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Abstract

The growth of populations is of interest in a broad variety of fields, such as epidemi-
ology, economics or biology. Although a large variety of growth models are available in
the scientific literature, their application usually requires advanced knowledge of mathe-
matical programming and statistical inference, especially when modelling growth under
dynamic environmental conditions. This article presents the biogrowth package for R,
which implements functions for modelling the growth of populations. It can predict growth
under static or dynamic environments, considering the effect of an arbitrary number of
environmental factors. Moreover, it can be used to fit growth models to data gathered
under static or dynamic environmental conditions. The package allows the user to fix
any model parameter prior to the fit, an approach that can mitigate identifiability issues
associated to growth models. The package includes common S3 methods for visualization
and statistical analysis (summary of the fit, predictions, . . . ), easing result interpretation.
It also includes functions for model comparison/selection. We illustrate the functions in
biogrowth using examples from food science and economy.

Keywords: kinetic modelling, model fitting, predictions, dynamic modeling, R, predictive mi-
crobiology, uncertainty.

1. Introduction

The analysis of growth is a research focus of many scientific fields. However, the actual
meaning of the term “growth” can vary widely. In biology, growth can refer to an increase
in the size of an individual organism or in the number of members in a population due to
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replication, whereas in economic studies growth may relate to the change in the monetary
value of the goods produced by an economy. Regardless of the field, a usual attribute of growth
is that its underlying mechanisms are complex and not fully understood. For instance, the
replication of bacterial cells is determined by a large network of biochemical reactions that has
not been described completely (Notebaart, Kintses, Feist, and Papp 2018). This complexity
also applies to other fields outside of microbiology, such as socio-economic systems. For that
reason, growth is usually described using mathematical models at the population level, where
the meaning of the term “population” can vary broadly between fields (number of cells, gross
domestic product of a country, . . . ).
Mathematical models describing growth at a population level have many applications. Nonethe-
less, these can be roughly divided in two categories: prediction and inference. Model predic-
tion refers to the estimation of the future state of a system. For instance, growth models can
be used to predict the increase in the population size of a spoilage microorganism, supporting
shelf life estimation (García, Vilas, Herrera, Bernárdez, Balsa-Canto, and Alonso 2015). In-
ference, on the other hand, is related to analyzing the parameters of growth models estimated
under different conditions. For instance, changes in the growth rate of a population can be
used to assess whether some actions are effective at controlling a disease outbreak.
At the moment of writing this manuscript, several R packages for modeling growth are already
available in the Comprehensive R Archive Network (CRAN), although they have some limi-
tations. The packages grofit (Kahm, Hasenbrink, Lichtenberg-Fraté, Ludwig, and Kschischo
2010, no longer available in CRAN) and growthcurver (Sprouffske and Wagner 2016) include
functions for model fitting, but cannot be used for making predictions. On the contrary,
growthmodels (Perez 2023) can be used for making predictions, but does not include functions
for parameter estimation. The package nlsMicrobio (Baty, Delignette-Muller, and Siberchicot
2021) is an extension of nlstools (Baty, Ritz, Charles, Brutsche, Flandrois, and Delignette-
Muller 2015) that defines several growth models from predictive microbiology that can be
used for model fitting or making predictions under static conditions. The recent package
growthrates (Petzoldt 2022) includes functions for both parameter estimation and making
predictions, however, this package (as well as the ones mentioned before) cannot include the
effect of changes in the environmental conditions on the growth of the population, which can
be highly relevant in some case studies. For instance, in the context of food safety, storage
temperature is a major limiting factor of microbial growth that varies largely along the food
chain, being highly influential on the shelf life of a product (González-Tejedor, Garre, Esnoz,
Artés-Hernández, and Fernández 2018). Although it is not specifically designed for modeling
microbial growth drc includes functions for fitting and making predictions for sigmoid curves
that could also be adapted to the description of population growth (Ritz, Baty, Streibig,
and Gerhard 2015). On the other hand, this package cannot be used to simulate dynamic
environmental conditions.
Outside of the R environment, several software applications have been developed to describe
the growth of populations. BGFit (Veríssimo, Paixão, Neves, and Vinga 2013) is an on-
line tool that includes several functions for fitting and sharing growth models. PRECOG
(Fernandez-Ricaud, Kourtchenko, Zackrisson, Warringer, and Blomberg 2016) is also an on-
line application that can estimate various growth parameters of a population. However, it is
not based on predictive models, so it cannot be used for making predictions. This is similar
to the pyphe-growthcurves module of the Pyphe Python toolbox (Kamrad, Rodríguez-López,
Cotobal, Correia-Melo, Ralser, and Bähler 2020), which can describe growth curves based on
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non-parametric methods. DMFit is a web tool for model fitting included within ComBase
(Baranyi and Tamplin 2004) that can be used to fit growth models to data gathered under
dynamic environmental conditions.
In this article, we present the biogrowth package (version 1.0.3) for R. It includes functions
to describe the growth of populations using parametric models at the population level. It
implements functions for model fitting and for the calculation of model predictions. One
of its main advantages with respect to packages with a similar scope is the inclusion of
secondary models to describe the relationship between the growth rate and the environmental
conditions. Moreover, this package enables fitting growth models from data gathered under
varying environmental conditions conditions, a methodology that is considered by several
authors to be superior for parameter estimation (Telen, Logist, Van Derlinden, Tack, and Van
Impe 2012; Huang and Li 2020), or the estimation of secondary models from a set of growth
rates. Furthermore, the fit can be done using either non-linear regression or an adaptive
Monte Carlo algorithm. The growth models (either fitted or user-defined) can be used to
make predictions under static or dynamic environmental conditions. A second advantage
of biogrowth with respect to other approaches is the possibility to include uncertainty in
model predictions, a topic whose relevance for microbial risk assessment is nowadays strongly
emphasized by regulatory bodies (EFSA Scientific Committee et al. 2018; Schendel, Jung,
Lindtner, and Greiner 2018). Furthermore, the package allows choosing between different
model equations and implements functions for model selection/comparison (visualization and
statistical indexes). The package defines S3 classes as the output of the main functions. This
type of R classes is often included in this type of package (many of the packages listed above
include them) to facilitate the inspection of the model fits and predictions using S3 methods
based on generic functions (such as plot() or summary()). Considering these features, we
believe that biogrowth is a step forward with respect to the other R packages and other
applications already available for modeling population growth.
The biogrowth package follows the modeling approach of predictive microbiology, where mod-
els are defined in two steps: primary models and secondary models (Buchanan and Whiting
1996). In this approach, primary models describe the relationship between the population
size and the elapsed time. Therefore, they have a single explanatory variable (time). In
most cases, the maximum specific growth rate of the primary model depends on the envi-
ronmental conditions. A typical example is the relationship between the maximum specific
growth rate of microbial populations and temperature. In predictive microbiology, this type
of relationship is described using secondary models. Although this approach was initially
intended for describing microbial populations, its principles are applicable to a large number
of scientific fields. For instance, some of the models included in biogrowth have been used
in biotechnology (Gonzales, Kim, and Kim 2019; Martínez-Hernández, Taboada-Rodríguez,
Garre, Marín-Iniesta, and López-Gómez 2021), ecology (Jiang et al. 2018), medicine (Adam
and Bellomo 2012), astrobiology (Spada and Melini 2020), economics (Tsai 2013), operations
research (Cabecinhas et al. 2018), or social sciences (Gupta, Kumar, Sangam, and Karisid-
dappa 2002). Therefore, we consider that the functions included in biogrowth can be applied
to a large variety of fields with (in some cases) minor modifications, as illustrated in the case
studies below.
The following section of this paper describes the modeling approach used in biogrowth to
describe the growth of populations. Next, Section 3 describes the software architecture,
presenting the main functions and classes of the package, as well as the mathematical methods
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used for model fitting and prediction. This is followed by Section 4 illustrating four common
ways to build and apply growth models: based on parameters from the literature, by fitting
primary growth models, by fitting secondary growth models, or by fitting both primary and
secondary growth models to data gathered under dynamic conditions. The article finalizes
with a section summarizing the functions included in biogrowth and contextualizing its use
in a variety of fields. For reasons of space, not every aspect of the package is described in full
detail. The interested reader is referred to the package manual and vignettes for an in-depth
description.

2. Models of population growth

2.1. Growth under constant environmental conditions: Primary models

Version 1.0.3 of biogrowth implements five primary growth models in algebraic form: the
logistic growth model, the Richards model, the modified Gompertz model (Zwietering, Jon-
genburger, Rombouts, and Van ’t Riet 1990), the Baranyi model (Baranyi and Roberts 1994),
and the triphasic linear model (Buchanan, Whiting, and Damert 1997). In principle, these
model equations are intended to describe population growth under constant environmental
conditions. These models consider a sigmoidal relationship between the logarithm of the pop-
ulation size and the elapsed time, a shape commonly observed in a variety of fields. To ease
result interpretation, the growth curve is divided in three phases, as illustrated in Figure 1.
Even in conditions suitable for growth, it is common for populations to need an adaptation
time before growth onset. The duration of this time defines the lag phase. Once the lag
phase has finished, the population size grows exponentially during the exponential phase.
Nevertheless, in most situations the population cannot grow indefinitely (e.g. due to space
or nutrient constraints). Hence, the moment when the population size becomes stable marks
the beginning of the stationary phase.
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Figure 1: Illustration of a typical growth curve.
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The modified Gompertz model (Zwietering et al. 1990) is defined in Equation 1, where t is
the elapsed time, and N(t) is the size of the population at time t. This model is defined by
four model parameters: the logarithm of the population size at t = 0 (log10 N0), the duration
of the lag phase (λ), the slope of the growth curve during the exponential phase (µ) and
the difference between log10 N0 and the logarithm of the maximum population size in the
stationary phase (C).

log10 N(t) = log10 N0 + C

(
exp

(
− exp

(
e · µ

C
(λ − t) + 1

)))
(1)

Note that through this article we follow a common convention in predictive microbiology
where µ is defined as the slope of the growth curve during the exponential phase in the
log10 N versus t plot. This value is different from the specific growth rate (the slope in the
ln N vs t plot), which can be calculated by multiplying µ by ln(10). By default, the functions
in biogrowth also follow this convention. Nonetheless, the package includes arguments to
make the calculations using either scale (described in Section 3 and in the relevant vignette).
The logistic model is defined in Equation 2, where the variables and parameters have the
same interpretation as in the modified Gompertz model.

log10 N(t) = log10 N0 + C

1 + exp
(

4µ
C (λ − t) + 2

) (2)

The Richards model is defined in Equation 3. This model has an additional parameter with
respect to the modified Gompertz and logistic models (ν), which defines the sharpness of the
transition between the different growth phases.

log10 N(t) = log10 N0 + C

[
1 + ν · exp

(
1 + ν + µ

C
(1 + ν)1+1/ν(λ − t)

)]−1/ν

(3)

