
JSS Journal of Statistical Software
September 2023, Volume 107, Issue 4. doi: 10.18637/jss.v107.i04

DataFrames.jl: Flexible and Fast Tabular Data
in Julia

Milan Bouchet-Valat
French Institute for Demographic Studies

Bogumił Kamiński
SGH Warsaw School of Economics

Abstract

DataFrames.jl is a package written for and in the Julia language offering flexible and
efficient handling of tabular data sets in memory. Thanks to Julia’s unique strengths, it
provides an appealing set of features: Rich support for standard data processing tasks and
excellent flexibility and efficiency for more advanced and non-standard operations. We
present the fundamental design of the package and how it compares with implementations
of data frames in other languages, its main features, performance, and possible extensions.
We conclude with a practical illustration of typical data processing operations.

Keywords: data frame, tabular data, performance, multi-threading, Julia.

1. Introduction
DataFrames.jl is a package written for and in the Julia language (Bezanson, Edelman, Karpin-
ski, and Shah 2017) offering flexible and efficient handling of tabular data sets in memory.
Thanks to Julia’s unique strengths, we believe that this new implementation of the classic
concept of data frame provides an appealing set of features, with rich support for standard
data processing tasks, as well as an excellent level of flexibility and efficiency for more ad-
vanced and non-standard operations. Among DataFrames.jl’s design goals are the ability to
write high-level Julia code with C- or Fortran-like speed for any user-defined transformation
task, consistent design of basic and high-level operations, strong integration with the Julia
ecosystem, efficient and multi-threaded grouped operations, first-class support for custom
column types, zero-copy data exchange with other languages via the Apache Arrow format,
ability to store table- and column-level metadata, and more.
Julia allows developers to write efficient and multi-threaded code to process data without
any extra packages. It is relatively common to use a named tuple of vectors as a simple,
built-in type to store and process tabular data. Therefore a natural question is: What is the
role of DataFrames.jl in the Julia ecosystem? The answer is that the main goal is to provide

https://doi.org/10.18637/jss.v107.i04
https://orcid.org/0000-0001-6648-1095
https://orcid.org/0000-0002-0678-282X

2 DataFrames.jl: Flexible and Fast Tabular Data in Julia

flexibility and convenience to users while not sacrificing execution speed. This contrasts with
the functions that serve e.g., the data.table (Dowle and Srinivasan 2023b) package in R or
the Polars (Vink 2023) bindings in Python, where one needs an external package written in
a low-level language to benefit from fast and multi-threaded execution of operations on data
frames.
This article is structured as follows. In Section 2 we discuss general principles behind the
development of the DataFrames.jl package, and in Section 3 we present the key design elements
of the DataFrame object. In Sections 4 and 5 we respectively discuss the low-level imperative
API based on indexing and the declarative API using high-level functions. Then Section 6
summarizes other key functionalities provided by the DataFrames.jl package. In Section 7 we
present how the package integrates with the wider ecosystem of data management packages
developed for the Julia language. In Section 8 we discuss the performance of the package.
We conclude by giving references to materials available for users wanting to learn how to use
DataFrames.jl and by discussing limitations and planned developments of the package.
The code presented in this article was run under Julia 1.9.0 and DataFrames.jl 1.5.0. The
example code from the paper is provided in a companion README.md file and, for reader
convenience, additional files containing source code for benchmarks of selected tabular data
processing packages. Along with these files the Project.toml and Manifest.toml files are
provided to ensure that Julia installs the exact package versions with which the code was run.
To learn how to properly set up and run the examples see the instructions provided in Julia’s
package manager documentation https://pkgdocs.julialang.org/v1/getting-started/.

2. About DataFrames.jl
The concept of data frame has been well-established for several decades in statistical program-
ming environments. Among its best-known implementations are: (a) R’s data.frame type,
(b) the Python package pandas (McKinney 2010; pandas Development Team 2023), (c) the
R package tibble (Müller and Wickham 2023)—companion to dplyr (Wickham, François,
Henry, and Müller 2023), and (d) the R package data.table (Dowle and Srinivasan 2023b).
Data frames are essential building blocks of a majority of data analysis pipelines, so it is
not surprising that DataFrames.jl is one of the oldest and most popular packages of the
Julia ecosystem (Claster and Shah 2021, slide 14). Even though it has been developed and
widely used since 2012 (six years before Julia reached version 1.0), DataFrames.jl 1.0 was only
released in 2021 when it was judged to have reached a sufficient level of maturity, consistency,
and integration with Julia design principles.
Data frames are one of the simplest ways of storing tabular data. Just like a spreadsheet, data
frames cross observations (rows) with variables (columns). Data frames differ from relational
databases in the fact that the order of rows and columns is significant. They are in some
ways closer to matrices, with the essential difference that columns have names and can store
values of different types efficiently (for example, strings, numbers, or custom user-defined
types). Performance is achieved by storing each column as a separate vector. This column-
oriented storage makes them different from most (but not all) database implementations and
particularly suited for the kind of operations involved in statistical work. However, existing
data frame packages differ in the extent to which this storage format is exposed to users. In
Section 3 we develop the choices made in DataFrames.jl.

https://pkgdocs.julialang.org/v1/getting-started/

Journal of Statistical Software 3

While the design of DataFrames.jl benefited a lot from the experience of various data frame
implementations, it is most similar to dplyr. Contrary to pandas and R’s data.frame,
DataFrames.jl does not support a special column holding row names: All columns are treated
in the same fashion. This fits in the “tidy data” paradigm (Wickham 2014) and allows for
simpler and more general interfaces. A similar choice is made in e.g., dplyr or data.table,
where using row names is discouraged. We know this may disappoint some users, but we
invite them to read the below presentations of alternative strategies, which can often prove
as convenient and efficient.

Probably the most notable strong point of DataFrames.jl, which makes it an original data
frame implementation, is due to its thorough and carefully thought application of the Julia
programming language design principles. Julia is a high-level, high-performance dynamic
programming language for technical computing that compiles to efficient machine code at
run time. It combines the ease of use of other dynamic languages such as R and Python with
the speed of C, C++ or Fortran. This sets DataFrames.jl apart from “classic” data frame
implementations since, contrary to them, it is written entirely in the same language as the
one its users work in (an approach which has recently been adopted by Polars in Rust).

Julia’s speed makes it unnecessary to implement the most performance-sensitive parts in a
lower-level language. While this may seem an implementation detail relevant only to develop-
ers, it also has major implications for end users. Indeed, this means that any custom function
written in high-level Julia code can be compiled to machine code and be as efficient as built-
in functions. Users do not need to learn a separate lower-level language nor deal with the
increased complexity of making two languages interact. This blurs the line between users and
developers, making it easier to develop non-standard operations when appropriate. It also
frees DataFrames.jl from the requirement to implement every particular specialized operation
to make it fast: Providing a generic function is enough since it can be combined efficiently
with user-defined operations. Therefore, DataFrames.jl does not provide implementations of
many operations that are typically applied to data frame columns, like plotting, statistical
functions, or displaying a data frame in a terminal. All these functionalities are provided by
external generic libraries that rely on the abstract table interface DataFrames.jl supports.

Furthermore, since it is entirely written in Julia, DataFrames.jl does not require columns to
fit in one of the few built-in types that the implementation supports. On the contrary, a
custom vector type or vector element type implementation provided by another package or
even written by the user is treated in the same way as standard ones. Such a new type can be
as efficient as the standard arrays and built-in types, which are supported by default. This
is in contrast with other high-performance data frame implementations, such as the recently
developed Polars package, which rely on a specific memory representation of stored columns,
often requiring users to convert the columns to other vector types before they can be used
with other Python packages. We illustrate in Section 7 how powerful this flexibility is by
combining DataFrames.jl with other packages e.g., supporting data with a small number of
unique values, categorical data, or fast memory-mapped read-only columns. Observe that
this flexibility allows users to store objects of any type in a data frame without losing the
type information. In particular, this allows a column of a data frame to nest composite types,
like arrays or struct types that are available in modern databases like BigQuery or Snowflake.

4 DataFrames.jl: Flexible and Fast Tabular Data in Julia

3. Fundamental design
In DataFrames.jl, data frame objects are of the DataFrame type. The internal structure of
this type is very simple. It essentially holds a collection of column vectors (which can be
any object whose type inherits from AbstractVector) and a mapping from column names
to these vectors. Columns can be referred to either using a string (typed e.g., "x" in Julia),
a symbol (typed :x or Symbol("x")), or just by their position passed as an integer number
(starting at 1).
Before we discuss the DataFrame object design, let us explain one important difference between
Julia and R or Python. Julia is a compiled language, while R and Python are interpreted. The
benefit of compilation is that the execution time of Julia code is fast. This, however, comes
with a price that for each new data type passed to some function Julia needs to compile it
before execution. This impacts the time of the first run of this function (as it includes both
compilation and execution time).1 This cost can be avoided if we hide data type from a
function. Then the function is executed less efficiently, but one does not have to wait for it
to compile. Therefore one of the design patterns that is used in Julia is that in inexpensive
functions the data type is hidden (to avoid their recompilation). In contrast, computationally
intensive functions are passed information about the type of data they work on (to make
sure the code runs as fast as possible since in this case compilation time is expected to be
negligible in comparison to execution time).
DataFrame objects do not have a fixed schema like tables in traditional databases, which
typically have a constant set of column names and defined data types of these columns.
Columns can be added, removed, or replaced after constructing a DataFrame object. In Julia
parlance, this classic behavior of data frames implies that DataFrame objects are type-unstable.
That is, the concrete type of column vectors cannot be determined from the DataFrame
object at compile time. This avoids over-specialization of the generated code, allowing for
efficient storage and processing of thousands of heterogeneous columns without paying a
high compilation cost. However, the downside is that this prevents the Julia compiler from
generating efficient code unless column vectors are passed to a function that is specialized
on their type. This flexibility of DataFrame object schema seems to contradict the goal
of ensuring the performance of operations performed on them. However, the package uses
lazy code specialization to ensure high performance when working with DataFrames.jl. We
present these solutions in Section 8. The basic idea is that most of the code that operates on
DataFrame does not have to be maximally fast, as it is cheap anyway: Only the performance-
critical parts need and are specialized to be type-stable so that the compiler can generate
efficient machine code for them.
Several constructors are supported to create DataFrame objects. Here let us mention only
a few basic ones. DataFrame() creates a zero-column, zero-row data frame which can be
filled later. DataFrame(x1 = v1, x2 = v2) creates a data frame with two columns named
"x1" and "x2" holding copies of vectors v1 and v2 (if v1 and/or v2 are scalars they are
repeated an appropriate number of times). DataFrame(col => v) is another syntax that
allows passing the column name as a variable (e.g., when col = "x"), which is useful when
writing a generic code without hard-coded column names. A general constructor also accepts

1Julia supports precompiling code so that the compilation cost is paid only once when installing a package.
Unfortunately, as we explain in the next paragraph, it is impossible to precompile code for all potential
combinations of all column types for any number of columns.

