
JSS Journal of Statistical Software
September 2023, Volume 107, Issue 2. doi: 10.18637/jss.v107.i02

carat: An R Package for Covariate-Adaptive
Randomization in Clinical Trials

Wei Ma
Renmin University

of China

Xiaoqing Ye
Renmin University

of China

Fuyi Tu
Renmin University

of China

Feifang Hu
George Washington

University

Abstract

Covariate-adaptive randomization is gaining popularity in clinical trials because they
enable the generation of balanced allocations with respect to covariates. Over the past
decade, substantial progress has been made in both new innovative randomization pro-
cedures and the theoretical properties of associated inferences. However, these results
are scattered across the literature, and a single tool kit does not exist for use by clinical
trial practitioners and researchers to conduct and evaluate these methods. The R package
carat is proposed to address this need. It facilitates a broad range of covariate-adaptive
randomization and testing procedures, such as the most common and classical methods,
and also reflects recent developments in the field. The package contains comprehensive
evaluation and comparison tools for use in both randomization procedures and tests. This
enables power analysis to be conducted to assist the planning of a covariate-adaptive clini-
cal trial. The package also implements a command-line interface to allow for an interactive
allocation procedure, which is typically the case in real-world applications. In this paper,
the features and functionalities of carat are presented.

Keywords: carat, clinical trial, covariate-adaptive randomization, hypothesis test, command-
line interface, power analysis, R, Rcpp, OpenMP.

1. Introduction

Covariate-adaptive randomization is a class of randomization procedures in which allocation
probabilities are sequentially modified to achieve balanced covariates across different treat-
ment groups. A clinical trial with well-balanced covariates enhances the credibility of analysis
and improves statistical efficiency (Kundt 2009). Therefore, covariate-adaptive randomization
has become increasingly used in clinical trials. In a survey of 224 randomized clinical trials
published in 2014 in leading medical journals, 183 (82%) were found to have used covariate-
adaptive randomization procedures (Lin, Zhu, and Su 2015). These procedures were also

https://doi.org/10.18637/jss.v107.i02
https://orcid.org/0000-0002-2952-7944
https://orcid.org/0000-0002-9811-2910

2 carat: Covariate-Adaptive Randomization in Clinical Trials in R

used in recent COVID-19 treatment and vaccine trials (Wang et al. 2020; Baden et al. 2021).
Stratified randomization is the most common and straightforward way of obtaining a balanced
allocation, in which a restricted randomization procedure is applied within each stratum cre-
ated by grouping patients’ covariate values. Among stratified randomization methods (for
example, Shao, Yu, and Zhong 2010; Baldi Antognini and Zagoraiou 2011), stratified per-
muted block randomization (Zelen 1974) is the most commonly used randomization method
in clinical trials. Minimization (Taves 1974; Pocock and Simon 1975) is an alternative method
that is used when balance over covariates’ margins is desired, and especially when the number
of covariates is relatively large compared to the sample size. More recently, Hu and Hu (2012)
have proposed a general family of covariate-adaptive designs to control imbalances of differ-
ent types (within-stratum, within-covariate-margin, and overall). Covariate balance is also
approached with the use of optimal design theory (Atkinson 1982). In addition, model-based
approaches have been proposed to improve efficiency with the use of optimum design theory
(Atkinson 1982; Atkinson 1999; Smith 1984; Begg and Kalish 1984). However, model-based
approaches may not necessarily lead to balance in some cases, and they are less intuitive
for practical use (Rosenberger and Sverdlov 2008; Hu and Hu 2012). In this paper, of all
the model-based approaches, we only consider the Atkinson’s DA-optimal biased coin design
(Atkinson 1982), which leads to a balanced allocation. We provide a brief introduction of all
the considered methods in Section 2.1, but refer readers to Rosenberger and Lachin (2015)
for a more comprehensive review.