Regarding the Baranyi model, biogrowth uses the algebraic solution under static conditions
by (Öksüz and Buzrul 2020). This model uses log10 Nmax (the maximum population size)
instead of C. The remaining model parameters are the same as the ones in the modified
Gompertz model.

log10 N(t) = log10 Nmax + log10
1 + 10µ(t−λ) − 10−µλ

10µ(t−λ) − 10−µλ + 10(log10 Nmax−log10 N0)

The triphasic linear model was suggested as a simplified version of other growth models
(Buchanan et al. 1997; Zwietering, De Wit, Cuppers, and Van ’t Riet 1994), where the
sigmoidal curve is described using three straight lines. It has the same parameters as the
Baranyi growth model.

log10 N(t) =


log10 N0 if t < λ

log10 Nmax if t > tstat

log10 N0 + µ(t − λ) otherwise

with tstat = (log10 Nmax−log10 N0)/µ+λ standing for the time required to reach the stationary
phase.
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2.2. Growth under dynamc environmental conditions: Secondary model

The description of population growth accounting for the effect of changes in the environmental
conditions requires the definition of the primary growth model as a differential equation. For
this, biogrowth uses the Baranyi growth model (Baranyi and Roberts 1994). This model is
an extension of the exponential growth model that accounts for the delay in the onset of
population growth in the lag phase and the saturation observed in the stationary phase. The
model initially proposed by Baranyi and Roberts has been simplified during the last decades,
resulting in the equation shown below (Perez-Rodriguez and Valero 2012).

dN
dt = ln(10) · µ · N(t)

µ = α · µopt · β

α = Q(t)
1+Q(t)

β = 1 − N(t)
Nmax

dQ
dt = µopt · Q(t)

(4)

In the Baranyi model, the lag phase is modeled based on the hypothesis of an ideal substance
(Q(t)), which must be produced before exponential growth begins. This is implemented by
coefficient α(t) = Q(t)/(1 + Q(t)), which acts as a scaling factor of the specific growth rate.
The duration of the lag phase is determined by the initial value of Q(t) (Q0) and the growth
rate according to the identity

λ = ln (1 + 1/Q0)
µopt

In this model, the stationary phase is introduced with the coefficient β(t), which takes the
form proposed by (Verhulst 1838). Note that when α = 1 and β = 1, the Baranyi model is
reduced to the exponential growth model.
The biogrowth package models the impact of the environmental conditions on the growth rate
using the so-called gamma concept (Zwietering, Wijtzes, De Wit, and Van ’t Riet 1992), also
called functional response or dimensionless moderators elsewhere. This modeling approach
considers that each environmental factor acts as an independent scaling factor for µ with
respect to the value of µ observed under optimal growth conditions (µopt). This can be
described for k environmental conditions using the following equation

µ(t) = µopt · γ1(X1(t)) · · · · · γn(Xn(t)); i ∈ 1, . . . , k (5)

where γi(Xi) is the “gamma factor” corresponding to environmental condition Xi. In this
approach, γi(Xi) ∈ [0, 1]∀Xi, so each environmental factor scales down the growth rate with
respect to the maximum one (µopt).
The biogrowth package implements three different gamma models: the cardinal parame-
ter model (CPM), a generalization of those proposed by Zwietering and the (adapted) full
Ratkowsky model. The CPM (Rosso, Lobry, Bajard, and Flandrois 1995) is described by the
following equation

γ(X) = (X − Xmax)(X − Xmin)n

(Xopt − Xmin)n−1((Xopt − Xmin)(X − Xopt) − (Xopt − Xmax)(n − 1)(Xopt + Xmin − nX))

where Xmin, Xopt and Xmax are the minimum, optimum and maximum values of X for
the population growth. Note that Xmin and Xmax usually do not exactly match the values
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Figure 2: Gamma factor according to the cardinal parameter model (CPM) for an arbitrary
environmental factor, X. The lines represent the effect of changing the shape factor (n),
while the remaining parameters are fixed: Xmin = 10 (minimum value for growth), Xopt = 35
(optimum value for growth), Xmax = 40 (maximum value for growth).

observed in growth/no-growth experiments of microbial populations. For that reason, in
predictive microbiology, they are often called “theoretical” minimum and maximum values
for growth.
The CPM model has a concave shape, whose curvature is defined by parameter n (called “the
order” of the cardinal model). Figure 2 illustrates the shape of this model for different values
of n.
The secondary models proposed by Zwietering (Zwietering et al. 1992) can be expressed as

γ(X) =
(

X − Xmin
Xopt − Xmin

)n

where Xmin, Xopt and n have the same interpretation as in the CPM model.
The Ratkowsky model (Ratkowsky, Lowry, McMeekin, Stokes, and Chandler 1983) was
proposed as an extension of an earlier model by the same laboratory (Ratkowsky, Olley,
McMeekin, and Ball 1982) with broader validity range. It is defined by the following equa-
tion √

µ(X) = b(X − Xmin)
(
1 − ec(X−Xmax)

)
where Xmin and Xmax have the same interpretation as in the CPM model. Parameters b and c
describe the slope of the model for values of X below and above Xopt, respectively. However,
the output of this model, as formulated by the original authors, can take values outside of
[0, 1]. Hence, it must be modified before it can be used as a gamma factor. For that, we
can calculate the value of Xi for which

√
µ(X) is maximum (Xopt). By setting ∂µ

∂X = 0, and
considering c > 0, we get

Xopt =
Wn

(
e−cXmin+cXmax+1

)
+ cXmin − 1

c
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where Wn is the Lambert-W function, defined as the inverse of f(w) = w · ew.
Then, the gamma function corresponding to the Ratkowsky model (γRtk) can be calculated
as

γRtk =
( √

µ(X)
√

µ(Xopt)

)2

=

 (X − Xmin)
(
1 − ec(X−Xmax)

)
(Xopt − Xmin)

(
1 − ec(Xopt−Xmax))

2

This function is defined within [0, 1], so it can be used as a gamma function. Note that the
scale parameter b fades from the equation, so the model has three parameters: Xmin, Xmax
and c.

3. Description of the biogrowth package

3.1. Installation

The biogrowth package (Garre, Koomen, Den Besten, and Zwietering 2023) is developed in
R and available from CRAN at https://CRAN.R-project.org/package=biogrowth. Hence,
it can be installed in any computer with R (> 2.1.0) with the command:

R> install.packages("biogrowth")

The development version of the package can be installed from GitHub using devtools (Wick-
ham, Hester, Chang, and Bryan 2022b) with the following command:

R> devtools::install_github("albgarre/biogrowth")

These commands also install the dependencies of biogrowth. The code is written according
to the tidy philosophy, so it imports most packages from tidyverse (Wickham et al. 2019).
Visualizations are made in ggplot2, using also cowplot (Wilke 2020) for some visualizations
that require subplots. Differential equations are solved numerically using deSolve (Soetaert,
Petzoldt, and Setzer 2010), and model fitting is done using FME (Soetaert and Petzoldt
2010). Finally, MASS (Venables and Ripley 2002) and lamW (Adler 2023) are used for some
statistical calculations. The functions are thoroughly documented using roxygen2 (Wickham,
Danenberg, Csárdi, and Eugster 2022a), and several vignettes have been prepared using knitr
(Xie 2015). The guidelines of lifecycle have been followed to describe the maturity of the
different functions (Henry and Wickham 2022).

3.2. Software architecture and main functions

The biogrowth package follows a software architecture based on functional programming.
Each main function returns an instance of an S3 class, which implements relevant S3 methods
to facilitate posterior analyses (print(), summary(), plot(), predict(), . . . ). Table 1
illustrates the main functions implemented in biogrowth, as well as their associated S3 classes.
They can be divided in three groups: prediction, fitting and analysis. The following sections
describe the numerical methods used in the package for each type of calculation, pointing
out the main functions and arguments. However, for reasons of space, not every function
argument is described in detail. The reader is referred to the function documentation and
the package vignette for a thorough description.

https://CRAN.R-project.org/package=biogrowth
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Function name S3 class Description

predict_growth() ‘GrowthPrediction’ Growth predictions
fit_growth(approach = "single") ‘GrowthFit’ Model fitting to individual experiments
fit_growth(approach = "global") ‘GlobalGrowthFit’ Model fitting to several experiments
fit_secondary_growth() ‘FitSecondaryGrowth’ Fitting secondary growth models
predict_growth_uncertainty() ‘GrowthUncertainty’ Predictions with parameter uncertainty
predictMCMC() ‘MCMCgrowth’ Predictions with parameter uncertainty

from fitted models
compare_growth_fits() ‘GrowthComparison’ Model comparison
compare_secondary_fits() ‘SecondaryComparison’ Model comparison for secondary models
time_to_size(type = "discrete") ‘double’ Time to reach a target size
time_to_size(type = "distribution") ‘TimeDistribution’ Distribution of times to reach a target

size

Table 1: Summary of main functions and associated S3 classes in biogrowth.

3.3. Numerical methods for growth models based on algebraic equations

Model predictions

Calculations under constant environmental conditions are calculated using predict_growth()
setting environment = "constant". The growth model is passed as a list to primary_model,
defining the primary model equation and the values of the model parameters. The primary
models in biogrowth have an algebraic solution, so the prediction is calculated by substituting
the values of the model parameter into the equation. Nonetheless, it is calculated only at
discrete time points (passed as a numeric vector to times). Hence, the precision of posterior
analysis (e.g. visualizations or when calculating the time to reach a given size) can be low if
times is not dense enough.
The function returns an instance of ‘GrowthPrediction’ with the results of the calculation.
It is a subclass of ‘list’ that provides direct access the results of the calculation. It also
implements S3 methods for print(), plot(), summary() and coef() to facilitate analysis of
the prediction.

Predictions with parameter uncertainty

The function predict_growth_uncertainty() can include parameter uncertainty in the
model predictions. Calculations are done by forwards uncertainty propagation based on
Monte Carlo simulation and parametric bootstrap, an approach commonly used in predic-
tive microbiology (Vásquez, Busschaert, Haberbeck, Uyttendaele, and Geeraerd 2014; Garre,
Fernández, Lindqvist, and Egea 2017).
The distribution of the model parameters is defined using the pars argument. It is a tibble
(or data.frame) with four columns (par, mean, sd and scale), where each row describes
the marginal distribution of a single parameter. The function uses a normal distribution,
although it can also be defined in log- or square-root-scales for each parameter using the
scale column. Note that the predictMCMC() function allows nonparametric calculations
based on the Markov Chain of a model fitted using a Monte Carlo algorithm. Moreover,
one of the package vignettes describe how to make this calculations for custom parameter
distributions.
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The calculations are done in two steps. First, the function generates a parameter sample
of the size defined by the argument n_sims, in the selected scale using MASS:mvrnorm().
By default, the function does not consider any parameter correlation, although a correlation
matrix can be passed to the cor argument. Once the parameter sample has been generated,
it is converted to the original parameter scale before calling predict_growth() for each
sampled parameter vector. This generates a family of curves that estimate the distribution
of the population size for the time points defined in the times argument.
The results are returned as an instance of ‘GrowthUncertainty’. Although this subclass of
‘list’ provides direct access to the results of the calculation, it also implements S3 methods
for print() and plot() to ease the visualization and analysis of the results.