Journal of Statistical Software 5

any object implementing the Tables.jl (Quinn and JuliaData contributors 2023b) interface
(see Section 7): This allows constructing data frames from a multiplicity of sources like
dictionaries or formats supported by other packages, such as CSV, Arrow or JSON files.
An important design principle of DataFrames.jl is that a DataFrame object is considered to
take ownership of its columns. This means that operations implemented in the DataFrames.jl
package assume that the columns stored in a DataFrame are never resized and that their
elements are never reordered by an external call. In order to ensure this behavior DataFrame
constructors by default copy the columns passed to them. This approach is taken because of
end-user safety considerations, to avoid unexpected bugs in the code which would corrupt the
DataFrame. However, in some situations this copying behavior is undesirable. The first case
is when the user explicitly wants to avoid copying of the columns for performance or to save
memory. For this case DataFrames.jl functions consistently accept the copycols = false
keyword argument that disables copying. The second case is when an external package has
already allocated fresh columns, in which case it signals to the DataFrame constructor that
copying is not needed, e.g., when reading a CSV file with the CSV.jl (Quinn and JuliaData
contributors 2023a) package.
Despite their internal structure, and contrary to some other implementations like data.frame
or tibble in R, DataFrame objects are not exposed to users as collections of columns. Depend-
ing on the context, they behave either as two-dimensional structures (like matrices) or as
collections of rows (similar to the definition of tables as sets of tuples in relational algebra).
This double nature is one of the defining traits of data frames (Petersohn et al. 2020), and it
proved to be the most useful in practice.
DataFrame objects are treated as two-dimensional objects in contexts related to indexing,
where their behavior is consistent with matrices. This is developed in Section 4. Data frames
also behave like two-dimensional objects with the broadcast function (a Julia equivalent of
vectorization in languages like R or Python), which applies a function to each cell. Finally,
the size function returns a tuple with the number of rows and of columns, but the functions
nrow and ncol are also provided for convenience.
Additionally, DataFrame objects implement all relevant functions defined in Julia Base that
operate on collections. For such functions, data frames are treated as collections of rows.2
For example, sort orders rows according to specified columns, repeat repeats rows, unique
returns unique occurrences of rows, first and last return row(s) at the top or at the bottom
(respectively), empty returns a zero-row data frame with the same column names and types
as its argument, deleteat! removes specified rows, push! adds one or more rows at the
bottom, append! adds rows contained in a data frame or another table-like object at the
bottom.
Operations on columns are supported via distinct functions which are DataFrames.jl spe-
cific. In particular, names returns the column names, rename! changes column names,
insertcols! adds new columns, and mapcols! applies a function to each of the column
vectors. Higher-level data transformations that operate column-wise by default are described
in Section 5.
Before we move to a detailed description of functionalities let us mention that DataFrames.jl
provides three types which are views of DataFrame objects: SubDataFrame, DataFrameRow,

2A notable exception is length, which is not implemented to avoid confusing users coming from other
implementations where this function returns the number of columns and because it is redundant with nrow.

6 DataFrames.jl: Flexible and Fast Tabular Data in Julia

and GroupedDataFrame. Such views can be constructed very fast and without copying the
source data frame, which is especially important when working with large data. Modifications
of the contents of a view are propagated back to its parent DataFrame, and vice-versa.
In the following two sections we will describe two paradigms of working with data frame
objects that DataFrames.jl supports. In Section 4 we cover the low-level imperative style
based on indexing. In Section 5 we discuss the declarative style using high-level functions.
Both paradigms are fully supported in DataFrames.jl and users can freely choose between
them as needed.

4. Indexing
A classic way of selecting rows or columns in data frames in many programming ecosystems
is to rely on indexing, i.e., treating them as two-dimensional structures. Row at position row
in a DataFrame object df can be accessed using the df[row, :] syntax, and column col
can be accessed using the df[:, col] syntax. This is consistent with the syntax used for
matrices in Julia, where : indicates that all elements should be retained on the corresponding
dimension (rows or columns).
df[row, :] requires row to be an integer index (as noted above, DataFrames.jl does not
support row names). It returns a DataFrameRow object which is a one-dimensional collection
similar to a named tuple, pointing to values in the corresponding row in df. DataFrameRow
objects are views into their parent data frame df, they reflect changes that may be applied
to it after extracting the row.
df[:, col] requires col to be either a string or symbol giving the column name, or an integer
giving its position. As opposed to row indexing,3 df[:, col] returns a copy of the column
vector. The alternative syntax df[!, col] is supported to avoid copying.4 For convenience,
when the name of the column is a literal (rather than stored in a variable like col), the syntax
df.x or df."x" can be used to access column "x" without copying (equivalent to df[!, :x]
or df[!, "x"]). If a column is extracted without copying, any modification of its contents
will be reflected in the data frame.
The contents of a single cell can be accessed using df[row, col], where both indices are
single-element selectors.
Indexing can also be used to select multiple rows or columns, by passing a collection of indices
or a pattern selector. In this case a new DataFrame object is returned. DataFrames.jl supports
a wide range of selectors, some of which can be combined together (as in df[rows, cols]).
Here are some selected examples:

• A vector of 1-based indices, like df[[1, 2], :] to select the first two rows, or df[:,
[1, 2]] to select the first two columns, or df[:, ["x", "y"]] to select columns "x"
and "y".

• A Boolean vector with one entry for each row/column set to true to retain it, or to
3This different behavior was chosen due to performance considerations, as making a copy of a row on

indexing would be very slow for data frames with many columns, which would make this operation almost
unusable in practice.

4The symbol ! was chosen for similarity with the Julia convention according to which it is used as a suffix
to functions that mutate their arguments.

Journal of Statistical Software 7

false to exclude it, e.g., df[[true, true, false], :] to select the first two rows of
a three-row data frame.

• A regular expression to select columns whose names match, e.g., df[:, r"x"] to select
columns containing "x" in their name.

• A Not object indicating which rows/columns should be excluded, e.g., df[Not([1, 2]),
:] to take all rows but the first two or df[:, Not(["x", "y"])] to select all columns
but "x" and "y".

• A Between object to select columns positioned between two columns (including them),
e.g., df[:, Between("x", "y")].

• A Cols object with several selectors to select columns matching at least one selector,
e.g., df[:, Cols(1, r"x")] to select the first column and columns containing "x" in
their name.

It is worth noting that these multi-element selectors always return a DataFrame object, even
if they happen to select a single row/column.5 This is essential to allow both the user and the
compiler to predict the type of the result, leading to faster, more robust, and clearer code.
Consistent with what happens when selecting a single column, all indexing syntaxes which
use : return copies of the input data. df[!, cols] can be used to get a new DataFrame
holding the original columns without a copy.
Another way to index without copying is to use view(df, rows, cols) or @view df[rows,
cols] to create a SubDataFrame object instead of a DataFrame. SubDataFrame objects store
a reference to their parent data frame, as well as indices of the rows and/or columns that
were selected. They reflect changes made to their parent after they have been created, and
modifying their contents also affects their parent in return. One should therefore be careful
and not reorder or delete rows or columns in the parent data frame while a SubDataFrame
pointing to it exists.
The indexing syntaxes presented above can also be used to modify the contents of a data
frame. The simplest form is to add a new column or update the contents of an existing one
using df[:, col] = v, where col is a single-column selector and v is a vector. Note that this
modifies the contents of the column vector if it already exists, and makes a copy of v if it does
not. If source and destination vectors have different types, this will imply a conversion, and
may even fail for incompatible types (for example string and integer). The df[!, col] = v
syntax can be used to replace the destination column vector with v instead, without copying
it.
It is also possible to update the contents of an existing column only for some rows using
df[rows, col] = v. In this case, v must have a length equal to the number of selected rows.
One can also update multiple columns at the same time via df[rows, cols] = m, where m
can be either a data frame with the same column names as the selected part of df or a matrix
with the same number of columns. Finally, a single cell can be updated using df[row, col]
= v, where v can be any value that can be converted to the destination type.

5This is contrary to R where e.g., the scalar value 1 is represented as the single-element vector c(1) ([1]
in the Julia syntax), making it impossible to distinguish between a single- and a multiple-element selector.

