version 0.34.0, URL https://github.com/JuliaStats/
StatsBase.jl.

Lin D, White JM, Byrne S, Bates D, Noack A, Pearson J, Arslan A, Squire K, Anthoff D,
Papamarkou T, Besançon M, Drugowitsch J, Schauer M, et al. (2023b). Distributions.jl:
A Julia Package for Probability Distributions and Associated Functions. doi:10.5281/
zenodo.8102384. Julia package version 0.25.98, URL https://github.com/JuliaStats/
Distributions.jl.

Merkel D (2014). “Docker: Lightweight Linux Containers for Consistent Development and
Deployment.” Linux Journal, 2014(239), 2. doi:10.1007/978-1-4842-5826-2_3.

Mogensen PK, Riseth AN (2018). “Optim: A Mathematical Optimization Package for Julia.”
Journal of Open Source Software, 3(24), 615. doi:10.21105/joss.00615.

Mogensen PK, Riseth AN, et al. (2023). Optim.jl: Optimization Functions for Julia. Ju-
lia package version 1.7.6, URL https://github.com/JuliaNLSolvers/Optim.jl.

Nelson DB (1991). “Conditional Heteroskedasticity in Asset Returns: A New Approach.”
Econometrica, 59, 347–370. doi:10.2307/2938260.

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna. URL https://www.R-project.org/.

https://doi.org/10.2307/1913471
https://doi.org/10.2307/2527081
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1017/cbo9781139540933
https://doi.org/10.1017/S0266466698141038
https://doi.org/10.5281/zenodo.8129187
https://github.com/JuliaData/DataFrames.jl
https://github.com/JuliaData/DataFrames.jl
https://github.com/JuliaStats/HypothesisTests.jl
https://github.com/JuliaStats/StatsBase.jl
https://github.com/JuliaStats/StatsBase.jl
https://doi.org/10.5281/zenodo.8102384
https://doi.org/10.5281/zenodo.8102384
https://github.com/JuliaStats/Distributions.jl
https://github.com/JuliaStats/Distributions.jl
https://doi.org/10.1007/978-1-4842-5826-2_3
https://doi.org/10.21105/joss.00615
https://github.com/JuliaNLSolvers/Optim.jl
https://doi.org/10.2307/2938260
https://www.R-project.org/

24 ARCHModels.jl: ARCH Models in Julia

Revels J, Lubin M, Papamarkou T (2016). “Forward-Mode Automatic Differentiation in
Julia.” Technical Report 1607.07892, arXiv.org E-Print Archive. doi:https://doi.org/
10.48550/arXiv.1607.07892.

Revels J, Lubin M, Papamarkou T, et al. (2023). ForwardDiff.jl: Forward Mode Auto-
matic Differentiation for Julia. Julia package version 0.10.35, URL https://github.com/
JuliaDiff/ForwardDiff.jl.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6,
461–464. doi:10.1214/aos/1176344136.

Shanno DF (1970). “Conditioning of Quasi-Newton Methods for Function Minimization.”
Mathematics of Computation, 24, 647–656. doi:10.1090/s0025-5718-1970-0274029-x.

Sheppard K, et al. (2022). arch: ARCH for Python. doi:10.5281/zenodo.6684078.
Python package version 5.3.1, URL https://pypi.org/project/arch/.

The MathWorks Inc (2021). MATLAB – The Language of Technical Computing, Version
R2021a. Natick. URL https://www.mathworks.com/products/matlab/.

Van Rossum G (1995). “Python Tutorial.” Technical Report CS-R9526, Centrum voor
Wiskunde en Informatica (CWI), Amsterdam. URL https://ir.cwi.nl/pub/5007.

White H (1982). “Maximum Likelihood Estimation of Misspecified Models.” Econometrica,
50, 1–25. doi:10.2307/1912526.

Zakoian JM (1994). “Threshold Heteroskedastic Models.” Journal of Economic Dynamics
and Control, 18(5), 931–955. doi:10.1016/0165-1889(94)90039-6.

Affiliation:
Simon A. Broda
Institute of Financial Services IFZ
Lucerne University of Applied Sciences and Arts
Campus Zug-Rotkreuz
Suurstoffi 1
6343 Rotkreuz, Switzerland
E-mail: simon.broda@hslu.ch
URL: https://www.hslu.ch/de-ch/hochschule-luzern/ueber-uns/personensuche/profile/
?pid=4728

https://doi.org/https://doi.org/10.48550/arXiv.1607.07892
https://doi.org/https://doi.org/10.48550/arXiv.1607.07892
https://github.com/JuliaDiff/ForwardDiff.jl
https://github.com/JuliaDiff/ForwardDiff.jl
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1090/s0025-5718-1970-0274029-x
https://doi.org/10.5281/zenodo.6684078
https://pypi.org/project/arch/
https://www.mathworks.com/products/matlab/
https://ir.cwi.nl/pub/5007
https://doi.org/10.2307/1912526
https://doi.org/10.1016/0165-1889(94)90039-6
mailto:simon.broda@hslu.ch
https://www.hslu.ch/de-ch/hochschule-luzern/ueber-uns/personensuche/profile/?pid=4728
https://www.hslu.ch/de-ch/hochschule-luzern/ueber-uns/personensuche/profile/?pid=4728

Journal of Statistical Software 25

Marc S. Paolella
Department of Banking and Finance
University of Zurich
PLM-H 320
Plattenstr. 14
8032 Zürich, Switzerland
E-mail: marc.paolella@bf.uzh.ch
URL: https://www.bf.uzh.ch/de/persons/paolella-marc

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

September 2023, Volume 107, Issue 5 Submitted: 2022-04-08
doi:10.18637/jss.v107.i05 Accepted: 2023-03-01

mailto:marc.paolella@bf.uzh.ch
https://www.bf.uzh.ch/de/persons/paolella-marc
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v107.i05

	Introduction
	Theoretical background
	ARCH models
	Value at Risk
	Multivariate models

	Available models and type hierarchy
	Univariate type hierarchy
	Volatility specifications
	Mean specifications
	Distributions

	Multivariate type hierarchy
	Covariance specifications
	Mean specifications
	Multivariate standardized distributions

	Implementation details
	Illustrations
	Case study: Univariate modeling
	Fitting, model selection, and diagnostic testing
	Value at Risk prediction
	Simulation

	Multivariate modeling

	Comparison with other packages
	Univariate: GARCH(1, 1)
	Multivariate: DCC(1, 1)

	Summary and discussion