Fitting primary growth models

Primary growth models are fitted to experimental data with fit_growth(). The data must
be defined as tibble (or data.frame) with two columns: one defining the elapsed time and a
second one with the logarithm of the population size. By default, they must be named “time”
and “logN”, although this can be changed using the formula argument.
The fitting procedure is based on FME::modFit(). For each candidate parameter vector,
residuals of the log-population size are calculated using FME::modCost(), based on the pre-
diction of predict_growth(). By default, fit_growth uses the default settings of modFit(),
although they can be modified by passing additional arguments through the ... argument.
The modFit() function uses regression, an algorithm that requires initial guesses for every
model parameter. These are passed as a numeric vector to the start argument. The bi-
ogrowth package implements two functions to facilitate their definition: check_growth_guess()
and make_guess_primary(). The former generates a plot comparing the initial guess against
the experimental data. The latter applies some heuristic rules to obtain an initial guess of
the model parameters. Namely, log N0 is taken as the minimum population in the data. The
maximum population value in the data is used as a guess for log Nmax, whereas C is the
difference between both values. The value of λ is estimated as the first time point where
the population is larger than log N0 by more than 0.5 log units. The time to reach the sta-
tionary phase (tmax) is calculated in a similar way, so an initial guess for µ is calculated by
µ = (log Nmax − log N0)/(tmax − λ). For ν, the function always returns an initial guess of 1
(equivalent to a logistic growth model).
One common issue when fitting sigmoidal growth models to data is poor identifiability. For
instance, experimental growth curves usually lack a stationary phase because the experiment
ended before the population reached that phase. It has been suggested that fixing some of the
model parameters can resolve many identifiability issues in this type of model (Vilas, Arias-
Mendez, Garcia, Alonso, and Balsa-Canto 2018). For this reason, fit_growth() enables
fixing any model parameter prior to model fitting using the known argument. Nonetheless,
users are advised to use these models with care, as fixing models to arbitrary values may bias
parameter inference and result in bias predictions (Schmidt, Emelko, and Thompson 2019).
The model fitted is returned as an instance of ‘GrowthFit’, a subclass of ‘list’. It implements
a number of S3 methods to analyze the model fitted and extract the statistical properties
of the fit. Namely, it implements methods for print(), coef(), summary(), predict(),
residuals(), vcov(), deviance(), fitted(), logLik(), AIC() and plot().
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Fitting secondary growth models

The biogrowth package allows fitting secondary growth models to a dataset of maximum
growth rates observed under different (constant) environmental conditions with the function
fit_secondary_growth(). The data must be a tibble (or data.frame) where each row
reports the value of µ observed for one experiment under constant environmental conditions.
One column of the data must contain the value of µ observed in the experiment. By default,
this column must be named mu, although this can be changed using the formula argument.
Then, additional columns of the data define the value of the environmental conditions of
each experiment. The fit_secondary_growth() function applies the gamma approach, so
it does not impose any limit to the number of environmental factors to include in the model.
The model equations assigned to each environmental factor are defined as a named character
vector using sec_model_names.
Model fitting is based on the modFit() function from FME. Residuals are calculated using
FME:modCost() by solving the algebraic solution of the selected secondary model. By default,
the default settings of modFit() are used. This behavior can be changed using the ...
argument. It is common in predictive microbiology to calculate the residuals of the square
root-transformed growth rates to stabilize the variance. However, because the package is
intended for a broader audience, fit_secondary_growth gives the opportunity to calculate
the residuals on three different scales (square root, log-transformed, or no-transformation)
using the transformation argument.
Fitting secondary models also suffers often from identifiability issues (especially when ac-
counting for numerous environmental factors). This problem can be partly mitigated using
the known_pars argument to fix any number of model parameters to known values before
model fitting. The remaining model parameters require the definition of initial values, passed
as a numeric vector to starting_point. In order to facilitate their definition, biogrowth
includes make_guess_secondary(), which follows some heuristic rules to generate initial
guesses for every model parameter. Namely, for each environmental factor, Xmin and Xmax
are assigned to the minimum and maximum values in the data. The maximum value of µ is
taken as the initial guess of µopt and the value of X where µ is maximum is taken as initial
guess for Xopt. Finally, an initial guess of 2 is always assigned to n.
The function returns an instance of ‘FitSecondaryGrowth’. This subclass of ‘list’ im-
plements several S3 methods to ease the analysis of the model fitted: print(), coef(),
summary(), predict(), residuals(), vcov(), deviance(), fitted(), logLik(), AIC() and
plot().

3.4. Numerical methods for growth models based on differential equations

Model predictions

Passing environment = "dynamic" to predict_growth() accounts for the effect on the
growth rate of changes in the environmental conditions during the experiment. In this case,
the growth curve is calculated by solving the differential equation of the Baranyi model (Equa-
tion 4) substituting µ(t) by the selected secondary model according to the gamma approach
(Equation 5). The solution is approximated numerically using deSolve::ode(). By default,
the function uses the default settings (algorithm, tolerances, . . . ) of ode(), although the user
can define other controls using the ... argument.
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As well as for predictions based on primary models only, this mode of calculation estimates
the solution at the discrete time points passed through the argument times. Additionally, it
requires the definition of the variation of the environmental conditions through the experiment
(argument env_conditions). This must be defined as a data.frame (or tibble) with one
column providing the elapsed time and as many columns as needed defining the values of the
environmental conditions. For values of time not included in the data, the function calculates
the values of the environmental conditions by linear interpolation.
The argument secondary_models serves to map a secondary model equation to each environ-
mental factor using a nested list. Due to the use of the gamma approach, predict_growth()
does not impose any limit to the number of environmental conditions. Nonetheless, every
environmental factor must be defined at the same values of time.
Although models including secondary models are designed for describing the growth under dy-
namic environmental conditions, this modeling approach can also predict growth under static
conditions. For that, one has to define a table with constant values for every environmental
factor. The advantages of this approach are discussed in a dedicated package vignette.
As well as for predictions for environment = "constant", the function returns an instance
of ‘GrowthPrediction’ with several S3 methods to ease the analysis of the results.

Fitting both primary and secondary models under dynamic environmental conditions

Passing environment = "dynamic" to the fit_growth() function allows the estimation of
the parameters of both primary and secondary growth models from a dataset. In this case, the
function requires two types of data. The first one, fit_data is the variation in the logarithm
of the population size through the experiment. The second one, env_conditions, provides
the variation of the environmental conditions. Both inputs are defined as a tibble (or
data.frame) following the same conventions as the ones defined above for making predictions.
The fitting can be done using two different algorithms, according to the value of the argu-
ment algorithm: non-linear regression (using FME::modFit()), or an Adaptive Monte Carlo
algorithm (Haario, Laine, Mira, and Saksman 2006, using FME::modMCMC()). Both fitting al-
gorithms require the definition of initial guesses for every model parameter to estimate from
the data. These are defined as a named numeric vector using the argument start. This can be
defined based on information from the scientific literature or by a visual inspection of the pre-
dictions corresponding to a vector of parameter values. The function check_growth_guess()
facilitates this second approach. Given a dataset and a list of model parameters, it generates
a plot comparing the model prediction against the data.
Unlike for fitting when environment = "constant", the package does not include any func-
tion to generate initial guesses of the model parameters based on some heuristic. The rea-
son for this is the possible high parameter correlation for some experimental designs, where
different parameter combinations results in similar predictions. For instance, under some
conditions, the population growth could stop either because it has reached the stationary
phase (defined by log Nmax) or because the value of some environmental condition is above
the one allowing growth (defined by Xmax). Consequently, in order to avoid pushing the
fitting algorithm towards an arbitrary solution, a function based on heuristic rules is not
implemented.
As already mentioned, this high parameter correlation can also cause poor parameter iden-
tifiability. In order to mitigate this, fit_growth() allows fixing any model parameter to



Journal of Statistical Software 13

any value through the known argument. If the fitting was successful, the function returns an
instance of ‘GrowthFit’ with the same S3 methods as those implemented for models based
on algebraic equations.
Note that fit_growth() does not implement any convergence check for models fitted by
a Monte Carlo (MC) algorithm. Therefore, the convergence of the Markov chain has to be
evaluated independently. This needs to be done by inspecting the instance of ‘modMCMC’ that is
included in .$fit_results. For details on how to evaluate the convergence of the algorithm,
the reader is referred to the documentation of FME and references therein (Soetaert and
Petzoldt 2010).

Fitting both primary and secondary models from several experiments (global fitting)

The fit_growth() function can also fit a unique growth model (based on primary and sec-
ondary model equations) to the results of several experiments obtained under different (static
or dynamic) environmental conditions. This approach, sometimes called “global fitting” in
predictive microbiology, is triggered by passing approach = "global". This method is also
recommended when the experimental method has low precision, potentially causing relevant
changes in the environmental conditions between independent repetitions.
In this case, the input must be formatted in a similar way as when approach = "single".
It also requires two types of information: the variation in the population size through the
experiment and the experimental conditions during the experiment. However, because the
model is fitted to several experiments, the arguments fit_data and env_conditions must be
defined as (preferably named) lists, where each entry defines the observations or environmental
conditions as a tibble (or data.frame) following the same conventions as described above.
As well as for the standard approach, the model can be fitted either using regression or an
Adaptive Monte Carlo algorithm, according to the value of the argument algorithm. In order
to facilitate the definition of initial guesses for the model parameters, check_growth_guess()
can compare the predictions corresponding to a model with the experimental data.
Global fitting is affected by similar issues related to poor parameter identifiability as described
above for growth models fitted to data gathered under dynamic environmental conditions.
Consequently, biogrowth does not include a function to automatically generate initial guesses
based on heuristic rules. Furthermore, in order to mitigate potential parameter identifiability
issues, any model can be fixed to any value using the known argument.
The function returns an instance of ‘GlobalGrowthFit’, which implements similar S3 methods
to facilitate the visualization and inspection of the model as those defined for ‘GrowthFit’.