8 DataFrames.jl: Flexible and Fast Tabular Data in Julia

A common pattern when working with data frames is to use Boolean indexing to select
rows based on conditions on the values of one or more columns. This can be achieved via
e.g., df[df.x .== 1 .&& df.y .> 0, :]. The dots before operators are required to indicate
to Julia that operation must be applied to each element (i.e., row) in the vectors. This syntax
can also be used to set the contents of a column based on conditions. In particular, broadcast
assignment using operator .= allows repeating a single value to assign it to all selected rows,
as in df[df.x .== 1 .&& df.y .> 0, :] .= "Group 1".
Data frame objects can also be used in broadcasting operations, just like matrices. For in-
stance, provided that we store in df only numeric columns the code df .= log.(ifelse.(df
.< 0, NaN, df)) is a way to efficiently calculate the log of all entries in a data frame, while
storing NaN for negative values (as applying log to a negative value in Julia raises an error).
Omitting the df .= part returns a newly allocated data frame rather than operating in-
place. The same expression can be written more conveniently as @. df = log(ifelse(df
< 0, NaN, df)) (the @. macro could have also been used in other examples above involving
broadcasting of multiple operations).
Above we have covered only selected major use-cases of indexing. An important property of
this functionality in DataFrames.jl is that it was carefully designed to consistently support a
wide variety of ways of selecting rows and columns of a data frame, covering the numerous
combinations of the following alternatives:

1. Extracting part of a data frame

(a) Column selection
i. Extracting a single column as a vector.
ii. Getting a collection of zero or more columns as a data frame.

(b) Row selection
i. Copying: Allocate new columns.
ii. Non-copying: Reuse columns of a source data frame as-is or as a view.

2. Assignment to a data frame

(a) Target column update policy (left-hand side of an assignment)
i. In-place update of an existing column.
ii. Replace column with a copy of source.
iii. Replace column without copying the source.

(b) Source treatment policy (right-hand side of an assignment)
i. Take the object as-is.
ii. Broadcast the object into a target data frame.

Such a wide variety of options follows the scenarios that users require when working with real
data. The reason all of them are provided is because indexing is considered to be a low-level
API of the DataFrames.jl package so it must ensure high flexibility.
Let us stress that basic indexing scenarios always make a copy of the underlying data. The
reason is that in this way it is ensured that no column aliases (i.e., which point to the same
memory) are created, as they can lead to hard-to-catch bugs. However, functions that do

Journal of Statistical Software 9

not allocate new copies of the data are provided and can be used for cases where memory is
constrained or high performance is required.
In summary, both data frame construction (as described in Section 3) and indexing follow the
same policy: Provide safe operation by default and ensure it is possible to perform an efficient
operation if requested. This approach has proven to be easy to use for users starting to work
with DataFrames.jl, while providing the flexibility required by experts.

5. Data transformations and grouping
Besides the low level API based on indexing DataFrame objects, DataFrames.jl provides pow-
erful high-level functions to transform data that allow its users to write their queries in a
declarative way. In this area three major functions are provided:

1. combine selects columns, optionally transforming them, and returns a data frame with
as many rows as are present in the returned columns (typically combining several rows
of source into one or more rows in the target).

2. select selects columns, optionally transforming them, and returns a data frame with
as many rows as its input and in the same order.

3. transform selects all existing columns and adds new columns by transforming existing
ones, and returns a data frame with as many rows as its input and in the same order.

By default the select and transform functions follow the safety-first policy of DataFrames.jl
described above and copy all columns of the source data frame. For cases when performance
is required the in-place variants select! and transform! are provided. In particular
transform! can be much faster and use much less memory than transform for large data
frames, as the latter makes a copy of all columns in the input data frame by default (though
this can be also overridden by appropriately using the copycols keyword argument in the
same way as described in Section 3 for constructor).
These functions take as arguments a DataFrame, a SubDataFrame, or a GroupedDataFrame
(discussed below) followed by a list of column selectors and/or transformations. Column
selectors can be of any form used for indexing. Transformations are specified using a special
syntax source => function => target formed of three parts separated by the => operator:

1. source: Selectors indicating source column(s).

2. function: A function to apply to the corresponding column vectors.

3. target: Name(s) to give to output column(s).

A simple example of the source => function => target syntax is :a => sum => :a_sum.
Where column :a is passed to the sum function and the result is stored in column :a_sum.
Note that in this case the sum function produces a scalar, which is stored in a single row
of the resulting data frame by combine, but is broadcast to match the number of rows by
select and transform. Here is an example (in the code examples lines prefixed with julia>
are Julia code and the lines that follow them are program output):6

6Copy-pasting the whole block of text in the Julia REPL in Linux will automatically execute the relevant
parts and skip others.

10 DataFrames.jl: Flexible and Fast Tabular Data in Julia

julia> using DataFrames
julia> df = DataFrame(a = 1:3)

3×1 DataFrame
Row a

Int64

1 1
2 2
3 3

julia> combine(df, :a => sum => :a_sum)

1×1 DataFrame
Row a_sum

Int64

1 6

julia> select(df, :a => sum => :a_sum)

3×1 DataFrame
Row a_sum

Int64

1 6
2 6
3 6

Another common pattern is to apply a function to each element in a column. This can be
achieved conveniently by wrapping the function in the special ByRow object, as in :a =>
ByRow(cos) => :a_cos, which creates a new column :a_cos containing the cosine of each
element in column :a. This kind of syntax is generally not required in R or Python where
many functions are vectorized, i.e., they accept vectors as arguments and apply the operation
to each of their elements. Julia is stricter and more consistent in that regard, and requires
indicating explicitly when vectorization is desired via the broadcasting syntax mentioned
above, for which ByRow is a shorthand.
Names of output columns are optional and if omitted will either be generated automatically
from the function name or extracted from the returned object. For example, combine(df, :a
=> sum) is equivalent to the combine(df, :a => sum => :a_sum) example shown above.
One of the important benefits of source => function => target, apart from being visually
easy to follow, is that it ensures that function can be any transformation defined by the user
and that the execution of such a query will be fast. The engine that processes such a request
ensures that it is compiled to an efficient machine code before its execution.
Additionally, and importantly, source => function => target is valid Julia code, so such
transformations are easily constructed in a programmatic way. Here is a minimal example
that uses broadcasting to apply multiple functions to each of the two selected columns:

Journal of Statistical Software 11

julia> df = DataFrame(x1 = 1:3, x2 = 4:6)

3×2 DataFrame
Row x1 x2

Int64 Int64

1 1 4
2 2 5
3 3 6

julia> combine(df, [:x1, :x2] .=> [sum minimum maximum])

1×6 DataFrame
Row x1_sum x2_sum x1_minimum x2_minimum x1_maximum x2_maximum

Int64 Int64 Int64 Int64 Int64 Int64

1 6 15 1 4 3 6

This syntax works because the .=> broadcasting operation returns a matrix of pairs listing
the expected transformations:

julia> [:x1, :x2] .=> [sum minimum maximum]

2×3 Matrix{Pair{Symbol}}:
:x1=>sum :x1=>minimum :x1=>maximum
:x2=>sum :x2=>minimum :x2=>maximum

The feature that any transformation specification is valid Julia code also allowed for the
development of domain-specific languages that make it possible to specify transformations of
data frames more conveniently. This approach is described in Section 6.
The strength of combine, select and transform is most visible when applied to grouped data,
via the split-apply-combine strategy (Wickham 2011). The "split" part, i.e., grouping rows
according to the values in one or more columns, can be performed via the groupby function.
This function returns a GroupedDataFrame object, which is a view of the source data frame
where grouping columns are treated as keys. The most basic way to use a GroupedDataFrame
is to index into it. Here is an example:

julia> df = DataFrame(key1 = ["a", "b", "a", "b"],
key2 = [1, 2, 1, 2],
value = 1:4)

4×3 DataFrame
Row key1 key2 value

String Int64 Int64

1 a 1 1
2 b 2 2
3 a 1 3
4 b 2 4

12 DataFrames.jl: Flexible and Fast Tabular Data in Julia

julia> gdf = groupby(df, [:key1, :key2])

GroupedDataFrame with 2 groups based on keys: key1, key2
First Group (2 rows): key1 = "a", key2 = 1
Row key1 key2 value

String Int64 Int64

1 a 1 1
2 a 1 3

...
Last Group (2 rows): key1 = "b", key2 = 2
Row key1 key2 value

String Int64 Int64

1 b 2 2
2 b 2 4

julia> gdf[("b", 2)]

2×3 SubDataFrame
Row key1 key2 value

String Int64 Int64

1 b 2 2
2 b 2 4

We have shown just one option of indexing into a GroupedDataFrame, where one uses a
set of values of key columns to pick an appropriate subset of rows as a SubDataFrame. It
is important to highlight that this operation is guaranteed to be fast as it is non copying
(a view is returned) and lookup is performed using a hash table. This functionality is an
efficient equivalent of hierarchical indexes provided e.g., by pandas (partial indexing with
MultiIndex). In particular, one can create several GroupedDataFrame objects, grouped by
different sets of columns, backed by the same data frame without copying the underlying
data.
While this kind of manual work with a GroupedDataFrame as a collection of groups is often
useful, it is somewhat verbose and not fully optimized for speed. Instead, using combine,
select, and transform functions ensures that grouped operations are both convenient and
efficient. Data transformations can be applied to a GroupedDataFrame using exactly the
same syntax as for a DataFrame, and return an ungrouped DataFrame (unless ungroup =
false is specified, in which case the resulting object is a GroupedDataFrame). The only
difference is that transformation functions will be applied separately for each group.7 When
transformations return a vector, combine returns as many rows as there are values in the
vector, and select and transform require the number of values to match the number of
rows in the corresponding group. When transformations return a single scalar value (like

7This design ensures an invariant that DataFrame is treated exactly the same as a single-group
GroupedDataFrame with no grouping columns.