Due to the increased popularity of covariate-adaptive randomization in practice and the de-
velopment of new methodologies in the literature, there is a pressing need to provide clinical
trial designers with easy-to-use software that covers a broad range of covariate-adaptive ran-
domization procedures, and offers tools for users to evaluate and compare the performance
of different methods, to select the best one according to their needs. However, most cur-
rently available randomization tools focus on complete randomization and block randomiza-
tion, including standalone software such as Clinstat (Bland 2004) and Random allocation
software (Saghaei 2004), web-based allocation systems such as Randomization.com (Dallal
2003) and GraphPad QuickCalcs (GraphPad Software Inc. 2017), R packages (R Core Team
2023) such as blockrand (Greg 2020), randomizr (Coppock, Cooper, and Fultz 2023), and
randomizeR (Schindler, Uschner, Hilgers, and Heussen 2023), and Stata modules such as
ralloc (Ryan 2018). However, the aforementioned tools do not include covariate-adaptive
randomization, which achieves covariate balance and is preferred in practice. Of the tools
available for covariate-adaptive randomization, the choices are limited to Pocock and Simon’s
minimization, including programs such as Minim (Evans, Day, and Royston 1995) and Min-
impy (Saghaei and Saghaei 2011), a web-based system MagMin (Cai, Xia, Gao, and Cao
2010), and a Bioconductor package (Gentleman et al. 2004) randPack (Carey and Gentleman
2023). Moreover, no assessment tools are provided, so it is not possible to directly com-
pare different randomization procedures. The package carat is designed to meet this need
by comprising a broad spectrum of covariate-adaptive randomization procedures, including
both classical and newly developed methods. This package is equipped with comprehensive
tools for assessment and comparison of various randomization procedures in terms of their
balancing performances. A command-line user interface is also implemented to handle the
adaptive feature of the randomization procedures, and to facilitate real-world applications.
Package carat (Tu, Ye, Ma, and Hu 2023) is available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=carat.

Randomization.com
https://CRAN.R-project.org/package=carat

Journal of Statistical Software 3

In addition to being a comprehensive tool for conducting covariate-adaptive randomization
from the design aspects, the package carat is also created to enable reliable statistical inference
following those procedures, which is often a missing component of the aforementioned pack-
ages. There have been concerns about whether standard statistical models can adequately
reflect a complicated randomization scheme under covariate-adaptive designs. For example,
even the usual two-sample t test is conservative under the covariate-adaptive biased coin
design (Shao et al. 2010). However, over the past decade, several valid and robust testing
methods for detecting treatment effects under covariate-adaptive randomization have been
proposed, such as the bootstrap t test (Shao et al. 2010; Shao and Yu 2013), the corrected
t test (Ma, Hu, and Zhang 2015; Ma, Qin, Li, and Hu 2020), and the randomization test
(Rosenberger, Uschner, and Wang 2019), as outlined in Section 2.3. Unfortunately, these
methods are scattered across the literature, and there is no single tool kit for both practition-
ers and researchers to use to perform and evaluate these methods. Some existing methods
in R packages for bootstrapping and stratified permutation tests such as boot (Canty and
Ripley 2022) and coin (Hothorn, Hornik, Van de Wiel, and Zeileis 2006) are not suitable for
making statistical inferences under covariate-adaptive randomization because they assume
that the outcomes are independent. However, the outcomes are correlated under covariate-
adaptive randomization and treatment reassignment is required for valid tests. Our package
provides functions for the tests associated with covariate-adaptive randomization, while being
cognizant of the fact that the field is still expanding. We believe that these tools will pro-
mote the acceptance of covariate-adaptive randomization, provide easy access to valid ways
of analyzing data from such trials, stimulate related research by providing benchmarks for
the comparison of different tests, and enable the development of more innovative statistical
methods.

Moreover, building upon the tools for conducting a variety of randomization and testing
procedures, the package carat is equipped with comprehensive power analysis tools based on
the Monte Carlo method. Users can thus easily evaluate the performance of any included test
under different data generation mechanisms and randomization methods. This is particularly
important in the planning stage of a clinical trial to determine a proper sample size. The
package provides complete solutions and is a one-stop source for planning, conducting, and
analyzing covariate-adaptive clinical trials. Finally, the computational tasks in the package
are not trivial because of iterative updates during the process of adaptive randomization and
sampling-based tests. This is most apparent when performing the Monte Carlo simulations.
The integration of R with C++ (Stroustrup 2013) via Rcpp (Eddelbuettel and François 2011;
Eddelbuettel et al. 2023) and parallel computing tools OpenMP (Dagum and Menon 1998)
are extensively used throughout the package to provide computationally efficient functions
and hence a better user experience. See Section 5 for further discussion.

The paper is organized as follows. In Section 2, we give an overview of the relevant statis-
tical background for covariate-adaptive randomization procedures and associated hypothesis
testing. Section 3 provides the description of our package carat and illustrations of some exam-
ples. In Section 4, we apply the package carat to the cognitive behavioral-analysis system of
psychotherapy (CBASP) clinical trial data. Computational issues are discussed in Section 5,
before concluding with a summary and discussion of possible extensions in Section 6.