Predictions including parameter uncertainty

Although the function predict_growth() and the predict() S3 methods can be used to
make growth predictions for dynamic environmental conditions, they make discrete predic-
tions without accounting for parameter uncertainty. For this type of calculation, the package
implements predictMCMC(), which applies forward uncertainty propagation based on Monte
Carlo simulations.
This function needs a model fitted using a Monte Carlo algorithm (passed through argument
model). It generates a sample of model parameters of size niter by sampling with replacement
the draws from the Markov chain. Then, for each sampled parameter vector, it calculates the



14 biogrowth: Modeling Population Growth in R

Quantity Identifier Description
log10 N logN Logarithm of the population size
log10 N0 logN0 Logarithm of the initial population size
N N Population size
N0 N0 Initial population size
t t Elapsed time
C C Log-increase in population size (log10 Nmax − log10 N0)
µ mu Maximum growth rate (by default in log10 scale)
λ lambda Duration of the lag phase
ν nu Sharpness of the transition between growth phases in the Richards

model
Q Q Variable of the Baranyi model describing the lag phase
Q0 Q0 Initial value of Q
Xmin xmin Minimum value of X enabling growth
Xopt xopt Optimum value of X for population growth
Xmax xmax Maximum value of X enabling growth
n n Order of the secondary model
µopt mu_opt Value of µ under optimal environmental conditions for growth

Table 2: Summary of model parameters in biogrowth.

growth curve at the discrete time points defined in times by calling predict_growth(). The
calculation is done for the environmental conditions defined as a tibble (or data.frame) in
the env_conditions argument, following the conventions described above. Note that this
input must have the same environmental conditions as those used for model fitting.
The function uses the distribution of the Monte Carlo simulations as an estimate for the
distribution of the population size. The precision of this estimate depends both on the
number of iterations and the precision of the posterior distribution estimated by the adaptive
Monte Carlo algorithm. For this reason, it is essential when using predictMCMC() to also
analyze in detail the convergence of the Markov Chain.
The function returns an instance of ‘MCMCgrowth’. This subclass of ‘list’ provides direct
access to the results of the calculations. It also implements S3 methods for print() and
plot() to facilitate the analysis of the results of the simulations.

3.5. Mapping equations and parameters in biogrowth

The functions in the biogrowth package use character keys to identify model equations and
map them to environmental factors (for secondary models). These can be retrieved using
primary_model_data() and secondary_model_data(). When called without any argument,
these functions returns a character vector with the keys corresponding to each primary or
secondary growth model included in the package respectively.
The functions in the package follow a similar approach for mapping model parameters (e.g., for
making predictions or to define initial values for model fitting). Passing a valid key to
primary_model_data() or secondary_model_data() returns a list with meta-information
on the model. This includes the entry pars, which is a character vector with the identifiers
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for the selected model (summarized in Table 2). The output of these functions also includes
identifier (the character key identifying the model), name (the whole name of the model),
model (function with the model equation) and ref (reference to the scientific article where
the model was defined). This meta-information is used by the functions in biogrowth to make
several consistency check of the models before doing any calculation. These tests can be
disabled by passing check = FALSE to the relevant function.
The functions fit_growth() and predict_growth() use slightly different approaches for
mapping the parameters of secondary models. In fit_growth(), each secondary model is
defined as a named list. This list has an entry named model defining the model equation.
Then, the values of the model parameters are defined as additional entries whose names match
those defined in secondary_model_data(). Once each secondary model has been defined,
they are mapped to the environmental conditions by gathering them in a single list. In this
list, each name must match the column names in env_conditions.
On the other hand, fit_growth() uses named numeric vectors to define model parameters.
Then, each parameter of the secondary model must be defined as factor name + *_* +
parameter key (as per secondary_model_data()). For instance, the parameter Xmin for
the environmental factor “temperature” would be defined as temperature_xmin. Then, the
model equations are defined using the model_keys argument. The illustrations below show
a practical illustration of both procedures. The package documentation shows additional
examples.
By default, all the calculations in biogrowth are done assuming that both log N and µ
are defined in log10 base. Nonetheless, this can be changed by passing different values to
logbase_logN and logbase_mu of the relevant functions.

3.6. Statistical methods for model selection and comparison

The functions in biogrowth give the flexibility to fit different type of models. This refers both
to using different model equations and to fixing any number of model parameters. These
models can be compared using compare_growth_fits() and compare_secondary_fits().
Both functions take as argument a list of models fitted using the functions implemented in
the package. It is advised that this list is named, as these names are kept for reporting the
results.
Model selection is performed through several statistical indexes. The main one is the Akaike
information criterion (AIC). The package includes the finite sample size correction in the
calculation of AIC, defining it as

AIC = 2 · k − 2 · logL[x] + 2 · k2 + 2 · k

n − k − 1
where k is the number of model parameters and n is the number of data points. The term
logL[x] refers to the log-likelihood of the data. In biogrowth, it is calculated based on the
probability density of a normal distribution with expected value given by the prediction of
the fitted model and the standard deviation by the standard error of the residuals.
Apart from that, compare_growth_fits() and compare_secondary_fits() return the num-
ber of degrees of freedom, calculated as the number of rows in the data minus the number
of estimated model parameters (df = n − k). Therefore, the fixed model parameters are not
considered in this calculation. It also reports the mean error (ME) and root mean squared
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error (RMSE)
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where ei is the residual corresponding to observation i and n is the number of data points.
The analysis of the results of these functions is done by examining the objects they return
(an instance of either ‘GrowthComparison’ or ‘SecondaryComparison’). Both implement an
S3 method for print() that provides a short summary of the models analyzed, as well as a
table of the models arranged by AIC. They also implement an S3 method for plot() that
can be used to compare the models visually. This includes comparing the fitted curves, as
well as the model parameters. They also implement methods for coef() and summary() to
retrieve the statistical indexes used for model comparison and selection.

3.7. Method to estimate the elapsed time to reach a given population size

The time to reach a given population size is often a quantity of great interest in studies related
to population growth. In biogrowth, this can be estimated using time_to_size(). The func-
tion has two mandatory arguments. The first one (model) is an instance of ‘GrowthPrediction’,
‘GrowthFit’, ‘GlobalGrowthFit’, ‘GrowthUncertainty’ or ‘MCMCgrowth’ with the growth
model. Therefore, time_to_size() can be used both for models parameters defined manually
or estimated from data. The second mandatory argument, size, defines the target population
size in log units. By default, time_to_size() assumes that size is defined in the same units
as those used in model. Nonetheless, this can be changed with the logbase_logN argument.
By default, time_to_size() estimates the time by linear interpolation using approx() from
base R, setting the population size as the explanatory variable (x) and the elapsed time as
response variable (y). Note that the precision of the estimate depends strongly on the number
of time points used for the growth predictions. Therefore, it is advisable to plot the growth
curve before calling time_to_size() (e.g. using the plot() methods). If the curvature of the
growth curve is not well described in the vicinity of the target population size, the prediction
should be repeated increasing the number of time points. If the target population size is
outside the range of the simulations, time_to_size() returns NA.
On the other hand, if type = "distribution", the function accounts for parameter uncer-
tainty in the calculations. As of biogrowth 1.0.3, this type of calculation is only compatible
when the growth model is an instance of ‘GrowthUncertainty’ or ‘MCMCgrowth’. The dis-
tribution is calculated by calling time_to_size(type = "discrete") for the growth curve
corresponding to each Monte Carlo simulation of the model. Therefore, it generates as many
values of time as iterations in the original model, which serves as an estimate for the dis-
tribution of the time to reach the target population accounting for parameter uncertainty.
In this case, the function returns an instance of ‘TimeDistribution’ with the results of the
simulations that implements S3 methods for print(), summary() and plot() to ease the
analysis of the results.
Note that the precision of these calculations depend on several simulation settings that must
be checked by the user. First of all, the elapsed time is calculated several times with type =
"discrete". Hence, it has the same dependency on the number of time points. Moreover,
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it also depends on the size of the parameter sample. It is thus advisable to repeat the
simulations several times to evaluate the stability of the solution before defining a seed (using
set.seed()). Finally, care must be taken when the target population size is close to the
initial or maximum population size because it is possible that some of the Monte Carlo
simulations did not reach the target count. In that case, the calculation would return NA for
some Monte Carlo samples. Because the quantiles are calculated omitting NAs, the summary
table generated by time_to_size() would be biased. Therefore, it is advisable to carefully
evaluate the results of predict_growth_uncertainty() before using this function.

4. Illustrations

4.1. Growth models from published parameters

One way to build growth models is by using growth parameters reported in scientific pub-
lications (often called “forward problem”). This approach is illustrated here using a pub-
lished growth model for Bacillus cereus (Carlin, Albagnac, Rida, Guinebretière, Couvert,
and Nguyen-the 2013). This article used a Baranyi primary growth model and a cardinal
parameter model to describe the effect of pH, temperature and water activity in the growth
kinetics of several phylogenetic groups of B. cereus. For details on the methodology, the
reader is referred to the original article (Carlin et al. 2013).
In this illustration, we will simulate the growth of this microorganism in a domestic refriger-
ator using data already published (Jofré, Latorre-Moratalla, Garriga, and Bover-Cid 2019).
The raw data was kindly provided by the original authors of the manuscript by personal
communication. This dataset includes measurements of the temperature in several domestic
refrigerators in Catalonia (Spain). For further details about the methodology, the reader is
referred to the original article by the authors. The is included in the package under the name
refrigeratorSpain.

R> data("refrigeratorSpain", package = "biogrowth")
R> head(refrigeratorSpain)

# A tibble: 6 x 3
time A1 A2

<dbl> <dbl> <dbl>
1 0 5.5 7
2 0.167 6.6 7
3 0.333 7.3 7
4 0.5 6.8 6.9
5 0.667 6 6.8
6 0.833 6.1 6.9

In order to account for the effect of temperature on µ, we need to define a secondary
growth model. Although the original authors reported growth models for several phylo-
genetic groups of B. cereus, in this illustration we only use the one for strain RIVM BC120
(Topt = 36.8◦C, Tmin = 1.4◦C, Tmax = 41.0◦C for a CPM model of order 2). Secondary models
for predict_growth() are defined as a named list. They must contain an entry named model
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with a valid key, which can be retrieved by calling secondary_model_data() without any
argument.

R> secondary_model_data()

[1] "CPM" "Zwietering" "fullRatkowsky"

In this case, we will use a “CPM” model (the model used by the original authors). The values
of the model parameters are defined using the same list, identifying them using valid keys
that can be retrieved passing a model key to secondary_model_data()

R> meta_info <- secondary_model_data("CPM")
R> meta_info$pars

[1] "xmin" "xopt" "xmax" "n"

Therefore, the secondary model with Topt = 36.8◦C , Tmin = 1.4◦C, Tmax = 41.0◦C, n = 2
would be defined as

R> sec_temperature <- list(model = "CPM", xmin = 1.4,
+ xopt = 36.8, xmax = 41.0, n = 2)

The next step is mapping this secondary model to a column in the data. First, we will
make the calculation for refrigerator “A1”. Therefore, we need to map the temperature in
the model to column A1 in the data using a named list. Note that fit_growth() uses the
gamma approach, so it can account for any number of environmental factors. If we wanted
to account for additional environmental factors, we would include additional entries in this
list (see the package vignettes for examples).

R> my_secondary <- list(A1 = sec_temperature)

Then, we need to define the parameters of the primary model. Namely, the values of µopt,
Nmax, N0 and Q0. The value of µopt was reported as 2.61 ln CFU/h by (Carlin et al. 2013).
For illustration purposes, we will define an initial population of 100 CFU/g, whereas we will
define an Nmax of 10,000,000 CFU/g, a typical value for B. cereus. As described above,
parameter Q0 defines the duration of the lag phase. We will assign a large value to this
parameter (1,000) to have a model without a lag phase.