Journal of Statistical Software 13

sum), combine returns one row per group, and select and transform repeat this value to fill
all rows belonging to the corresponding group. Using gdf from the previous example we get:

julia> combine(gdf, :value => sum)

2×3 DataFrame
Row key1 key2 value_sum

String Int64 Int64

1 a 1 4
2 b 2 6

julia> select(gdf, :value => sum)

4×3 DataFrame
Row key1 key2 value_sum

String Int64 Int64

1 a 1 4
2 b 2 6
3 a 1 4
4 b 2 6

Note, in particular, that select and transform ensure an invariant that the order of rows
of the parent data frame is respected in the result. Clearly, this invariant does not apply to
combine as it changes the number of rows by combining them.

6. Other functionalities
Apart from data frame construction, indexing, and transformation, DataFrames.jl provides
a range of functions covering all classic operations on data frames (the [!] suffix indicates
that the function has two variants: Creating a new object and in-place):

1. Joining: Either creating new data frames (innerjoin, leftjoin, rightjoin, outerjoin,
semijoin, antijoin, and crossjoin) or updating a data frame (leftjoin!).

2. Reshaping between long and wide data formats (stack and unstack), transposition
(permutedims), and flattening (flatten).

3. Iterating over rows and columns (eachrow and eachcol).

4. Subsetting rows (filter[!], subset[!], deleteat!, empty[!]).

5. Sorting rows (sort[!], issorted, sortperm).

6. Finding or dropping duplicate rows (unique[!], nonunique).

7. Handling missing values (dropmissing[!], disallowmissing[!], allowmissing[!],
completecases).

14 DataFrames.jl: Flexible and Fast Tabular Data in Julia

8. Concatenating tables and adding rows (hcat, vcat, append!, push!, repeat[!]).

9. Manipulating columns (rename[!], insertcols!, mapcols[!]) and summarizing them
(describe).

DataFrames.jl fully supports statistical missing values, that are represented using the missing
object (of type Missing) defined by Julia itself (Bouchet-Valat 2018), which is similar to NA
in R and NULL in SQL. In line with the design principles of the package, missing values
can therefore be handled with standard Julia functions. Columns which allow for missing
values have an element type Union{T, Missing} (i.e., they contain either a value of type
T or a value of type Missing), where T can be any type and are handled efficiently thanks
to compiler optimizations for small Union types. For code safety reasons, missing values are
never silently skipped: Standard mathematical operators propagate it (returning missing if
any of the inputs is missing), and most functions throw an error if passed missing. Missing
values can be skipped using the skipmissing function, replaced using the coalesce function,
or propagated using the passmissing function.
Another feature of DataFrames.jl that is especially useful when working with wide tables
is its support of metadata on table and column levels. Table-level metadata are key-value
pairs that are attached to a data frame. Column-level metadata are key-value pairs that are
attached to a specific column of a data frame. An example application of metadata is to
keep descriptive labels of columns stored in a data frame. It is possible to dynamically add
and remove metadata from a given data frame. A particularly useful feature is that such
metadata can be easily loaded from and stored in files if the data file format used supports
it. One of the popular formats giving this possibility is Apache Parquet.
Finally, let us mention that while all of the DataFrames.jl functionality can be used by writing
standard Julia code, for user convenience there have been developed companion packages that
provide a domain-specific language (DSL) for specifying transformations of data frames. The
three most popular of such packages are the DataFramesMeta.jl (Deffebach, Short, and Juli-
aData contributors 2023), DataFrameMacros.jl (Krumbiegel 2023), and Tidier.jl (Singh and
TidierOrg contributors 2023). All provide a DSL with a similar design to the dplyr/tidyverse
syntax in R. Tidier.jl provides a very close equivalent of this syntax, while DataFramesMeta.jl
and DataFrameMacros.jl consist in macros which are (for most of them) more terse equiv-
alents of functions described above: @select, @transform, @combine, @groupby, @subset,
etc.
Here is an example comparison of syntaxes of DataFrames.jl and DataFramesMeta.jl:

transform(df, :a => sum => :a2) # standard Julia code with DataFrames.jl
@transform(df, :a2 = sum(:a)) # DataFramesMeta.jl DSL

Using one of these DSLs makes the code even more readable, at the expense that it is not
standard Julia code anymore (macros perform non-standard evaluation of the code). An
important consideration is that using such DSLs has no impact on the performance of the
operations as these packages essentially rewrite DSL statements into standard DataFrames.jl
queries. The key observation here is that DataFrames.jl provides a flexible and fast low-level
functionality that can be easily used in a custom DSL taking advantage of Julia’s metapro-
gramming capabilities. In this way end-users can use syntax that is easy for them to learn.

Journal of Statistical Software 15

For example Tidier.jl was designed in a way that a user who knows dplyr can immediately
start writing data processing pipelines in Julia.

7. Extensions
Features listed above are tightly linked with the DataFrame type and most of them allow
modifying such objects in place. However, many data analysis functionalities do not re-
quire such tight integration. Here we would like to emphasize another design principle of
DataFrames.jl. Thanks to the high composability of programs written in the Julia language,
the DataFrames.jl package does not have to provide many functionalities that are normally
bundled into data frame packages in programming languages like R or Python. Instead it
is assumed that external packages should provide features that are not directly related to
objects provided by DataFrames.jl. Two key packages enable the integration with external
packages:

• Tables.jl (Quinn and JuliaData contributors 2023b) defines an implementation-agnostic
interface for objects that should be considered as tables. DataFrames.jl implements
this interface, which allows creating DataFrame objects from sources defined by other
packages and passing DataFrames to functions that accept Tables.jl objects.

• DataAPI.jl (Quinn, Kamiński, and JuliaData contributors 2023a) provides a namespace
for data-related generic function definitions to ensure a common API is used across
packages without requiring them to depend on each other.

Let us list a few packages that, using these interfaces, interoperate with DataFrames.jl without
the creation of direct dependencies:

1. Loading from and saving to files in different formats: CSV.jl (Quinn and JuliaData con-
tributors 2023a), Arrow.jl (Quinn, Savastio, and Apache contributors 2023b), Avro.jl
(Quinn and JuliaData contributors 2021a), JSONTables.jl (Quinn and JuliaData con-
tributors 2021b), Parquet2.jl (Savastio 2023), XLSX.jl (Noronha 2023), ReadStatTa-
bles.jl (Chen 2023), StatFiles.jl (Anthoff 2019).

2. Plotting: StatsPlots.jl (Vertechi, Borregaard, and JuliaPlots contributors 2023).

3. Printing: PrettyTables.jl (Chagas 2023).

4. Modelling and machine learning: GLM.jl (Bates, Noack, Bouchet-Valat, Kornblith, and
JuliaStats contributors 2023) and MLJ.jl (Blaom, Kiraly, Lienart, Simillides, Arenas,
and Vollmer 2020).

Multiple packages are also often used with DataFrames.jl, interoperating with it thanks to
interfaces defined by Julia itself. This includes most notably the Statistics standard library
module, as well as StatsBase.jl (Lin, Bouchet-Valat, Noack, Arslan, and JuliaStats contribu-
tors 2023), and Plots.jl (Breloff, Schwabeneder, Christ, and JuliaPlots contributors 2023).
During the years of development of the Julia ecosystem we have learned that the interface-
based design of DataFrames.jl has the following benefits:

16 DataFrames.jl: Flexible and Fast Tabular Data in Julia

1. The number of dependencies of packages is lower, which significantly simplifies their
maintenance.

2. The code base is more compact, as only one method that relies on the interfaces is
needed, which is used for all table types.

3. Adding new packages (or types or functions) to the ecosystem does not require changes
in the existing packages as long as new packages conform to the common interface.

It is important to highlight that relying on the interfaces does not lead to performance degra-
dation, as the Julia compiler eventually specializes user code to an efficient machine code.
Some extensions of DataFrames.jl deserve to be presented here as they are essential features
for a data frame implementation, even though they are implemented in separate packages.
They illustrate the flexibility that Julia offers to external packages, which can add features to
DataFrames.jl without having to merge them into a large monolithic code base.
The PooledArrays.jl (Bezanson, Bouchet-Valat, Kamiński, and JuliaData contributors 2023)
package allows storing columns in a memory-efficient way in which the proportion of unique
values is relatively low. The PooledArray type provided by this package behaves exactly like
a plain Array, but stores values internally as an array of integer reference codes pointing to
a pool of all values that appear in the column. Depending on the number of values, codes
can be represented using 8, 16, 32 or 64 bits to optimize memory use. PooledArrays are
particularly efficient to store large types like strings or custom structures.
Besides using less memory, PooledArrays are more efficient with groupby as the number of
unique values is known in advance and computations can be performed directly on integer
codes. It can therefore be faster to convert a data frame column to a PooledArray before per-
forming repeated groupby operations using it as (one of) the grouping key(s). PooledArray
columns can be created manually, but they are notably created automatically when reading
CSV files using CSV.jl.8

The CategoricalArrays.jl (Bouchet-Valat and JuliaData contributors 2023) package is in-
tended for columns which contain categorical data in a statistical sense, either nominal or
ordinal. While CategoricalArrays use an efficient storage similar to PooledArrays, they are
semantically different as they carry a set of levels, which have a user-specified order and are
preserved even if the value is not actually present in the data. Indexing CategoricalArrays
returns CategoricalValue objects which include a reference to these levels and can be com-
pared using operators such as < (for ordered arrays). The ability to choose a custom ordering
of levels is useful notably when drawing plots when printing summary tables and to define
contrasts when fitting statistical models.
The InlineStrings.jl (Quinn and JuliaStrings contributors 2023) package allows of an efficient
storing of columns with short strings or more generally strings with a fixed length. Instead of
storing arrays of strings as references to objects stored elsewhere in memory like the default
Julia String type, the package’s custom string types can be stored inline, in a single contiguous
block of memory. Inline strings are allocated on the stack rather than on the heap, avoiding
pressure on the garbage collector which would otherwise slow down operations. Inline strings
are used by default when reading CSV files via CSV.jl.9

8This can be tweaked using the pool keyword argument to the CSV.read function.
9This can be tweaked using the stringtype argument to CSV.read. Note in particular, that if a column

mixes long and short strings then the standard String type might be preferred, as inline strings always take
up the space required to fit the longest string in the column.