4 carat: Covariate-Adaptive Randomization in Clinical Trials in R

2. Statistical background
The carat package constitutes a comprehensive tool kit for designing and analyzing covariate-
adaptive randomized clinical trials. In this section, we provide a brief overview of the necessary
statistical background material, with reference to the original literature. In Section 2.1, we
introduce the covariate-adaptive randomization procedures implemented in the package. We
describe the criteria for the evaluation of various randomization procedures in Section 2.2, we
detail three valid and robust methods for testing treatment effects under covariate-adaptive
randomization in Section 2.3, and we briefly present power calculations in Section 2.4.

2.1. Covariate-adaptive randomization
We consider the case of two-armed clinical trials conducted with covariate-adaptive random-
ization, and use notations as in Hu and Hu (2012). Suppose there are I covariates and mi levels
for the i-th covariate, and hence in total m = ∏I

i=1 mi strata. Let Tj be the assignment of the
j-th patient, j = 1, . . . , n, such that Tj = 1 for treatment 1 and Tj = 0 for treatment 2. Let
Zj indicate the covariate profile of the j-th patient, such that Zj = (k1, . . . , kI)⊤ if the i-th co-
variate is at level ki, 1 ≤ i ≤ I and 1 ≤ ki ≤ mi. For notational simplicity, let N

(t)
n , N

(t)
n (i; ki)

and N
(t)
n (k1, . . . , kI), t = 1, 2, be the overall number of patients, the number of patients with

level ki of the i-th covariate and the number of patients in the stratum (k1, . . . , kI) assigned to
treatment t after n patients. Then, define Dn = N

(1)
n −N

(2)
n as the imbalance between the two

treatments. The within-stratum imbalance Dn(k1, . . . , kI) and the within-covariate-margin
imbalance Dn(i; ki) are defined similarly. Furthermore, if the n-th patient were assigned to
treatment 1, then D

(1)
n = Dn−1 + 1 would be the “potential” overall difference in the two

groups; similarly, D
(1)
n (i; ki) = Dn−1(i; ki) + 1 and D

(1)
n (k1, . . . , kI) = Dn−1(k1, . . . , kI) + 1

would be the potential differences on margin (i; ki) and within stratum (k1, . . . , kI), respec-
tively. Also, if the n-th patient were assigned to treatment 2, the three types of potential
differences D

(2)
n , D

(2)
n (i; ki), and D

(2)
n (k1, . . . , kI) are defined analogously with +1 replaced

by −1.
In the literature, a variety of covariate-adaptive randomization procedures are proposed to
reduce different aspects of these imbalances with respect to the covariates. Among all the
implemented procedures, Hu and Hu’s general covariate-adaptive randomization (Hu and
Hu 2012) takes all three aspects of imbalance (within-stratum, within-covariate-margin, and
overall) into account, while Pocock and Simon’s minimization (Pocock and Simon 1975) and
stratified biased coin design (Shao et al. 2010) can be considered as two special cases of Hu
and Hu’s general method and target the within-covariate-margin and within-stratum imbal-
ances, respectively. Stratified randomization methods also include stratified permuted block
randomization (Zelen 1974) and covariate-adjusted biased randomization (Baldi Antognini
and Zagoraiou 2011). In addition, Atkinson’s DA-optimal biased coin design (Atkinson 1982)
exemplifies the class of model-based approaches. This method achieves covariate balance by
minimizing the variance of estimated treatment effects, rather than by directly minimizing
any specific imbalance measure.

Hu and Hu’s general covariate-adaptive randomization
In Hu and Hu (2012), a general family of covariate-adaptive randomization procedures is
proposed to control various types of imbalances (within-stratum, within-covariate-margin,

Journal of Statistical Software 5

and overall). If the (n + 1)-th patient were allocated to treatment t, t = 1, 2, as indicated by
the superscript, the “potential” imbalance measure would be defined as

Imb(t)
n+1 = ωo[D(t)

n+1]2 + ωs[D(t)
n+1(k1, . . . , kI)]2 +

I∑
i=1

ωm,i[D(t)
n+1(i; ki)]2,

where ωo, ωs and ωm,i are the non-negative weights placed on overall imbalance, within-
stratum imbalance, and within-covariate-margin imbalance, respectively. The subscript m
attached to a weight ωm,i, i = 1, . . . , I, indicates that the weight is imposed on a margin.
For simplicity but without loss of generality, it is assumed that ωo + ωs + ∑I

i=1 ωm,i = 1 in
Hu and Hu (2012). In our package, the weights are normalized so that their sum equals 1
if the assumption is not satisfied. The general guidance on the choice of weights is that if
a covariate is considered important, more weight can be imposed on the within-stratum and
within-covariate-margin imbalances of the covariate. Then, conditional on the assignments
and the covariate profiles of the first n patients, the procedure assigns the (n + 1)-th patient
to treatment 1 with the probability