R> my_primary <- list(mu_opt = 2.61, Nmax = 1e7, N0 = 100, Q0 = 1e3)

Before calling predict_growth(), we just need to define the time points where the solution
is calculated. We will define 1,000 uniformly distributed points between 0 and the maximum
time in the data. Then, we can pass these arguments to predict_growth(). Note that, by
default, the calculations are done in base 10. Because µopt was reported in base e by the
original authors, we need to pass the argument logbase_mu = exp(1).

R> my_times <- seq(0, max(refrigeratorSpain$time), length = 1000)
R> cereus_A1 <- predict_growth(environment = "dynamic",
+ my_times, my_primary, my_secondary, refrigeratorSpain,
+ logbase_mu = exp(1)
+ )
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Figure 3: Prediction for the growth of B. cereus in a domestic refrigerator (black line). The
grey line is the temperature profile.

The instance of ‘GrowthPrediction’ returned by the function implements several S3 methods
to facilitate the analysis. The plot() method allows a visualization of the growth curve.

R> plot(cereus_A1, add_factor = "A1", label_y2 = "Temperature (ºC)",
+ label_y1 = "Microbial count (log CFU/g)", label_x = "Storage time (h)",
+ line_type2 = "solid", line_col2 = "grey")

In order to make predictions for the other refrigerator, we can just change the mapping in
the secondary model and call again predict_growth().

R> my_secondary <- list(A2 = sec_temperature)
R> cereus_A2 <- predict_growth(environment = "dynamic",
+ my_times, my_primary, my_secondary,
+ refrigeratorSpain, logbase_mu = exp(1)
+ )

The fact that the plot() method returns an instance of ggplot has several advantages. For
instance, we can pass them to cowplot::plot_grid() to compare the model predictions
under the three conditions, to evaluate whether the frequency of the temperature oscillations
have a relevant effect in the model predictions.

R> plot_grid(labels = c("A1", "A2"), scale = .9,
+ plot(cereus_A1, add_factor = "A1", ylims = c(2, 3),
+ label_y2 = "Temperature (ºC)",
+ label_y1 = "Microbial count (log CFU/g)",
+ label_x = "Storage time (h)",
+ line_type2 = "solid", line_col2 = "grey"
+ ),
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Figure 4: Prediction for the growth of B. cereus in two domestic refrigerators (black line).
The grey line is the temperature profile.

+ plot(cereus_A2, add_factor = "A2", ylims = c(2, 3),
+ label_y2 = "Temperature (ºC)",
+ label_y1 = "Microbial count (log CFU/g)",
+ label_x = "Storage time (h)",
+ line_type2 = "solid", line_col2 = "grey")
+ )

Warning: Removed 1 row(s) containing missing values (geom_path).

4.2. Growth models by fitting primary models to growth data
Although the methodology for modeling population growth included in biogrowth was de-
veloped within the field of predictive microbiology, similar models are commonly used in
other fields. This is illustrated here, where we model the increase in the number of trac-
tors registered in Greece in a 45 year period. The data was obtained from FAOSTAT
(http://www.fao.org/faostat/en/#data/RM) filtering by country selecting “Greece”, by
element selecting “In Use”, by item selecting “Agricultural tractors”, and by year selecting
every year available. A different subset of this dataset was already analyzed using the Gom-
pertz and Logistic models in a previous study (Nguimkeu 2014). The data is included in the
package under the name greek_tractors.
The data was downloaded and saved as a CSV file (comma-separated values) that is included
as supplementary material to this article. It can be loaded using readr::read_csv().

R> data("greek_tractors", package = "biogrowth")

We will apply two transformations to the data before fitting the models. First, because the
models implemented in biogrowth usually describe the logarithm of the population size, the

http://www.fao.org/faostat/en/#data/RM
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number of tractors is log-transformed. Second, to ease model interpretation (especially for
the lag phase duration), we shift the observations, making the first year in the data (1961)
year “0”.

R> greek_tractors <- greek_tractors %>%
+ mutate(logtractors = log10(Value),
+ t_model = Year - min(Year)
+ )

We will use the fit_growth() function to estimate the model parameters of a logistic growth
model. As already mentioned, models are defined in biogrowth using a character key, which
can be retrieved calling primary_model_data() without any arguments.

R> primary_model_data()

[1] "modGompertz" "Baranyi" "Trilinear" "Logistic" "Richards"

Passing a valid model key to primary_model_data() returns a list with meta-data of the
model, including the identifiers of each model parameter:

R> meta_info <- primary_model_data("Logistic")
R> meta_info$pars

[1] "logN0" "C" "mu" "lambda"

The fitting algorithms included in this function require the definition of initial guesses for
every model parameter fitted from the data (log N0, C, µ and λ). Although this can be done
by visual inspection or from historical data, the make_guess_primary() function can be used
to obtain initial guesses automatically. Note that we are passing the formula argument to
indicate the column names for the population size and the elapsed time.

R> my_guess <- make_guess_primary(greek_tractors,
+ primary_model = "Logistic", formula = logtractors ~ t_model)
R> my_guess

logN0 mu lambda C
4.35468455 0.02717687 5.00000000 1.05989775

We can visually evaluate whether this guess is reasonable using check_growth_guess().

R> check_growth_guess(greek_tractors,
+ model_keys = list(primary = "Logistic"), guess = my_guess,
+ formula = logtractors ~ t_model
+ )

The plot shows that the line is reasonably close for an initial guess to be used for the fitting
algorithm. Therefore, we can call fit_growth() to get the parameter estimates.
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Figure 5: Visualization of the initial guess generated automatically for the data on the number
of tractors.

R> greek_logistics <- fit_growth(greek_tractors,
+ list(primary = "Logistic"), start = my_guess,
+ known = c(), formula = logtractors ~ t_model
+ )
R> greek_logistics

Primary growth model fitted to data

Growth model: Logistic

Estimated parameters:
logN0 mu lambda C

3.60457777 0.04781977 -16.04746607 1.84390683

Fixed parameters:
NULL

Parameter mu defined in log-10 scale
Population size defined in log-10 scale

We can use the S3 plot method included in the package to visually evaluate that the model
correctly describes the data. From the figure, we can see that the function was able to fit the
model to the data.

R> plot(greek_logistics,
+ label_x = "Year", label_y1 = "log10 of the number of tractors")

Then, we can use the summary() method to retrieve the values of the parameter estimates,
as well as their standard errors.
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Figure 6: Fit of the logistic model to the number of tractors in Greece between 1961 (year 0
in the plot) and 2006.

R> summary(greek_logistics)

Parameters:
Estimate Std. Error t value Pr(>|t|)

logN0 3.604578 0.165268 21.810 < 2e-16 ***
mu 0.047820 0.001897 25.212 < 2e-16 ***
lambda -16.047466 2.787844 -5.756 8.90e-07 ***
C 1.843907 0.172679 10.678 1.53e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0171 on 42 degrees of freedom

Parameter correlation:
logN0 mu lambda C

logN0 1.0000 -0.9069 0.9892 -0.9992
mu -0.9069 1.0000 -0.8370 0.8947
lambda 0.9892 -0.8370 1.0000 -0.9921
C -0.9992 0.8947 -0.9921 1.0000

It could seem remarkable that a negative value is estimated for parameter λ, which quantifies
the duration of the lag phase. In a different context, this could indicate a deficiency of the
model. However, agricultural tractors have been available since the beginning of the XXth
century, whereas the earliest observation in the data is from 1961. Therefore, in this case,
it is more appropriate to use the mathematical interpretation of parameter λ, defined as the
value of x, where a line with slope µ tangent to the point with maximum growth rate cuts a
horizontal line with y intercept logN0. Then, a negative value for λ implies that the onset of
exponential growth for the population took place approximately in 1945 (1961 − 16 = 1945).
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To better illustrate this, we will also fit a growth model fixing parameter λ to zero using the
known argument.

R> greek_logistics_noLag <- fit_growth(greek_tractors,
+ list(primary = "Logistic"), start = c(mu = 0.03, logN0 = 4, C = 1),
+ known = c(lambda = 0), formula = logtractors ~ t_model
+ )

Although the fit of the new model could also be analyzed using the S3 methods for plotting or
statistical summary defined for a growth fit, the function compare_growth_fits() includes
several functions for model comparison/selection. It takes as only input a list of model fits and
returns an instance of ‘GrowthComparison’ with several S3 methods for model comparison
and selection. In this sense, the print() method lists all the models arranged by Akaike
information criterion.

R> tractor_comparison <- compare_growth_fits(
+ list(`Logistic`= greek_logistics,
+ `Logistic - no lag` = greek_logistics_noLag
+ )
+ )
R> tractor_comparison

Comparison between models fitted to data under isothermal conditions

Statistical indexes arranged by AIC:

# A tibble: 2 x 5
model AIC df ME RMSE
<chr> <dbl> <int> <dbl> <dbl>

1 Logistic -239. 42 -0.000000156 0.0163
2 Logistic - no lag -179. 43 -0.0000000655 0.0321

The results show that the “Logistic” model (i.e., the one with the negative value of λ) would
be preferred according to the AIC. Note that the models are named according to the names
defined in the list passed to compare_growth_fits(). For this reason, it is recommended to
name this list.
Besides the comparison by statistical indexes, GrowthComparison also includes a plot()
method to visually compare the model fits.

R> plot(tractor_comparison)

This plot shows that the model where we fixed λ = 0 clearly deviates with respect to the
observations at the beginning of the time series. This is further emphasized, when type = 3
is passed to the plotting method to generate a plot of the residuals.

R> plot(tractor_comparison, type = 3)

`geom_smooth()` using formula 'y ~ x'
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Figure 7: Comparison of the model fits of the two logistic models to the tractor data
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Figure 8: Comparison of the residuals of the two logistic models fitted to the tractor data.

This figure shows that the residuals are larger at the beginning of the experiment for the
Logistic – no lag model, further confirming the conclusions drawn from the previous figure.
The effect of this deviation on the parameter estimates can be observed by passing type = 2
to the plot() method.

R> plot(tractor_comparison, type = 2)

This plot shows that, although both models estimate similar values for µ, the model without
lag estimates a larger value for log N0 and smaller for C. This result can be visualized using
the predict() method to calculate the model predictions for time points on a broader time
range than the ones included in the data. We will calculate the predictions in the time range
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Figure 9: Comparison of the model parameters estimated with both logistic models from the
tractor data. Dots represent estimated values and the error bars their standard errors.

between 1950 and 2010, so the model will be extrapolated both forwards and backwards in
time.