Journal of Statistical Software 17

Finally, the Arrow.jl (Quinn et al. 2023b) package is an interesting extension not only be-
cause it allows reading from and writing to the popular Apache Arrow format, but also
as a more general illustration of what custom array types can achieve in combination with
DataFrames.jl. When reading a file, Arrow.jl returns a custom Arrow.Table object which
can easily be converted to a DataFrame object thanks to the Tables.jl interface described in
Section 6. Columns of the resulting DataFrame use Arrow.jl-specific array types providing
read-only views of the backing Arrow file, which is made accessible via memory mapping
(mmap). This means that no copy of the data is made in RAM, leaving the operating system
the choice to load the contents of the file to the memory cache or to drop them as appropriate.
This zero-copy feature is also valuable to exchange data between Julia and another process.
It is worth noting that these features do not require any special handling in DataFrames.jl,
which simply treats Arrow.jl array types just like any other column type. Performing a copy-
ing operation (such as transform) on the data frame will return a "classic" DataFrame in a
sense that its columns would use standard Julia types that can be mutated.

8. Performance considerations
While DataFrames.jl can be very fast thanks to the Julia compiler generating efficient machine
code, some care should be taken to avoid performance traps. The main such trap is due to the
type instability of DataFrame columns (see section 3). Performance-sensitive code sections
should avoid looping over rows of a data frame or over entries of a column vector that has
been extracted from a data frame without first introducing a function barrier. In what follows
we assume that we have some data frame df with columns :x and :w.
For example, the following naive summation will be slow as the type of df.x is not known to
the compiler:

s = 0.0
for xi in df.x

s += xi
end

On the contrary, moving the loop to a separate function which will be specialized on the
column vector type will be fast:

function mysum(x::AbstractVector)
s = 0.0
for xi in x

s += xi
end
return s

end

mysum(df.x)

This rule also applies to iteration over rows, either using eachrow or using indexing. The fol-
lowing naive implementation of weighted sum is slow (for row in eachrow(df) is equivalent
to for i in 1:nrow(df); row = df[i, :]):

18 DataFrames.jl: Flexible and Fast Tabular Data in Julia

s = 0.0
for row in eachrow(df)

s += row.x * row.w
end
Moving the loop to a separate function makes it much more efficient:
function mysum(x::AbstractVector, w::AbstractVector)

s = 0.0
for (xi, wi) in zip(x, w)

s += xi * wi
end
return s

end

mysum(df.x, df.y)

The general rule is to write functions taking vectors as arguments rather than DataFrame
objects directly. DataFrames.jl functions like combine, select, or transform do this inter-
nally to ensure the compiler generates specialized code in critical parts. Therefore the user
has to think about performance when using the low-level imperative API, while the high-level
declarative API handles such issues automatically.
Another important rule to follow to obtain the best performance is to use in-place vari-
ants of functions (ending with the ! suffix) whenever possible to avoid unnecessary memory
allocations. It is quite obvious that e.g., sort!(df) avoids large allocations compared to
sort(df), but this also applies to less expected cases. In particular, a seemingly innocuous
operation such as transform(df, :x => (-) => :minusx) (which creates a new column
containing the opposite of column :x) will also have to copy all columns in df.10 On the
contrary, transform!(df, :x => (-) => :minusx) will only allocate the new column; an-
other option would be to pass the copycols = false keyword argument to transform. The
same applies to select(df, :x, :y, :z), which copies the three selected columns unless
copycols = false is passed or select!(df, :x, :y, :z) is used instead. As explained
above, the choice of making copies by default ensures basic uses are always safe, while still
allowing efficient operation when necessary.
Grouped operations have been carefully designed to be fast, especially when custom user func-
tions are provided. This is an area where Julia’s strengths are apparent. Indeed, while other
data frames implementations provide built-in optimizations for common operations written
in low-level languages such as C++, more complex or unusual operations written by users
in R or Python do not benefit from these optimizations. On the contrary, in DataFrames.jl,
custom user functions written in Julia are compiled to efficient machine code, with a very low
per-group overhead. Like other implementations, optimized methods are provided for com-
mon reductions (like sum, mean, maximum, first, etc.). Finally, multithreading is used if Julia
was configured to use several threads.11 Thanks to these different strategies, DataFrames.jl
often ranks among the fastest implementations available.

10This behavior differs from R, which uses copy-on-write. While convenient, copy-on-write is not a viable
solution for fast languages like Julia, as it requires a relatively expensive check before each write access to a
vector.

11This can be achieved using the -t command line argument when starting julia executable, or by setting
the JULIA_NUM_THREADS environment variable.

Journal of Statistical Software 19

Similarly DataFrames.jl is shipped with join algorithms that provide a competitive perfor-
mance in comparison to alternative packages. In particular the implemented algorithms are
able to take advantage of the fact that columns on which tables are joined are sorted or have
a known number of unique values (e.g., are categorical or pooled, see Section 7).
Providing comprehensive performance benchmarks is a very challenging task and the results
depend on multiple factors (available hardware, data characteristics, etc.). Therefore, in this
paper we only present a brief comparison against the R packages data.table and arrow (the
latter using dplyr to specify queries), and Python packages Polars and pandas (the latter
using the pyarrow engine), just to show that DataFrames.jl achieves competitive performance
for standard operations. We acknowledge that in other benchmarks performance comparisons
can give different results. As already noted, the key performance advantage of DataFrames.jl
is seen with user-defined functions or when non-standard data types are used. However, a fair
comparison heavily depends on the particular operation and on its implementation: Therefore
we stick to standard functions. For the comparison we have picked benchmarks that were
referenced by data.table maintainers.12 The comparison was run using:

• Julia 1.9.0 and DataFrames.jl 1.5.0;

• R 4.2.2, data.table 1.14.8 and arrow 12.0.0 (using dplyr to specify queries);

• Python 3.11.3, Polars 0.17.13 and pandas 2.0.1 (using the pyarrow engine).

To simulate a typical usage scenario, the tests were run under Windows 11 on a laptop with
16 GB RAM and an Intel i7-1250U CPU and used the default settings of packages. The
chosen hardware has 10 cores, out of which 2 are performance cores and 8 are efficient cores.
We picked this setup because it is a typical machine that a developer could use for routine
in-memory data processing. After presenting these benchmarks we discuss the server-oriented
benchmarks that are maintained at https://duckdblabs.github.io/db-benchmark/.
The benchmarks consist of split-apply-combine and join tests.
First we perform a simple split-apply-combine operation: Compute the grouped sum and
count over 50 million rows randomly assigned to one of 500,000 groups. The column to sum
(x) contains random double-precision floats, and the grouping column (grp) contains random
integers uniformly distributed between 1 and 500,000.
The join benchmarks apply joins on two tables with 50 million rows each and an integer key
column (x) ranging between 1 and 50 million, with all values appearing once except one,
which is absent from each table at random. Additionally, each table has a column containing
random double-precision floats (y1 and y2, respectively). We test inner, left, right, and outer
join, except for Polars, for which it is not supported.
In Table 1, we see that DataFrames.jl offers competitive performance against data.table and
Polars and is significantly faster than pandas and arrow/dplyr. Following (Chen and Revels
2016) we report a minimum run time over 100 executions of a given query (such estimator
is most robust concerning such noise as flushing cache lines, task switching to background
OS processes, etc.). The code that can be used to reproduce these results is presented in
Appendix A.

12See Gorecki (2015) and StackOverflow questions referenced there for aggregation (http://stackoverflow.
com/a/34167477/2490497) and joins (http://stackoverflow.com/a/34219998/2490497) respectively.

https://duckdblabs.github.io/db-benchmark/
http://stackoverflow.com/a/34167477/2490497
http://stackoverflow.com/a/34167477/2490497
http://stackoverflow.com/a/34219998/2490497

20 DataFrames.jl: Flexible and Fast Tabular Data in Julia

Aggregation Inner join Left join Right join Outer join
DataFrames.jl (Julia) 0.22 4.17 5.51 5.01 5.76
data.table (R) 1.02 6.10 7.50 7.50 18.31
arrow/dplyr (R) 1.85 11.90 11.17 13.53 12.78
Polars (Python) 0.69 4.41 4.47 — 8.60
Pandas (Python) 2.09 17.15 17.59 21.12 18.30

Table 1: Summary of performance comparison for different operations between DataFrames.jl
and selected alternative packages in R and Python. All times are reported in seconds and are
a minimum over 100 runs. The result for right join in Polars is missing because this package
does not provide this functionality directly.