P(Tn+1 = 1 | Zn+1, T n) =

q, if Imb(1)

n+1 > Imb(2)
n+1,

p, if Imb(1)
n+1 < Imb(2)

n+1,
0.5, otherwise,

where n ≥ 1, 0 < q < p < 1, p + q = 1, Zn = (Z1, . . . , Zn) and T n = (T1, . . . , Tn)⊤.
The literature suggests that larger values of p, such as 0.85, 0.90, and 0.95, should be used
for covariate-adaptive randomization. See Hu and Hu (2012) and the references therein for
details.

Pocock and Simon’s minimization
Pocock and Simon’s minimization (Pocock and Simon 1975) is one of the most classical and
widely used covariate-adaptive randomization methods. Supposing that n patients have been
assigned and the covariate profile of the (n + 1)-th patient is Zn+1 = (k1, . . . , kI)⊤, Pocock
and Simon (1975) defined a total amount of imbalance, G(t), t = 1, 2, that would result if the
new patient was assigned to treatment t. This is expressed in the form

G(t) = G(D(t)
n+1(i; ki), i = 1, . . . , I) =

I∑
i=1

ωid(D(t)
n+1(i; ki)),

where d(·) is a function of the potential within-covariate-margin difference D
(t)
n+1(i; ki), and

ωi is the non-negative weight placed on the i-th margin, i = 1, . . . , I. The consideration of
ωi, i = 1, . . . , I, is similar to that of the weights for Hu and Hu’s general covariate-adaptive
randomization, and more weight can be assigned to the within-covariate-margin imbalances
of the important covariates. Then, the new patient is assigned to treatment 1 with the
probability

P(Tn+1 = 1 | Zn+1, T n) =

q, if G(1) > G(2),
p, if G(1) < G(2),
0.5, otherwise,

where p and q satisfy the same conditions as above. In our package, Pocock and Simon’s
minimization is specified by choosing d(·) as the square function, and thus reduces to a
special case of Hu and Hu’s general covariate-adaptive randomization with ωo = ωs = 0.

6 carat: Covariate-Adaptive Randomization in Clinical Trials in R

Stratified biased coin design
Shao et al. (2010) apply the biased coin design (Efron 1971) to assign the (n + 1)-th patient
with the covariate profile Zn+1 = (k1, . . . , kI) based on the current imbalance level within the
same stratum. The probability of assigning the patient to treatment 1 is

P(Tn+1 = 1 | Zn+1, T n) =

q, if (D(1)

n+1(k1, . . . , kI))2 > (D(2)
n+1(k1, . . . , kI))2,

p, if (D(1)
n+1(k1, . . . , kI))2 < (D(2)

n+1(k1, . . . , kI))2,
0.5, otherwise,

where the same conditions are imposed on p and q. It is easily seen that the stratified biased
coin design is also a special case of Hu and Hu’s general covariate-adaptive randomization
with ωo = ωm,i = 0, i = 1, . . . , I. In this package, the default value of p is set to be 0.85 for
the above three methods.

Stratified permuted block randomization
Stratified permuted block randomization (Zelen 1974) is the most commonly used method
in clinical trials to achieve balance with respect to the covariates, for which permuted block
randomization is used within each stratum. In this package, we consider permuted block
randomization with fixed block sizes; for example, the default block size is set to be 4, which
is commonly used in practice, although other values can also be used. The method works
most efficiently when the number of strata is small (Kalish and Begg 1985). However, it may
cause severe overall imbalance when there are too many strata, in which case the within-
covariate-margin approaches may be preferred (Hu and Hu 2012).

Covariate-adjusted biased coin design
Covariate-adjusted biased coin design (Baldi Antognini and Zagoraiou 2011) is a new class
of stratified randomization methods. Suppose that n patients have been assigned and the
covariate profile of the (n + 1)-th patient is Zn+1 = (k1, . . . , kI). Then, conditional on the
assignments and the covariate profiles of the first n patients, the new patient is assigned to
treatment 1 with the probability

P(Tn+1 = 1 | Zn+1, T n) = F (Dn(k1, . . . , kI)), 1 ≤ ki ≤ mi, i = 1, . . . , I,

where the generating function F (·), as a map from integers to [0, 1], is a decreasing and
symmetric function with F (x) = 1 − F (−x). In this package, the same generating function
is applied across all strata, which is given by

F a(x) =
{

1/2, if x = 0,
(xa + 1)−1, if x ≥ 1.