R> library("ggplot2")
R> tibble(
+ year = 1950:2020,
+ t_model = year - min(greek_tractors$Year)
+ ) %>%
+ mutate(Logistic = predict(greek_logistics, times = t_model),
+ `Logistic no lag` = predict(greek_logistics_noLag, times = t_model)
+ ) %>%
+ pivot_longer(-c(t_model, year),
+ names_to = "model", values_to = "logtractors") %>%
+ ggplot() +
+ geom_line(aes(x = year, y = logtractors, colour = model), size = 1) +
+ geom_point(aes(x = Year, y = logtractors),
+ data = greek_tractors, size = 2) +
+ ylab("log10 of the number of tractors") + xlab("Year") +
+ theme_cowplot() +
+ theme(legend.title = element_blank(), legend.position = "top")

This plot shows that, by fixing λ = 0, the model estimates that the number of tractors in
Greece before 1961 is practically equal to the number observed at that time point. On the
other hand, the model that fits every parameter predicts that the number of tractors in the
country increased exponentially since 1950. Considering that tractors were available since the
early XXth century, and that there was economic growth in Greece between 1950 and 1960,
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Figure 10: Comparison between the fit of both models (including extrapolation) to the number
of tractors in Greece between 1961 and 2006 when the lag phase is fixed to one.

the prediction of the model fitting every model parameter seems more reasonable. Together
with the fact the model without a lag phase deviates from the trend of the data points at the
beginning of the experiment, it is reasonable to conclude that this dataset is better described
by the model that considers a lag phase, even if the value of λ is negative.
The function predict_growth_uncertainty() enables including parameter uncertainty in
the model predictions. It is thus intended for cases where variation is a relevant part of the
problem studied, either because the system is highly uncertain or because variability is an
inherent part of it (e.g. in microbial risk assessment, EFSA Scientific Committee et al. 2018).
Although these distributions can be defined by hand, they can also be easily generated from
an instance of ‘GrowthComparison’ using the coef() method.

R> pars <- coef(tractor_comparison) %>%
+ filter(model == "Logistic") %>%
+ select(-model, par = parameter, mean = estimate, sd = std.err) %>%
+ mutate(scale = "original")
R> pars

# A tibble: 4 x 4
par mean sd scale
<chr> <dbl> <dbl> <chr>

1 logN0 3.60 0.165 original
2 mu 0.0478 0.00190 original
3 lambda -16.0 2.79 original
4 C 1.84 0.173 original

Then, we can call the predict_growth_uncertainty() to include the parameter uncertainty
in the predictions. The instance of GrowthUncertainty has several methods to facilitate
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Figure 11: Prediction band for the number of tractors in Greece accounting for parameter
uncertainty. The lightblue ribbon shows the interval for the 0.9 level and the darkblue the
0.8 interval.

the analysis. It includes a plot() method to visualize the prediction band, where the line
represents the median of the simulations, and the shaded area the 5th, 10th, 90th and 95th
quantiles.

R> set.seed(12412)
R> greek_uncertainty <- predict_growth_uncertainty(
+ greek_logistics$primary_model,
+ times = seq(0, 50, length = 100),
+ n_sims = 1500,
+ pars)
R> plot(greek_uncertainty,
+ ribbon80_fill = "darkblue", ribbon90_fill = "lightblue") +
+ xlab("Year") + ylab("log10 of the number of tractors")

A final aspect that is often of great interest when using growth models is the elapsed time
required to reach a given population size. This can be estimated using the time_to_size()
function, which can make either a discrete calculation or estimate a distribution for this
variable. As an example, we will calculate the distribution of the time for a target size of
104.7 (chosen arbitrarily for this illustration).

R> distrib_to_4p7 <- time_to_size(greek_uncertainty, size = 4.7,
+ type = "distribution")
R> distrib_to_4p7

Distribution of the time required to reach a target population size

# A tibble: 1 x 5
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Figure 12: Distribution of the time to reach a population size of 4.7 log for the tractor data.
The vertical, red line represents the median of the results. The vertical, gray lines the 10th
and 90th percentiles.

m_time sd_time med_time q10 q90
<dbl> <dbl> <dbl> <dbl> <dbl>

1 7.72 4.47 7.58 2.02 13.6

The instance of ‘TimeDistribution’ includes several S3 methods to facilitate the analysis of
the results. For instance, the plot() method shows a histogram of the solution, where the
median is shown as a red dashed line and the 10th and 90th quantiles using gray dashed lines.

R> plot(distrib_to_4p7)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 105 rows containing non-finite values (stat_bin).

4.3. Growth models by fitting secondary growth models

A different approach for building growth models is by first performing several growth ex-
periment under constants environmental conditions. Then, a primary model is fitted for
each experiment (e.g., following the method showed in the previous illustration). Finally, a
secondary growth model can be fitted to this dataset to estimate the parameters of the sec-
ondary models according to the gamma approach. This approach is supported in biogrowth by
fit_secondary_growth(). We illustrate the use of this function using the example_cardinal
dataset, which contains simulated data. It is included within the package, so it can be loaded
as data("example_cardinal").

R> data("example_cardinal", package = "biogrowth")
R> head(example_cardinal)
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temperature pH mu
1 0.000000 5 9.768505e-04
2 5.714286 5 2.624919e-03
3 11.428571 5 0.000000e+00
4 17.142857 5 1.530706e-04
5 22.857143 5 2.301817e-05
6 28.571429 5 3.895598e-04

The dataset includes simulated values of µ for several experiments at different values of
pH and temperature. Each row of the dataset (64 in total) would represent one individual
experiment. We need to assign a secondary model equations to each environmental factor.
In this example, we will assign a cardinal parameter model (key CPM) to both factors.

R> sec_model_names <- c(temperature = "CPM", pH = "CPM")

The fit_secondary_growth() function uses non-linear regression for parameter estimation.
This algorithm requires the definition of initial guesses for every model parameter to esti-
mate from the data. Although they can be defined based on experience or visualizations,
make_guess_secondary() can be used to obtain initial guesses.

R> my_guess <- make_guess_secondary(example_cardinal, sec_model_names)
R> print(my_guess)

mu_opt temperature_xmin temperature_xopt temperature_xmax
1.234784 0.000000 34.285714 40.000000

temperature_n pH_xmin pH_xopt pH_xmax
2.000000 5.000000 6.428571 7.000000

pH_n
2.000000

As a first step, we will estimate every parameter in the model passing an empty vector to
known_pars.

R> fit_cardinal <- fit_secondary_growth(example_cardinal, my_guess,
+ sec_model_names, known_pars = c())

Warning in sqrt(my_data$pred_mu): NaNs produced

Warning in sqrt(my_data$pred_mu): NaNs produced

Warning in nls.lm(par = Pars, fn = Fun, control = Contr, ...):
lmdif: info = -1. Number of iterations has reached `maxiter' == 100.

The fitting algorithm returns several warnings when doing the calculation. This is often
an indication that the model fitted should be analyzed with special care. The instance of
‘FitSecondaryGrowth’ returned by the function implements several S3 methods to help in
this analysis. Namely, the summary() method provides the statistical information on the
model fit.
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R> summary(fit_cardinal)

Warning in summary.modFit(object$fit_results): Cannot estimate covariance;
system is singular

Parameters:
Estimate Std. Error t value Pr(>|t|)

mu_opt 1.026 NA NA NA
temperature_xmin 5.089 NA NA NA
temperature_xopt 34.855 NA NA NA
temperature_xmax 40.000 NA NA NA
temperature_n 1.140 NA NA NA
pH_xmin 5.138 NA NA NA
pH_xopt 6.476 NA NA NA
pH_xmax 7.000 NA NA NA
pH_n 3.010 NA NA NA

Residual standard error: 0.04741 on 55 degrees of freedom

Error in cov2cor(x$cov.unscaled): 'V' is not a square numeric matrix

In this case, the function returns an error and calculates NA’s for the standard errors of
every model parameter. This is yet another indication of parameter identifiability issues. To
mitigate this issue, fit_secondary_growth() gives the possibility to fix any model parameter
(and is often necessary in this type of model fit). Often, the first candidates to fix in this type
of model are the order of the models (n). In this case, we will fix the one for temperature
to 1 and the one for pH to 2. We will also fix the Xmax for temperature to 40◦C, and Xmax
and Xmin for pH to 7 and 5.2 respectively. Note that we also remove these parameters from
my_start to indicate they should not be fitted.

R> known_pars <- list(
+ temperature_n = 1, temperature_xmax = 40,
+ pH_n = 2, pH_xmax = 7, pH_xmin = 5.2
+ )
R> my_start <- my_guess[c("temperature_xmin", "temperature_xopt",
+ "pH_xopt", "mu_opt")]
R> fixed_cardinal <- fit_secondary_growth(example_cardinal,
+ my_start, known_pars, sec_model_names)

Fixing these model parameters resolves some of the identifiability issues. This results in the
regression algorithm being able to estimate standard errors for every model parameters.

R> summary(fixed_cardinal)

Parameters:
Estimate Std. Error t value Pr(>|t|)

temperature_xmin 6.11686 1.20602 5.072 4.06e-06 ***



32 biogrowth: Modeling Population Growth in R

temperature_xopt 35.69253 2.46344 14.489 < 2e-16 ***
pH_xopt 6.49849 0.02538 256.002 < 2e-16 ***
mu_opt 1.01051 0.09900 10.207 9.79e-15 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.05606 on 60 degrees of freedom

Parameter correlation:
temperature_xmin temperature_xopt pH_xopt mu_opt

temperature_xmin 1.000e+00 -6.296e-01 1.241e-08 -0.3830
temperature_xopt -6.296e-01 1.000e+00 -2.909e-09 0.8884
pH_xopt 1.241e-08 -2.909e-09 1.000e+00 0.1732
mu_opt -3.830e-01 8.884e-01 1.732e-01 1.0000

The instance of ‘FitSecondaryGrowth’ also includes plot() methods to visualize the good-
ness of the model fit. By default it generates a scatter plot of observed against predicted
values, including a gray line showing a linear regression model fitted to fits vs observations.
This line can be compared against the black, dashed line showing a perfect fit (slope = 1,
intercept = 0). In cases where there is a good agreement between both lines (as is the case
here), one can conclude that the fitted model describes the general trend in the data.

R> plot(fixed_cardinal)

`geom_smooth()` using formula 'y ~ x'

The plot includes an alternative plotting method. Passing which = 2, shows a scatter plot
individually for each environmental factor, showing both the model fits (black) and the obser-
vations (gray). Note that, because the gamma model considers several environmental factors,
there are different model fits for each value of X (representing the effect of the other environ-
mental factors). For this reason, in order to facilitate the comparison, passing add_segment =
TRUE joins the observation and its corresponding fitted value. Moreover, passing add_trend
= TRUE adds a trend line for both the fits and the observations by local regression.