As we have mentioned benchmarking code is a challenging process. We have run the above
benchmark also for other hardware settings (with different numbers of available CPUs and
operating systems) and the results differed. However, in all of them DataFrames.jl perfor-
mance was competitive. It should be noted though that as the number of available cores
increases the relative performance of Polars and arrow/dplyr improves.
Users interested in additional benchmarks run on a large 40-core machine with 157 GB of
RAM can check the https://duckdblabs.github.io/db-benchmark/ website, which was
made available in early 2023. These benchmarks differ from the one presented in our paper
as they are executed on a server in a cloud and include larger data volumes. In these bench-
marks, in general, DataFrames.jl is faster than pandas and dplyr and generally slower than
Polars, while relative performance compared with data.table and Arrow varies depending on
operations. The currently biggest areas of required performance improvements indicated by
these benchmarks are: (1) caching more standard operations in package precompilation (to
make the first run of queries faster), (2) improving the efficiency of grouping operations when
there are many small groups (the original design of DataFrames.jl concentrated on algorithms
that are efficient when there are few large groups), and (3) making multi-threading support
more comprehensive. These areas are currently under development. They will only require
optimizing code and will not affect the API design.
Summarizing the performance discussion, we would like to conclude that DataFrames.jl is
competitive in terms of performance compared to alternative data frame ecosystems. However,
it should be mentioned that there are still areas that are open for improvement. This is one
of the topics that the development of DataFrames.jl will concentrate on in the future.

9. Practical illustration
To finish this presentation, let us show a brief example of working with the DataFrames.jl
package using the “NYC-flights14” dataset from the data.table vignette (Dowle and Srini-
vasan 2023a). It lists flights that departed from New York City airports between January
and October 2014. Examples are picked to concentrate on the features that are specific to
DataFrames.jl and DataFramesMeta.jl.
First install and load the the required packages,13 fetch the data from the Internet and read

13Julia will automatically prompt to install packages if they are missing when trying to load them via the
using command.

https://duckdblabs.github.io/db-benchmark/

Journal of Statistical Software 21

it into a DataFrame:

julia> using CSV, DataFrames, DataFramesMeta, Chain,
Dates, HTTP, Plots, Statistics

julia> input = "https://raw.githubusercontent.com/Rdatatable\
/data.table/master/vignettes/flights14.csv"

julia> flights = CSV.read(HTTP.get(input).body, DataFrame)

As the data frame is wide let us start by showing how one can retain only selected columns
in-place (i.e., updating the source DataFrame). We use the select! function to achieve this:

julia> select!(flights, :year, :month, :origin, :dest, :dep_delay)

253316×5 DataFrame
Row year month origin dest dep_delay

Int64 Int64 String3 String3 Int64

1 2014 1 JFK LAX 14
2 2014 1 JFK LAX -3
3 2014 1 JFK LAX 2

...
253314 2014 10 LGA RDU -8
253315 2014 10 LGA DTW -4
253316 2014 10 LGA SDF -5

253310 rows omitted

Let us now apply a multi-step data processing pipeline to this data. Our example involves
the following steps:

1. Computing an average departure delay by month.

2. Adding a month name column to the data frame.

3. Printing the resulting data frame sorted by average departure delay (as a forked com-
putation in the pipe).

4. Plotting the relationship between month name and average departure delay and saving
it to a PDF file (Figure 1).

We use the @chain macro from the Chain.jl (Krumbiegel 2022) package14 to pass the result
of each function as the first argument to the next one (piping).
We show how to perform this operation using two approaches. The first approach uses only
DataFrames.jl transformation functions:

julia> @chain flights begin
groupby(:month, sort = true)
combine(:dep_delay => mean)

14Chain.jl is automatically loaded when the DataFramesMeta.jl package is used.

22 DataFrames.jl: Flexible and Fast Tabular Data in Julia

Figure 1: Relationship between a month and average departure delay.

transform(:month => ByRow(monthname) => :month_name)
@aside show(sort(_, :dep_delay_mean))
plot(_.month_name, _.dep_delay_mean, label = nothing,

xlabel = "Month", ylabel = "Mean delay", xrotation = 15)
savefig("flights.pdf")

end

10×3 DataFrame
Row month dep_delay_mean month_name

Int64 Float64 String

1 9 4.74279 September
2 10 7.85055 October
3 3 8.92726 March
4 8 10.0125 August
5 4 10.2431 April
6 5 13.6842 May
7 6 14.0849 June
8 7 16.4631 July
9 2 17.8099 February

10 1 22.9576 January

The second approach takes advantage of the DataFramesMeta.jl domain-specific language
(@combine and @rtransform) which allows for a terser syntax (we omit showing the output
as it is the same as above):

@chain flights begin
groupby(:month, sort = true)

Journal of Statistical Software 23

@combine(:dep_delay_mean = mean(:dep_delay))
@rtransform(:month_name = monthname(:month))
@aside show(sort(_, :dep_delay_mean))
plot(_.month_name, _.dep_delay_mean, label = nothing,

xlabel = "Month", ylabel = "Mean delay", xrotation = 15)
savefig("flights.pdf")

end

Let us highlight the following distinctive features of the presented examples:

1. When chaining several operations via @chain, by default the value of the previous
operation gets passed to the next operation as its first argument, which then can be
omitted (exactly like in %>% in R). However, one can instead specify the place where
this value should be inserted using the _ (underscore) symbol—we use this feature in
the last two commands in the pipe.

2. One can use the @aside annotation to fork the pipe; in our example the forked operation
was used to show the sorted data frame in the terminal; performing this printing has
not affected the value passed to the plot function as its argument.

3. All operations are wrapped in the begin-end block which makes it very easy to add
and remove steps in the pipeline interactively (i.e., there is no special piping operator
like %>% that has to be added or removed at the end of the line when composing the
sequence of chained operations).

10. Discussion
As this article shows, DataFrames.jl is a feature-complete and flexible implementation of the
data frame concept in Julia. It allows for efficient processing of in-memory data sets with
single or multiple CPU cores. Moreover, it is important to highlight that the efficiency of
DataFrames.jl is retained when user-defined data types are stored in the data frame and when
user-defined functions are used to transform the data.
No data analysis ecosystem is complete without appropriate reference information and teach-
ing materials. Documentation for DataFrames.jl is maintained at https://dataframes.
juliadata.org/stable/. A list of curated teaching materials (tutorials, vignettes, cheat-
sheet) is included on that page. Storopoli, Huijzer, and Alonso (2021) and Kamiński (2022)
are books that can be used as starting points to learn DataFrames.jl.
To conclude, we can note two current limitations of DataFrames.jl and the perspectives for
future improvements.
The first limitation is that while DataFrames.jl benefits from Julia’s incredible performance,
it is also affected by its latency in interactive use. The first time a given operation is run in
a Julia session, functions need to be compiled. This usually takes less than a second but can
be noticeable. This means that for small data sets, the experience of new users will be that
DataFrames.jl is less reactive than other data frame implementations. This higher fixed time
cost is of course offset by Julia’s performance when running similar operations multiple times
or for operations that take more than a few seconds to run. Julia developers are well aware

https://dataframes.juliadata.org/stable/
https://dataframes.juliadata.org/stable/

24 DataFrames.jl: Flexible and Fast Tabular Data in Julia

of compilation latency issues, and each new Julia release brings major improvements in this
regard. Therefore we do not consider first-run compilation time as a serious and lasting issue
for DataFrames.jl.
A second limitation is that DataFrames.jl is designed to work with in-memory data sets.
Other Julia packages have to be used to work with big data in a distributed fashion sim-
ilar to Dask or Apache Spark. The DTable type has recently been developed to this end
in the Dagger.jl (Guliński 2021) package. DTable implements the Tables.jl interface and
therefore interoperates perfectly with DataFrames.jl, so that e.g., a DTable distributed over
several machines can use a DataFrame object to represent tables on each worker process if
desired. Further work is planned to ensure that DTable can efficiently take advantage of the
functionality already provided by the DataFrames.jl package.

Acknowledgments
We would like to thank current and past contributors to DataFrames.jl (around one hun-
dred in total, see https://github.com/JuliaData/DataFrames.jl/graphs/contributors
for a summary), in particular John Myles White and Tom Short who initially developed the
package, as well as the authors of packages mentioned in the article.

References

Anthoff D (2019). StatFiles.jl: FileIO.jl Integration for Stata, SPSS, and SAS Files. Ju-
lia package version 0.8.0, URL https://github.com/queryverse/StatFiles.jl.

Bates D, Noack A, Bouchet-Valat M, Kornblith S, JuliaStats contributors (2023). GLM.jl:
Generalized Linear Models in Julia. Julia package version 1.8.2, URL https://github.
com/JuliaStats/GLM.jl.

Bezanson J, Bouchet-Valat M, Kamiński B, JuliaData contributors (2023). PooledArrays.jl:
A Pooled Representation for Arrays with Few Unique Elements. Julia package version 1.4.2,
URL https://github.com/JuliaData/PooledArrays.jl.

Bezanson J, Edelman A, Karpinski S, Shah VB (2017). “Julia: A Fresh Approach to Numerical
Computing.” SIAM Review, 59(1), 65–98. doi:10.1137/141000671.

Blaom AD, Kiraly F, Lienart T, Simillides Y, Arenas D, Vollmer SJ (2020). “MLJ: A Julia
Package for Composable Machine Learning.” Journal of Open Source Software, 5(55), 2704.
doi:10.21105/joss.02704.

Bouchet-Valat M (2018). “First-Class Statistical Missing Values Support in Julia 0.7.” The
Julia Blog. URL https://julialang.org/blog/2018/06/missing/.