The parameter a > 0 controls the degree of randomness, and thus the method tends toward
complete randomization as a → 0, and the assignment becomes more deterministic as a → ∞.
In this package, the default value of a is 3. An alternative choice of a is t−1 − 1, where t is
the reciprocal of the number of strata (Baldi Antognini and Zagoraiou 2011).

Atkinson’s DA-optimal biased coin design
Atkinson’s DA-optimal biased coin design (Atkinson 1982) is a model-based approach to
balance allocations across covariates. By assuming a linear model between response and

Journal of Statistical Software 7

covariates, the design sequentially assigns patients to minimize the variance of estimated
treatment effects. Supposing n patients have already been assigned, the (n + 1)-th patient is
assigned to treatment 1 with the probability (Smith 1984)[

1 − (1; Zn+1)(F⊤
n Fn)−1bn

]2

[
1 − (1; Zn+1)(F⊤

n Fn)−1bn

]2
+

[
1 + (1; Zn+1)(F⊤

n Fn)−1bn

]2 ,

where Fn = (1n; Z⊤
n), and b⊤

n = (2T n − 1n)⊤Fn.

2.2. Evaluation of covariate-adaptive randomization
The primary goal of using covariate-adaptive randomization in practice is to achieve bal-
ance both with respect to the key covariates and the overall treatment assignments within a
clinical trial. The enhanced similarity of covariates between different treatment groups also
gains statistical efficiency or power (Kundt 2009). Therefore, when it comes to evaluating
covariate-adaptive randomization methods, the balancing behavior of the method is arguably
the most relevant measure. This is reflected in the development of our package. As it is often
the case that multiple discrete covariates are used in randomization, different levels of im-
balance need to be considered, such as within-stratum, within-covariate-margin, and overall
imbalances. These measures are extensively used in the literature to evaluate and compare
covariate-adaptive randomization methods (e.g., Hu and Hu 2012). Other criteria that used
for evaluation of general randomization methods, such as selection bias, are of less concern
when implementing covariate-adaptive randomization, especially in a double-blinded setting.
These criteria are therefore not included in the current version of the package.
The Monte Carlo method provides a relatively straightforward and powerful way to quantify
the balancing behavior of covariate-adaptive randomization methods. We use this method in
our package, as it is preferable to the theoretical description because of the following reasons.
First, rather than assessing the imbalance with a single quantity (e.g., variance), a Monte
Carlo simulation experiment is used to determine four quantities (i.e., maximal, 95% quan-
tile, median and mean) of the absolute value of the imbalance, which has been acknowledged
to be a better solution for the process of estimation with considerable uncertainty (Metropo-
lis and Ulam 1949). The whole distribution of imbalance is easily illustrated with the aid of
visualization tools such as box plots, as detailed in Section 3.3. Second, although the theoret-
ical properties are well studied for some randomization methods (e.g., Baldi Antognini and
Zagoraiou 2011; Hu and Hu 2012), the balancing properties are less clear for other methods,
such as Pocock and Simon’s minimization. Even for those well-studied methods, the theo-
retical properties rely on asymptotic theory and may not be appropriate empirically. These
issues can be resolved by using the Monte Carlo method. Moreover, the method can be
readily applied for a newly proposed covariate-adaptive randomization method, which allows
the package to extend more easily. Lastly, the computationally intensive issues caused by
Monte Carlo simulations can be reduced by modern computational tools, such as Rcpp and
OpenMP, as detailed in Section 5.

2.3. Inference under covariate-adaptive randomization
Detecting treatment effect is usually the primary interest in covariate-adaptive clinical trials.
However, some researchers have questioned whether some classical statistical methods remain

8 carat: Covariate-Adaptive Randomization in Clinical Trials in R

valid under covariate-adaptive randomization. For example, Shao et al. (2010) proved that
under the stratified biased coin design, the usual two-sample t test is conservative, in the
sense that it is less likely to be rejected under the null hypothesis than the nominal level,
and a bootstrap t test was used to correct the Type I error. Over the past decade, significant
progress has been made in determining the theoretical basis of inference under covariate-
adaptive randomization. In particular, many valid hypothesis testing methods have been
proposed for a broad range of covariate-adaptive randomization procedures. However, the
results are scattered throughout the literature, and a comprehensive comparison among these
methods is lacking. The package carat offers three tests to compare inference methods,
thereby enabling valid and robust inferences under covariate-adaptive randomization to be
drawn from clinical trial data. This is reviewed in this section. Users can apply any other
standard methods, such as the t test or ANOVA, to analyze data from a covariate-adaptive
randomized clinical trial. However, it is recommended that a comparison between different
tests, be conducted using the three methods included in the package, to reveal which one is
best in particular settings. For details, see Section 2.4.