R> plot(fixed_cardinal, which = 2, add_trend = TRUE, add_segment = TRUE)

`geom_smooth()` using method = 'loess' and formula 'y ~ x'
`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Both plots show that the model describe adequately the data. Nonetheless, there are some
conditions for which the model fits a value of µ = 0, whereas the experiments observed some
growth. Considering that the values of Xmax for both pH and temperature were fixed, this
could indicate that they were fixed to too narrow values. Also, note that the trend line shown
in the second plot is not a model fit. The reason for this is that the gamma approach can
have an arbitrary number of environmental condition, whereas each facet can only have one
environmental factor. Therefore, this plot is only intended to aid in evaluating the goodness
of the fit. For making model predictions, the predict() method should be used.
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Figure 13: Comparison between the model fits and the predictions for the secondary model
fitted to simulated data. The solid grey line is a linear regression model for fitted vs. observed
and the dashed black line represents a perfect fit.
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Figure 14: Comparison between the trend of the fitted model and the one of the observations
for the secondary model fitted to simulated data. Observations are shown in gray and model
fits in black.
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4.4. Growth models for data under dynamic environmental conditions

This case study illustrates how to build growth models (primary and secondary models) using
data gathered under dynamic environmental conditions. For this, we use a dataset gathered
from the online database ComBase (ComBase ID: Lm_MpDyn_T1_R1) that describes the
growth of Listeria monocytogenes in pork. This dataset was originally published by (Matara-
gas, Drosinos, Vaidanis, and Metaxopoulos 2006b). The data was saved as an Excel file
using the resources provided by ComBase and are included as supplementary material to this
article. The contents of the file can be loaded using readxl::read_excel().

R> listeria_counts <- read_excel("listeria_combase.xlsx",
+ sheet = "Logcs") %>%
+ mutate(Time = as.numeric(Time), Logc = as.numeric(Logc))
R> temperatures <- read_excel("listeria_combase.xlsx",
+ sheet = "Temperatures") %>%
+ mutate(Time = as.numeric(Time), Temperature = as.numeric(Temperature))
R> pH_values <- read_excel("listeria_combase.xlsx", sheet = "pHs") %>%
+ mutate(Time = as.numeric(Time), pH = as.numeric(pH))
R> p1 <- ggplot(listeria_counts, aes(x = Time, y = Logc)) +
+ geom_point() +
+ theme(legend.position = "top")
R> p2 <- ggplot(temperatures, aes(x = Time, y = Temperature)) +
+ geom_line() +
+ theme(legend.position = "top")
R> p3 <- ggplot(pH_values, aes(x = Time, y = pH)) +
+ geom_line() +
+ theme(legend.position = "top")
R> plot_grid(p1, p2, p3)

When building a model based on data gathered under dynamic conditions, it is important to
consider different hypotheses that may describe the observations. The microbial counts show
the type of sigmoidal shape that can be described using primary models, with growth slowing
down at the beginning and at the end of the experiment. If temperature was constant, this
behavior could be attributed to the adaptation phase required before growth onset and the
depletion of nutrients at the end of the exponential phase. However, the end of the “apparent”
lag phase matches the moment when the temperature was raised from 4 to 7◦C . In a similar
way, the beginning of the “apparent” stationary phase takes place when temperature is lowered
from 11 to 4◦C. Considering that the minimum temperature for growth of Listeria spp. is
slightly below 4◦C (Mataragas, Drosinos, Siana, Skandamis, and Metaxopoulus 2006a), it
is reasonable to assume that the apparent lag and stationary phases are not due to the
mechanisms usually observed in isothermal experiments. Instead, they could be attributed
to the effect of temperature on microbial growth. Furthermore, there is a slight increase in
the population size during the first period at 4◦C that is not observed in the second period
at this temperature. This could be attributed to the effect of the pH on the growth rate,
as this factor decreases from approximately 6.25 to 5.25 through the experiment (a common
observation during the growth of L. monocytogenes due to the production of lactate). This
effect could also be described using the gamma concept, defining a second gamma factor for
pH.
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Figure 15: Illustration of the data retrieved from ComBase on the growth of L. monocytogenes
in pork.

The fit_growth() function can be used to test whether these different hypotheses could
explain the data. We can exploit the possibility to fix some parameters to fit a model that
attributes the reduction in the growth rate to temperature changes. Then, we can use the S3
methods included in the package to evaluate whether the proposed models can describe the
data. ComBase defines the temperature and pH profiles in two different Excel sheets, which
must be joined before they can be used by biogrowth.

R> env_profile <- full_join(temperatures, pH_values,
+ by = c("Record ID", "Time")
+ )

Next, we need to define the secondary models. Due to its simplicity, we will use a Zwietering-
type secondary model for both environmental factors.

R> sec_models <- list(Temperature = "Zwietering", pH = "Zwietering")

We can test different model hypotheses by fixing some model parameters to selected values.
To test whether the initial lag phase is due to the temperature inhibition, we can fix the
initial value of Q(t) to a high value (Q0 = 1e10), resulting in a model without lag phase. In
a similar way, we can fix the value of Nmax to a value several orders of magnitude higher than
the maximum microbial load one observed in the experiment (Nmax = 1e8), resulting in a
model without a stationary phase.
Apart from that, we will fix the initial population size to the initial value of the observations.
In predictive microbiology, the order of the model (n) is most often fixed to an integer value.
In this model, the order of both secondary models is set to n = 2.
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Figure 16: Initial guess for fitting the growth model to the growth of L. monocytogenes in
pork observed under dynamic conditions.

R> logN0 <- min(listeria_counts$Logc)
R> known <- c(Q0 = 1e10, Temperature_n = 2, pH_n = 2, Nmax = 1e8,
+ N0 = 10^logN0)

The remaining model parameters (µopt and the cardinal parameters) are estimated from the
dynamic data. Due to the use of regression, fit_growth() needs initial guesses for these
parameters. In this example, we will use typical values for the growth of L. monocytogenes.
Nonetheless, we can use check_growth_guess() to check that our initial guess is reasonably
close to the data points. Note that, because ComBase does not use the default column names
for biogrowth, they are defined using the formula argument.

R> start <- c(mu_opt = 1, Temperature_xopt = 35, Temperature_xmin = 5,
+ pH_xmin = 4, pH_xopt = 7)
R> check_growth_guess(listeria_counts, sec_models, c(start, known),
+ env_profile, environment = "dynamic", formula = Logc ~ Time)

The plot shows that the growth curve is reasonably close to the data points. Then, we can
call fit_growth() with these arguments.

R> listeria_model <- fit_growth(environment = "dynamic", listeria_counts,
+ sec_models, start, known, env_conditions = env_profile,
+ formula = Logc ~ Time)

The instance of ‘GrowthFit’ returned by fit_growth() implements several S3 methods to
facilitate the analysis of the model fit. The plot() method can be used to validate that the
model is able to describe the trend of the observations. In this case, the plot shows that
the fitted model describe the trend of the experimental observations. Based on this, we can
conclude that the data can be described considering only the effect of temperature and pH on
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Figure 17: Fit of the Baranyi model with secondary model based on the gamma concept
to the data on growth of Listeria monocytogenes under dynamic conditions (black). The
temperature profile is shown as a gray line.

the growth rate, without introducing hypotheses related to the adaptation of cell metabolism
(lag phase) or nutrient depletion (stationary phase).

R> plot(listeria_model, add_factor = "Temperature",
+ line_type2 = 1, line_col2 = "grey",
+ label_y1 = "Microbial count (log10 CFU/g)",
+ label_y2 = "Temperature (ºC)",
+ label_x = "Time (h)",
+ point_shape = 1, point_size = 5)

The summary S3 method can be used to retrieve the values of the parameter estimates and
their standard errors.

R> summary(listeria_model)

Parameters:
Estimate Std. Error t value Pr(>|t|)

mu_opt 1.1669 0.5461 2.137 0.058330 .
Temperature_xopt 33.0219 27.8768 1.185 0.263578
Temperature_xmin 2.4712 0.4009 6.165 0.000106 ***
pH_xmin 5.2016 0.1039 50.068 2.44e-13 ***
pH_xopt 6.6221 1.0146 6.527 6.66e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2142 on 10 degrees of freedom
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Parameter correlation:
mu_opt Temperature_xopt Temperature_xmin pH_xmin pH_xopt

mu_opt 1.0000 0.8461 -0.51629 -0.61135 -0.62524
Temperature_xopt 0.8461 1.0000 -0.27314 -0.28023 -0.93517
Temperature_xmin -0.5163 -0.2731 1.00000 0.76472 -0.03807
pH_xmin -0.6113 -0.2802 0.76472 1.00000 -0.04806
pH_xopt -0.6252 -0.9352 -0.03807 -0.04806 1.00000

It shows that there is extremely high uncertainty associated to the value of Topt (relative
standard error of 0.84). This could be attributed to the experimental design, which covers
temperatures in a relatively short range (4 to 11◦C), far from the parameter estimate (33◦C).
Another parameter with high uncertainty in this model is µopt (relative standard error of
0.47). This could be attributed to the high correlation between this parameter and Topt,
which inflates the uncertainty of both parameters. In order to reduce this uncertainty, we
could fix parameter Topt to 35◦C, a value that has been reported for Listeria spp. in meat
products (Liu, Wang, Liu, and Dong 2019). For the same reasons, we also fix pHopt to 7.

R> known <- c(known, Temperature_xopt = 35, pH_xopt = 7)
R> start <- start[c("mu_opt", "Temperature_xmin", "pH_xmin")]
R> reduced_model <- fit_growth(environment = "dynamic",
+ listeria_counts, as.list(sec_models), start, known,
+ env_conditions = env_profile, formula = Logc ~ Time)
R> summary(reduced_model)

Parameters:
Estimate Std. Error t value Pr(>|t|)

mu_opt 1.677883 0.214475 7.823 4.72e-06 ***
Temperature_xmin 2.189692 0.254278 8.611 1.76e-06 ***
pH_xmin 5.143662 0.001194 4308.702 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2004 on 12 degrees of freedom

Parameter correlation:
mu_opt Temperature_xmin pH_xmin

mu_opt 1.00000 0.97696 0.01896
Temperature_xmin 0.97696 1.00000 -0.09215
pH_xmin 0.01896 -0.09215 1.00000

The summary table shows that fixing the model parameters results in a strong reduction of
parameter uncertainty for µopt compared to the initial model. The compare_growth_fits()
function can be used to assess whether this parameter reduction reduces the precision of the
model fit. This function accepts a (named) list of models.

R> comparison_listeria <- compare_growth_fits(
+ list(Standard = listeria_model, Reduced = reduced_model)
+ )
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Figure 18: Comparison of the two model fits to the data on the growth of L. monocytogenes
under dynamic conditions.

The plot() method compares both models fitted. In this case, it shows that there is practi-
cally no difference between the fitted curves.

R> plot(comparison_listeria)

Calling the print() method returns a table of the AIC for each model fit, showing that the
“reduced” model is preferred over the standard one.