Bouchet-Valat M, JuliaData contributors (2023). CategoricalArrays.jl: Arrays for Working
with Categorical Data (Both Nominal and Ordinal). Julia package version 0.10.8, URL
https://github.com/JuliaData/CategoricalArrays.jl.

https://github.com/JuliaData/DataFrames.jl/graphs/contributors
https://github.com/queryverse/StatFiles.jl
https://github.com/JuliaStats/GLM.jl
https://github.com/JuliaStats/GLM.jl
https://github.com/JuliaData/PooledArrays.jl
https://doi.org/10.1137/141000671
https://doi.org/10.21105/joss.02704
https://julialang.org/blog/2018/06/missing/
https://github.com/JuliaData/CategoricalArrays.jl

Journal of Statistical Software 25

Breloff T, Schwabeneder D, Christ S, JuliaPlots contributors (2023). Plots.jl: Powerful Con-
venience for Julia Visualizations and Data Analysis. Julia package version 1.38.12, URL
https://github.com/JuliaPlots/Plots.jl.

Chagas RAJ (2023). PrettyTables.jl: Print Data in Formatted Tables. Julia package ver-
sion 2.2.4, URL https://github.com/ronisbr/PrettyTables.jl.

Chen J (2023). ReadStatTables.jl: Read and Write Stata, SPSS, and SAS Sata Files
with Julia Tables. Julia package version 0.2.4, URL https://github.com/junyuan-chen/
ReadStatTables.jl.

Chen J, Revels J (2016). “Robust Benchmarking in Noisy Environments.” arXiv e-Prints,
arXiv:1608.04295. doi:https://doi.org/10.48550/arXiv.1608.04295.

Claster A, Shah V (2021). “Julia User and Developer Survey 2021.” Presentation at JuliaCon,
URL https://julialang.org/assets/2021-julia-user-developer-survey.pdf.

Deffebach P, Short T, JuliaData contributors (2023). DataFramesMeta.jl: Metaprogram-
ming Tools for DataFrames. Julia package version 0.14.0, URL https://github.com/
JuliaData/DataFramesMeta.jl.

Dowle M, Srinivasan A (2023a). Introduction to data.table. R package vi-
gnette, URL https://CRAN.R-project.org/web/packages/data.table/vignettes/
datatable-intro.html.

Dowle M, Srinivasan A (2023b). data.table: Extension of data.frame. R package version
1.14.8, URL https://CRAN.R-project.org/package=data.table.

Gorecki J (2015). “Solve Common R Problems Efficiently with
data.table.” URL https://jangorecki.github.io/blog/2015-12-11/
Solve-common-R-problems-efficiently-with-data.table.html.

Guliński K (2021). “DTable – An Early Performance Assessment of a New Distributed
Table Implementation.” The Julia Blog. URL https://julialang.org/blog/2021/12/
dtable-performance-assessment/.

Kamiński B (2022). Julia for Data Analysis. Manning, Shelter Island. URL https://www.
manning.com/books/julia-for-data-analysis.

Krumbiegel J (2022). Chain.jl: A Julia Package for Piping a Value through a Series of Trans-
formation Expressions Using a More Convenient Syntax than Julia’s Native Piping Func-
tionality. Julia package version 0.5.0, URL https://github.com/jkrumbiegel/Chain.jl.

Krumbiegel J (2023). DataFrameMacros.jl: Macros That Simplify Working with
DataFrames.jl. Julia package version 0.4.1, URL https://github.com/jkrumbiegel/
DataFrameMacros.jl.

Lin D, Bouchet-Valat M, Noack A, Arslan A, JuliaStats contributors (2023). StatsBase.jl:
Basic Statistics for Julia. Julia package version 0.34.0, URL https://github.com/
JuliaStats/StatsBase.jl.

https://github.com/JuliaPlots/Plots.jl
https://github.com/ronisbr/PrettyTables.jl
https://github.com/junyuan-chen/ReadStatTables.jl
https://github.com/junyuan-chen/ReadStatTables.jl
https://doi.org/https://doi.org/10.48550/arXiv.1608.04295
https://julialang.org/assets/2021-julia-user-developer-survey.pdf
https://github.com/JuliaData/DataFramesMeta.jl
https://github.com/JuliaData/DataFramesMeta.jl
https://CRAN.R-project.org/web/packages/data.table/vignettes/datatable-intro.html
https://CRAN.R-project.org/web/packages/data.table/vignettes/datatable-intro.html
https://CRAN.R-project.org/package=data.table
https://jangorecki.github.io/blog/2015-12-11/Solve-common-R-problems-efficiently-with-data.table.html
https://jangorecki.github.io/blog/2015-12-11/Solve-common-R-problems-efficiently-with-data.table.html
https://julialang.org/blog/2021/12/dtable-performance-assessment/
https://julialang.org/blog/2021/12/dtable-performance-assessment/
https://www.manning.com/books/julia-for-data-analysis
https://www.manning.com/books/julia-for-data-analysis
https://github.com/jkrumbiegel/Chain.jl
https://github.com/jkrumbiegel/DataFrameMacros.jl
https://github.com/jkrumbiegel/DataFrameMacros.jl
https://github.com/JuliaStats/StatsBase.jl
https://github.com/JuliaStats/StatsBase.jl

26 DataFrames.jl: Flexible and Fast Tabular Data in Julia

McKinney W (2010). “Data Structures for Statistical Computing in Python.” In S Van der
Walt, J Millman (eds.), Proceedings of the 9th Python in Science Conference, pp. 56–61.
doi:10.25080/Majora-92bf1922-00a.

Müller K, Wickham H (2023). tibble: Simple Data Frames. R package version 3.2.1, URL
https://CRAN.R-project.org/package=tibble.

Noronha F (2023). XLSX.jl: Excel File Reader and Writer for the Julia Language. Julia pack-
age version 0.9.0, URL https://github.com/felipenoris/XLSX.jl.

pandas Development Team (2023). “pandas-dev/pandas: pandas v2.1.0.” doi:10.5281/
zenodo.3509134.

Petersohn D, Macke S, Xin D, Ma W, Lee D, Mo X, Gonzalez JE, Hellerstein JM, Joseph
AD, Parameswaran A (2020). “Towards Scalable Dataframe Systems.” Proceedings of the
VLDB Endowment, 13(12), 2033–2046. doi:10.14778/3407790.3407807.

Quinn J, JuliaData contributors (2021a). Avro.jl: Pure Julia Implementation for Read-
ing/Writing Data in the Avro Format. Julia package version 1.1.0, URL https://github.
com/JuliaData/Avro.jl.

Quinn J, JuliaData contributors (2021b). JSONTables.jl: JSON3.jl + Tables.jl. Julia package
version 1.0.3, URL https://github.com/JuliaData/JSONTables.jl.

Quinn J, JuliaData contributors (2023a). CSV.jl: Utility Library for Working with CSV and
Other Delimited Files in the Julia Programming Language. Julia package version 0.10.10,
URL https://github.com/JuliaData/CSV.jl.

Quinn J, JuliaData contributors (2023b). Tables.jl: An Interface for Tables in Julia. Ju-
lia package version 1.10.1, URL https://github.com/JuliaData/Tables.jl.

Quinn J, JuliaStrings contributors (2023). InlineStrings.jl: Fixed-Width String Types for Julia.
Julia package version 1.4.0, URL https://github.com/JuliaStrings/InlineStrings.
jl.

Quinn J, Kamiński B, JuliaData contributors (2023a). DataAPI.jl: A Data-Focused Names-
pace for Packages to Share Functions. Julia package version 1.15.0, URL https://github.
com/JuliaData/DataAPI.jl.

Quinn J, Savastio M, Apache contributors (2023b). Arrow.jl: Official Julia Implementa-
tion of Apache Arrow. Julia package version 2.5.2, URL https://github.com/apache/
arrow-julia.

Savastio M (2023). Parquet2.jl: Pure Julia Implementation of parquet Tabular Data Binary
Format. Julia package version 0.2.15, URL https://github.com/JuliaIO/Parquet.jl.

Singh K, TidierOrg contributors (2023). Tidier.jl: 100% Julia Implementation of the R tidy-
verse Mini-Language. Julia package version 0.7.6, URL https://github.com/TidierOrg/
Tidier.jl.

Storopoli J, Huijzer R, Alonso L (2021). “Julia Data Science.” URL https://
juliadatascience.io/.

https://doi.org/10.25080/Majora-92bf1922-00a
https://CRAN.R-project.org/package=tibble
https://github.com/felipenoris/XLSX.jl
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.14778/3407790.3407807
https://github.com/JuliaData/Avro.jl
https://github.com/JuliaData/Avro.jl
https://github.com/JuliaData/JSONTables.jl
https://github.com/JuliaData/CSV.jl
https://github.com/JuliaData/Tables.jl
https://github.com/JuliaStrings/InlineStrings.jl
https://github.com/JuliaStrings/InlineStrings.jl
https://github.com/JuliaData/DataAPI.jl
https://github.com/JuliaData/DataAPI.jl
https://github.com/apache/arrow-julia
https://github.com/apache/arrow-julia
https://github.com/JuliaIO/Parquet.jl
https://github.com/TidierOrg/Tidier.jl
https://github.com/TidierOrg/Tidier.jl
https://juliadatascience.io/
https://juliadatascience.io/

Journal of Statistical Software 27

Vertechi P, Borregaard MK, JuliaPlots contributors (2023). StatsPlots.jl: Statistical Plotting
Recipes for Plots.jl. Julia package version 0.15.5, URL https://github.com/JuliaPlots/
StatsPlots.jl.

Vink R (2023). polars: Fast Multi-Threaded DataFrame Library in Rust | Python | Node.js.
Rust crate version 0.29.0, URL https://github.com/pola-rs/polars.