Bootstrap t test

The general t test is of the form
Ȳ1 − Ȳ0√

V̂ar(Ȳ1 − Ȳ0)
,

where Ȳ1 and Ȳ0 are the sample means of two treatment groups. However, it is shown in Shao
et al. (2010) that the naive variance estimator used in the usual t test overestimates the true
variance of Ȳ1 − Ȳ0 due to the dependence of the two sample means induced by covariate-
adaptive randomization. Therefore, it is critical to have a proper variance estimator to ensure
a valid Type I error rate is obtained. For this, Shao et al. (2010) proposed a bootstrap method
to approximate the variance of Ȳ1 − Ȳ0, as described below. Another model-based approach
is described in the next section.
1) Generate bootstrap data (Y ∗

1 , Z∗
1), . . . , (Y ∗

n , Z∗
n) as a simple random sample with replace-

ment from the original data (Y1, Z1), . . . , (Yn, Zn), where Yi denotes the outcome, and Zi

denotes the covariate profile of the i-th patient.
2) Apply the same covariate-adaptive randomization procedure on Z∗

1 , . . . , Z∗
n to obtain the

bootstrap analogs of treatment assignments T ∗
1 , . . . , T ∗

n , and define

θ̂∗ = 1
n∗

1

n∑
i=1

Y ∗
i T ∗

i − 1
n∗

0

n∑
i=1

Y ∗
i (1 − T ∗

i),

where n∗
1 is the number of patients assigned to treatment 1, and n∗

0 is the number of patients
assigned to treatment 2 in a bootstrap sample.
3) Repeat step 2 for B times, and generate B independent bootstrap samples to obtain
θ̂∗

b , b = 1, . . . , B. Then, the variance of Ȳ1 − Ȳ0 is estimated by the sample variance of θ̂∗
b , and

a normal approximation is used to determine the p value.
This method depends on the reassignment of treatments, and in this way it differs from
classical bootstrap methods.

Journal of Statistical Software 9

Corrected t test
Another approach to modifying the variance estimator used for the t test is to rely on the
asymptotic distribution of Ȳ1 − Ȳ0 under a covariate-adaptive randomization procedure. In
the linear model framework, the asymptotic normality of Ȳ1 − Ȳ0 is established by Ma et al.
(2015), provided that the overall imbalance and within-covariate-margin imbalances for all
covariates are bounded in probability. The balancing properties are satisfied by a broad range
of covariate-adaptive randomization procedures, including all of the procedures involved in
the package except for Atkinson’s DA-optimal biased coin design. The corrected t test has
been used in several recent papers (e.g., Zhu and Hu 2019; Yu and Lai 2019; Ma et al. 2020)
and has been shown to be robust to model misspecification. It is also more powerful than
other tests, such as randomization tests.

Randomization test
The randomization test is an alternative method to preserve the Type I error rate under
covariate-adaptive randomization. By fixing patients’ covariate profiles and outcomes, it en-
sures that each time the covariate-adaptive randomization is performed there will be different
assignments for the patients, and hence different values of a given test statistic. We can gen-
erate the null distribution of the test statistic by repetition of the randomization procedure
and reject the null hypothesis if the observed test statistic lies in the extreme section of all
possible values. However, performing the exact randomization test can be a large compu-
tational burden when n is large. Hence, the usage of finite replications to approximate the
distribution of test statistics is preferred in practice (Rosenberger and Lachin 2015). Unlike
the model-based tests, this test contains no assumption about the underlying model, although
it is more computationally intensive and may cause a loss of power.
The randomization test used in carat is described as follows:
1) For the observed responses Y1, . . . , Yn and the treatment assignments T1, . . . , Tn, compute
the observed value for the test statistic

Sobs = 1
n1

n∑
i=1

YiTi − 1
n0

n∑
i=1

Yi(1 − Ti),

where n1 is the number of patients assigned to treatment 1, and n0 is the number of patients
assigned to treatment 2.
2) Perform the covariate-adaptive randomization procedure on the same patients’ covariate
profiles to obtain new treatment assignments and calculate the corresponding test statistic
values Sl, and repeat L times.
3) Calculate the two-sided p value

p = 1
L

L∑
l=1

I(|Sl| ≥ |Sobs|),

and reject the null hypothesis if p has an extreme value.