R> print(comparison_listeria)

Comparison between models fitted to data under isothermal conditions

Statistical indexes arranged by AIC:

# A tibble: 2 x 5
model AIC df ME RMSE
<chr> <dbl> <int> <dbl> <dbl>

1 Reduced -0.469 12 0.0140 0.179
2 Standard 8.01 10 0.00706 0.175

An additional comparison that can be of interest, is the one provided by the plot() method
when type = 2. This plot compares the expected values and standard errors of the param-
eter estimates for both models. The figure shows that both models practically estimate the
same parameter values. However, the standard model estimates every parameter with higher
uncertainty. This is often an indication of poor identifiability, being additional evidence that
not all the parameters of the standard model can be identified with this experimental design.

R> plot(comparison_listeria, type = 2)
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Figure 19: Comparison of the parameters estimates for the two models fitted to the data on
the growth of L. monocytogenes under dynamic conditions. Note that the parameters that
were fixed in the reduced model are not shown in their respective facets.

It is worth mentioning that the fitted model estimates a value of 5.14 for pHmin. This value is
higher than the minimum pH enabling growth of L. monocytogenes at optimal temperature
conditions, which usually ranges 4.4 (George, Lund, and Brocklehurst 1988). This type of
deviation is typical when fitting a model to data gathered under dynamic conditions because
experimental conditions rarely include sufficient data points in the vicinity of Xmin or Xmax.
Therefore, the behavior of the population at extreme conditions has little leverage on the
model fitted for many experimental designs. For this reason, in predictive microbiology, the
parameters estimated in this approach are usually called “theoretical” Xmin or Xmax and must
be further validated using dedicated growth boundary experiments (George et al. 1988; Le
Marc, Huchet, Bourgeois, Guyonnet, Mafart, and Thuault 2002).

4.5. Growth models fitted to experiments under different conditions
In this last illustration, we show how a growth model defined based on primary and secondary
models can be fitted to several experiments obtained under different environmental conditions
using fit_growth(). For this illustration, we will also use data extracted from ComBase
(ComBase ID: Lm_MpDyn_T1_R2). This dataset was originally published in the same
article as the one used in the previous case study, and is included as supplementary material
to this article.

R> listeria_counts2 <- read_excel("listeria_combase2.xlsx",
+ sheet = "Logcs") %>%
+ mutate(Time = as.numeric(Time), Logc = as.numeric(Logc))
R> temperatures2 <- read_excel("listeria_combase2.xlsx",
+ sheet = "Temperatures") %>%
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+ mutate(Time = as.numeric(Time), Temperature = as.numeric(Temperature))
R> pH_values2 <- read_excel("listeria_combase2.xlsx", sheet = "pHs") %>%
+ mutate(Time = as.numeric(Time), pH = as.numeric(pH))

For global fitting, the fit_growth() function requires that the data is saved as a list, where
each entry describes the information from each experiment. The microbial counts can be
converted directly.

R> multiple_listeria <- list(R1 = listeria_counts, R2 = listeria_counts2)

Regarding the environmental conditions, in the same way as in the previous example, we need
to put both temperature and pH in the same table before converting it into a list.

R> env_profile2 <- full_join(temperatures2, pH_values2,
+ by = c("Record ID", "Time")
+ )
R> multiple_profile <- list(R1 = env_profile, R2 = env_profile2)

Now, we can fit the growth model using fit_growth(). In this case, we pass the argument
approach = "global" to indicate that we are fitting a unique model to different growth
experiments. We also use a Monte Carlo algorithm because we later intend to make predic-
tions including parameter uncertainty. Note that, when calling the function we are passing
additional arguments to FME::modMCMC(). Namely, the number of iterations for updating the
covariance matrix and the burn-in length.

R> set.seed(12421)
R> global_fit <- fit_growth(multiple_listeria, sec_models, start,
+ known, environment = "dynamic", algorithm = "MCMC",
+ approach = "global", env_conditions = multiple_profile,
+ formula = Logc ~ Time, niter = 6000, updatecov = 500,
+ burninlength = 1000
+ )

number of accepted runs: 648 out of 6000 (10.8%)

Although the algorithm converges to a solution, the percentage of accepted runs is relatively
low. This often indicates that the convergence of the algorithm could be improved by modi-
fying its parameters. Nonetheless, this topic is highly specific and is out of the scope of this
article. The interested reader is referred to the specific literature on the topic (e.g. (Brooks,
Gelman, Jones, and Meng 2011)).
We can call the plot() method of the instance of GlobalGrowthFit returned by the function
to check that the fitted model properly describes the trend in both experiments.

R> plot(global_fit, add_factor = "pH", label_y2 = "pH value",
+ label_y1 = "Microbial concentration (log CFU/g)",
+ label_x = "Time (h)", line_col2 = "maroon", line_type2 = 1)
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Figure 20: Global fit of the growth model for L. monocytogenes in pork meat from two
independent experiments (black line). The pH profile is shown in maroon.

This figure illustrates that the fitted model can describe the variation in the population size
observed in both experiments. This is further support of the hypothesis that the sigmoidal
shape in the population size is due to the effect of the environmental conditions rather than
the usual causes for a lag or stationary phases.
Then, we can use the fitted model for making predictions. In this illustration, we will include
parameter uncertainty in the predictions using predictMCMC(). This prediction can be made
for any type of environmental condition, constant or not. As an example, we will use an
environmental profile with constant temperature (5◦C) and pH decaying from pH 7 to pH 5
linearly over 1,000 hours. This functions also allows modifying any model parameter through
the newpars argument. Hence, we will also modify the initial population size (N0) to 1
CFU/g, to represent conditions different to those used under laboratory conditions.

R> pred_cond <- tibble(time = c(0, 1000), Temperature = c(5),
+ pH = c(7, 5))
R> set.seed(14241)
R> pred_uncertainty <- predictMCMC(global_fit, seq(0, 1000, length = 100),
+ pred_cond, niter = 1000, formula = . ~ time, newpars = list(N0 = 1)
+ )

The instance of ‘MCMCgrowth’ includes several S3 methods to facilitate the interpretation of
the results. The plot method can be used to visualize the effect of parameter uncertainty in
the model predictions.

R> plot(pred_uncertainty, add_factor = "pH",
+ label_y1 = "Microbial concentration (log CFU/g)",
+ label_y2 = "pH value", label_x = "Time (h)",
+ fill_80 = "lightblue", line_col = "darkblue")
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Figure 21: Prediction band for the growth of L. monocytogenes under dynamic environmental
conditions including parameter uncertainty. The grey and blue ribbons represent, respectively,
the credible intervals at the 0.9 and 0.8 levels. The dashed, black line represents the pH profile.

Once this prediction has been calculated, we can also estimate the distribution of the time
required to reach a population size of 2 log CFU/g. This value has been selected because it
is often used as a microbiological criterion to define the shelf life of food products.

R> time_to_100 <- time_to_size(pred_uncertainty, 2, type = "distribution")
R> time_to_100

Distribution of the time required to reach a target population size

# A tibble: 1 x 5
m_time sd_time med_time q10 q90
<dbl> <dbl> <dbl> <dbl> <dbl>

1 231. 141. 192. 101. 414.

Note that passing type = "distribution" calculates a distribution for the elapsed time
instead of a discrete value. This distribution represents the uncertainty in the parameter
estimates, and can also be represented as a histogram using the S3 method for plot().

R> plot(time_to_100)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 38 rows containing non-finite values (stat_bin).
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Figure 22: Estimated distribution for the time to reach 100 CFU/g for L. monocytogenes.
The vertical, red line represents the median of the simulations, whereas the vertical, grey lines
show the 10th and 90th percentiles.

5. Closing remarks
Mathematical models are applied in a large variety of fields to describe the growth of popula-
tions. However, their application usually requires the use of advanced mathematical methods
to build the model (e.g. inference) and/or to make prediction (e.g. solving differential equa-
tions). This can be specially troublesome when analyzing growth under dynamic environ-
mental conditions. The biogrowth package can make these models more accessible, providing
an R interface to the functions required for building the models and making predictions. Al-
though the methods implemented in the package are based on predictive microbiology, the
mathematical equations and methods are also applied to a large variety of fields, such as
biotechnology or economy.
Nonetheless, the biogrowth package also has some limitations. This is due to the fact that the
effect of changes in the environmental conditions on the duration of the lag phase is highly
complex, depending both on factors of the population (e.g. physiological state of the cells) and
external factors (e.g., temperature or pH). Although some models have been published to de-
scribe this effect (Augustin, Rosso, and Carlier 2000; Yue et al. 2019; Delignette-Muller, Baty,
Cornu, and Bergis 2005), they are quite specific and hard to extrapolate to non-laboratory
conditions. Consequently, these modeling approaches are not included in biogrowth. For
the same reason, the package does not include the possibility to define interactions between
gamma factors. Another limitation of the package is that it does not include the possibil-
ity to implement user-defined models. The reason for this is that it is designed as a tool
to facilitate the application of growth models that are broadly applied in the literature.
We believe that more general packages for model fitting (e.g. FME) are more suited for
tuning model equations. Nonetheless, for advanced users, the wiki from its GitHub page
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(https://github.com/albgarre/biogrowth) explains how to extend the package with new
primary and secondary models.

The fact that biogrowth is based on parametric models also brings limitations with respect
to already existing tools. These models are more “rigid” than non-parametric ones, being
able to describe only sigmoidal curves. Therefore, if the experimental data deviates from this
shape (e.g., when analyzing data from a bioscreen), packages based on non-parametric models
(e.g., smoothing splines) would often be more suitable (e.g. growthrates or growthcurver). In
a similar way, we advised against the use of biogrowth to describe inactivation (i.e., decreasing
curves) because the models included in the package were based on hypotheses related to the
growth of population. Instead, non-parametric approaches or packages including inactivation
models (e.g., bioinactivation, Garre et al. 2017) are advised. On the other hand, the paramet-
ric models provide a more mechanistic explanation of the population growth; e.g. providing
estimates of the lag phase duration or the relationship between the environmental factors
and µ. Therefore, it can be of greater interest in cases aiming at understanding the state
of the system and predicting its future state rather than just fitting the experimental data.
Furthermore, as already mentioned, the growth models implemented in the package are prone
to parameter identifiability issues. The functions included in the package can be a basis for
future studies on model identifiability and optimal experiment design based on local sen-
sitivities and the optimization of the Fisher Information Matrix (Garre, González-Tejedor,
Peñalver-Soto, Fernández, and Egea 2018b).

As a closing comment, one point to consider when using the functions included in this package
is that the more complex tools are not better than simple ones in every case study (Zwietering
2009). In most situations, models defined for dynamic environmental conditions will make ad-
ditional hypotheses than an equivalent model defined for constant conditions. On top of that,
these hypotheses are often harder to validate experimentally. For instance, dynamic growth
models make the hypothesis that cells respond instantly to changes in the environmental
conditions, a hypothesis that may be false in some scenarios (Antolinos, Muñoz-Cuevas, Ros-
Chumillas, Periago, Fernández, and Le Marc 2012; Garre, Egea, Iguaz, Palop, and Fernandez
2018a). Therefore, it is important that the analyst considers and compares all the functions
offered by the software, selecting the one that is more appropriate for the case studied.
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