Wickham H (2011). “The Split-Apply-Combine Strategy for Data Analysis.” Journal of
Statistical Software, 40(1), 1–29. doi:10.18637/jss.v040.i01.

Wickham H (2014). “Tidy Data.” Journal of Statistical Software, 59(10), 1–23. ISSN 1548-
7660. doi:10.18637/jss.v059.i10.

Wickham H, François R, Henry L, Müller K (2023). dplyr: A Grammar of Data Manipulation.
R package version 1.1.2, URL https://CRAN.R-project.org/package=dplyr.

https://github.com/JuliaPlots/StatsPlots.jl
https://github.com/JuliaPlots/StatsPlots.jl
https://github.com/pola-rs/polars
https://doi.org/10.18637/jss.v040.i01
https://doi.org/10.18637/jss.v059.i10
https://CRAN.R-project.org/package=dplyr

28 DataFrames.jl: Flexible and Fast Tabular Data in Julia

A. Code for benchmarks
In this appendix, we present the code to reproduce the benchmark results presented in Table 1.
This code is also provided as separate files attached to this article. Note that running it takes
several hours.
Each code was stored in a file and run using the command given in the comment on top of
it. The DataFrames.jl code should be run first as it additionally creates CSV files that are
later used in other files to ensure that the same data is used in all tests.

A.1. DataFrames.jl (file: julia_bench.jl)

Run using: julia -t auto –project julia_bench.jl.

using CSV, DataFrames, Random

Random.seed!(1234)
n = 50_000_000
k = 500_000
df = DataFrame(x=rand(n), grp=rand(1:k, n))
CSV.write("df.csv", df)
df1 = DataFrame(x = shuffle(1:n-1), y1 = randn(n - 1))
df2 = DataFrame(x = shuffle(2:n), y2 = randn(n - 1))
CSV.write("df1.csv", df1)
CSV.write("df2.csv", df2)

println("Julia aggregation time: ",
minimum(@elapsed combine(groupby(df, :grp), :x => sum, nrow)

for _ in 1:100))

println("Julia innerjoin time: ",
minimum(@elapsed innerjoin(df1, df2, on = :x) for _ in 1:100))

println("Julia leftjoin time: ",
minimum(@elapsed leftjoin(df1, df2, on = :x) for _ in 1:100))

println("Julia rightjoin time: ",
minimum(@elapsed rightjoin(df1, df2, on = :x) for _ in 1:100))

println("Julia outerjoin time: ",
minimum(@elapsed outerjoin(df1, df2, on = :x) for _ in 1:100))

A.2. data.table (file: datatable_bench.r)

Run using: RScript datatable_bench.r.

library("data.table")
library("microbenchmark")

dt = fread("df.csv")
bench_agg = microbenchmark(dt[, .(sum(x), .N), grp], times = 100)

Journal of Statistical Software 29

cat("data.table aggregation time:", min(bench_agg$time)/ 10^9, "\n")

dt1 = fread("df1.csv")
dt2 = fread("df2.csv")
bench_innerjoin = microbenchmark(dt1[dt2, nomatch = NULL, on = "x"],

times = 100)
cat("data.table innerjoin time:", min(bench_innerjoin$time)/ 10^9, "\n")
bench_leftjoin = microbenchmark(dt2[dt1, on = "x"], times = 100)
cat("data.table leftjoin time:", min(bench_leftjoin$time)/ 10^9, "\n")
bench_rightjoin = microbenchmark(dt1[dt2, on = "x"], times = 100)
cat("data.table rightjoin time:", min(bench_rightjoin$time)/ 10^9, "\n")
bench_outerjoin = microbenchmark(merge(dt1, dt2, by = "x", all = TRUE),

times = 100)
cat("data.table outerjoin time:", min(bench_outerjoin$time)/ 10^9, "\n")

A.3. arrow/dplyr (file: arrow_bench.r)

Run using: RScript arrow_bench.r.

library("dplyr")
library("arrow")
library("microbenchmark")

df = read_csv_arrow("df.csv", as_data_frame=FALSE)
bench_agg = microbenchmark(collect(df %>%

group_by(grp) %>%
summarise(sum(x), n())),

times = 100)
cat("Arrow/dplyr aggregation time:", min(bench_agg$time)/ 10^9, "\n")

df1 = read_csv_arrow("df1.csv", as_data_frame=FALSE)
df2 = read_csv_arrow("df2.csv", as_data_frame=FALSE)
bench_innerjoin = microbenchmark(collect(inner_join(df1, df2, on = "x")),

times = 100)
cat("Arrow/dplyr innerjoin time:", min(bench_innerjoin$time)/ 10^9, "\n")
bench_leftjoin = microbenchmark(collect(left_join(df1, df2, on = "x")),

times = 100)
cat("Arrow/dplyr leftjoin time:", min(bench_leftjoin$time)/ 10^9, "\n")
bench_rightjoin = microbenchmark(collect(right_join(df1, df2, on = "x")),

times = 100)
cat("Arrow/dplyr rightjoin time:", min(bench_rightjoin$time)/ 10^9, "\n")
bench_outerjoin = microbenchmark(collect(full_join(df1, df2, on = "x")),

times = 100)
cat("Arrow/dplyr outerjoin time:", min(bench_outerjoin$time)/ 10^9, "\n")

30 DataFrames.jl: Flexible and Fast Tabular Data in Julia

A.4. Polars (file: polars_bench.py)
Run using: python polars_bench.r.

import time
import polars as pl

df_polars = pl.read_csv('df.csv')

def test_agg_polars(df):
begin = time.time()
df.groupby("grp").agg([pl.sum('x'), pl.count('x').alias('nrow')])
end = time.time()
return end-begin

print('Polars aggregation time:',
min([test_agg_polars(df_polars) for i in range(100)]))

df1_polars = pl.read_csv('df1.csv')
df2_polars = pl.read_csv('df2.csv')

def test_join_polars(df1, df2):
begin = time.time()
df1.join(df2, on="x", how="inner")
end = time.time()
jinner = end-begin
begin = time.time()
df1.join(df2, on="x", how="left")
end = time.time()
jleft = end-begin
right join is not supported in Polars
begin = time.time()
df1.join(df2, on="x", how="outer")
end = time.time()
jouter = end-begin
return (jinner, jleft, jouter)

res_join_pl = [test_join_polars(df1_polars, df2_polars) for i in range(100)]
print('Polars innerjoin time:',

min([v[0] for v in res_join_pl]))
print('Polars leftjoin time:',

min([v[1] for v in res_join_pl]))
print('Polars outerjoin time:',

min([v[2] for v in res_join_pl]))

A.5. pandas (file: pandas_bench.py)
Run using: python pandas_bench.r.

Journal of Statistical Software 31

import pandas as pd
import time
df_pandas = pd.read_csv("df.csv", engine='pyarrow')

def test_agg_pandas(df):
begin = time.time()
df.groupby("grp").agg({'x': ['sum', 'count']})
end = time.time()
return end-begin

print('Pandas aggregation time:',
min([test_agg_pandas(df_pandas) for i in range(100)]))

df1_pandas = pd.read_csv("df1.csv", engine='pyarrow')
df2_pandas = pd.read_csv("df2.csv", engine='pyarrow')

def test_join_pandas(df1, df2):
begin = time.time()
df1.merge(df2, on='x', how='inner')
end = time.time()
jinner = end-begin
begin = time.time()
df1.merge(df2, on='x', how='left')
end = time.time()
jleft = end-begin
begin = time.time()
df1.merge(df2, on='x', how='right')
end = time.time()
jright = end-begin
begin = time.time()
df1.merge(df2, on='x', how='outer')
end = time.time()
jouter = end-begin
return (jinner, jleft, jright, jouter)

res_join_pd = [test_join_pandas(df1_pandas, df2_pandas) for i in range(100)]
print('Pandas innerjoin time:',

min([v[0] for v in res_join_pd]))
print('Pandas leftjoin time:',

min([v[1] for v in res_join_pd]))
print('Pandas rightjoin time:',

min([v[2] for v in res_join_pd]))
print('Pandas outerjoin time:',

min([v[3] for v in res_join_pd]))

32 DataFrames.jl: Flexible and Fast Tabular Data in Julia

Affiliation:
Milan Bouchet-Valat
Institut national d’études démographiques (INED)
9 Cours des Humanités
F-93300 Aubervilliers, France
E-mail: milan.bouchet-valat@ined.fr
URL: http://bouchet-valat.site.ined.fr

Bogumił Kamiński
Decision Support and Analysis Division
SGH Warsaw School of Economics
Al. Niepodległości 162
02-554 Warsaw, Poland
E-mail: bkamins@sgh.waw.pl
URL: http://bogumilkaminski.pl/about/

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/
September 2023, Volume 107, Issue 4 Submitted: 2022-01-06
doi:10.18637/jss.v107.i04 Accepted: 2023-06-08

mailto:milan.bouchet-valat@ined.fr
http://bouchet-valat.site.ined.fr
mailto:bkamins@sgh.waw.pl
http://bogumilkaminski.pl/about/
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v107.i04

	Introduction
	About DataFrames.jl
	Fundamental design
	Indexing
	Data transformations and grouping
	Other functionalities
	Extensions
	Performance considerations
	Practical illustration
	Discussion
	Code for benchmarks
	DataFrames.jl (file: julia-bench.jl)
	data.table (file: datatable-bench.r)
	arrow/dplyr (file: arrow-bench.r)
	Polars (file: polars-bench.py)
	pandas (file: pandas-bench.py)