2.4. Power calculation
As there are several tests that guarantee control of the Type I error rates, an important way
of assessing their relative performance is to calculate and compare their power under different

10 carat: Covariate-Adaptive Randomization in Clinical Trials in R

scenarios. Moreover, such a power calculation is important in planning a clinical trial because
it gives a basis for choosing the sample size required to determine a meaningful treatment
effect. In the package carat, the Type I error, as well as power, is calculated through the
Monte Carlo method. The current version supports two types of endpoints (continuous and
binary), and the corresponding data-generating models:

• Linear model for continuous endpoints:

Yi = µ1Ti + µ2(1 − Ti) + β⊤Zi + ϵi,

• Logit model for binary endpoints :

logit{P(Yi = 1 | Zi)} = µ1Ti + µ2(1 − Ti) + β⊤Zi,

where µ1 and µ2 are the main effects of two treatments, β is the vector of coefficients for the
covariates, and ϵi is the random error. Additional data types may be added in later versions
of the package.

3. The carat package

3.1. Overview

The carat package comprises 27 functions. These functions are implemented to generate ran-
domization sequences, evaluate and compare different randomization procedures, and enable
reliable statistical inferences in the framework of covariate-adaptive randomization. Pack-
age carat joins a growing list of tools for realizing randomized clinical trials; however, it offers
a comprehensive and single package for covariate-adaptive randomization.
Table 1 illustrates the functions and methods available in the carat package, which consists
of two closely connected parts: The design and analysis of covariate-adaptive randomized
clinical trials. The first part, design of clinical trials, includes functions for generating ran-
domization sequences using one of the covariate-adaptive randomization procedures, with
complete covariate data or a covariate data-generating mechanism. Especially, carat offers
a series of command-line user interface functions for sequentially accrued covariate data. In
addition to implementing randomization procedures, the package also provides functions for
assessing and comparing of different covariate-adaptive randomization procedures.
In the second part, analysis of clinical trials, the package provides three hypothesis testing
methods proposed specifically for covariate-adaptive randomization; these methods facilitate
the inference of treatment effects under the included randomization procedures. The package
also provides functions for power analysis and visualization to facilitate the evaluation of the
performance of these tests under different randomization schemes.
Rather than sealing the parameters in an input-generating mechanism, we directly view the
parameters as the input of the functions in carat. From Table 2, we observe that the input
of each main function comprises two parts: The common and specific parameters. Details
of these parameters are listed in the rest of this section. All of the main results in carat
are implemented using the S3 method. For the functions to generate randomization se-
quences, the outputs are printed in our own defined class ‘carandom’, as Table 2 outlined.

Journal of Statistical Software 11

Usage Functions

Design

Randomization sequence generation with com-
plete covariate data

HuHuCAR(),
PocSimMIN(),
StrBCD(),
StrPBR(),
AdjBCD(),
DoptBCD()

Randomization sequence generation with a co-
variate data-generating mechanism

HuHuCAR.sim(),
PocSimMIN.sim(),
StrBCD.sim(),
StrPBR.sim(),
AdjBCD.sim(),
DoptBCD.sim()

Command-line user interface HuHuCAR.ui(),
PocSimMIN.ui(),
StrBCD.ui(),
StrPBR.ui(),
AdjBCD.ui(),
DoptBCD.ui()

Evaluation of randomization procedures evalRand(),
evalRand.sim()

Comparison of randomization procedures compRand()

Analysis

Data generation getData()

Statistical inference boot.test(),
corr.test(),
rand.test()

Power analysis evalPower(),
compPower()

Table 1: Functions and S3 methods in the carat package.

As for the evaluation functions, the outputs are sealed in our own defined class ‘careval’
in carat. The objects outputted as ‘careval’ class are directly applied to the comparison
functions. It is presumably easy to extend our package using these classes. When a new
covariate-adaptive randomization procedure is proposed, we can print the randomization se-
quences and the procedure’s evaluation in the classes ‘carandom’ and ‘careval’, respectively.
Naturally, the newly proposed randomization procedure can be compared with the existing
randomization schemes by the comparison functions in carat. Motivated by the function
t.test() in the base-R package stats, the results of the testing functions are printed as the
class ‘htest’, wherein the outputs of many other commonly used inference functions such
as wilcox.test() and shapiro.test() are printed. Therefore, not only can our results be
easily compared with the results obtained from existing inference functions in R but they also

12 carat: Covariate-Adaptive Randomization in Clinical Trials in R

Randomization/test Functions
Specific
parame-
ters

Common parameters Output/S3
method

Design

Hu and Hu’s randomiz-
ation HuHuCAR()

HuHuCAR.sim()
omega, p

data for Design;
n, cov_num,
level_num, and
pr for Design.sim

‘carandom’

Pocock and Simon’s m-
inimization PocSimMIN()

PocSimMIN.sim()
weight, p

Stratified biased coin d-
esign StrBCD()

StrBCD.sim()
p

Stratified permuted blo-
ck randomization StrPBR()

StrPBR.sim()
bsize

Covariate-adjusted bia-
sed coin design AdjBCD()

AdjBCD.sim()
a

Atkinson’s DA-optimal
biased coin design DoptBCD()

DoptBCD.sim()
/

Test

Bootstrapt t-test boot.test() B data, method,
to be passed to
methods.
conf, ...;
Note that ... are
arguments

‘htest’
Corrected t-test corr.test() /

Randomization test rand.test() Reps,
plot,
binwidth

Table 2: The inputs and outputs of the main functions in carat.

address R’s requirements for inference functions. Moreover, we provide a power evaluation
function evalPower() that builds upon the data generation function and inference functions
and returns the simulated power. The powers under different randomization methods and
inference functions can be visually compared for intuitive understanding through function
compPower(), as long as they have the same format as the outputs of evalPower().
We apply ggplot2 (Wickham 2016) to drawing graphs in our package. The carat package is
mainly coded in C++ using Rcpp (Eddelbuettel et al. 2023) and RcppArmadillo (Eddelbuettel
and Sanderson 2014). Furthermore, multi-core machine users can use an OpenMP-supported
version of carat. For details, see Section 5.
In the rest of this section, we present several examples to illustrate the usage of these functions
more detailed. The current version 2.2.1 of carat is based on R 4.3.1. It can be loaded in an
R session via:

R> install.packages("carat")
R> library("carat")

Journal of Statistical Software 13

3.2. Randomization

The package carat offers a variety of ways to conduct covariate-adaptive randomization for
clinical trials. To generate a sequence of treatment assignments using a specific covariate-
adaptive randomization procedure, users can either provide complete covariate data or specify
a data-generating mechanism for the covariates. The former is helpful when the baseline
covariate information is fully available prior to the onset of randomization, or it is of interest
to apply a covariate-adaptive randomization procedure on existing data from an earlier study.
The latter is used to generate a randomization sequence by only specifying the underlying
distribution of the covariates, which is typically at the planning stage of a trial when the
covariates are yet to be collected. It also serves as the basis for use of the Monte Carlo method
by generating multiple randomization sequences to evaluate the properties of a randomization
procedure.
In addition, the package is equipped with a command-line user interface to deal with sequen-
tially accrued covariate data. It is thus designed to facilitate the real-world applications of
covariate-adaptive randomization, because patients are usually enrolled in a clinical trial over
a period of time. This interactive feature reflects an important logistical distinction between
adaptive randomization and other simpler randomization methods, such as complete random-
ization and restricted randomization. For example, in contrast to restricted randomization
procedures for which the entire randomization can be generated in advance, in this package
the randomization of each patient is not available until the patient’s covariate profile is ob-
tained. Therefore, the interactive interface is especially suited for practical use, and provides
a basic infrastructure for more sophisticated interactive web response systems (IWRS).
The usage of these three ways to generate a treatment assignment sequence by covariate-
adaptive randomization is illustrated, respectively, in the following sections. The current
version supports a total of six covariate-adaptive randomization methods, as outlined in
Section 2.1.

Generating randomization sequence with complete covariate data

As listed in Table 1, the package carat contains six functions to generate a randomization
sequence based on user-supplied covariate data. The input arguments of these functions
comprise the name of the dataset containing the covariate information, and the design pa-
rameters required for the corresponding randomization procedure. Note that the parameters
are randomization-specific and are different for each procedure: omega and weight specify
the different weights for Hu and Hu’s general covariate-adaptive randomization procedure and
Pocock and Simon’s minimization, respectively. The biased coin probability p is also required
for these two methods, as well as the stratified biased coin design. The block size for the
stratified permuted block randomization is specified by bsize, and the design parameter a is
a parameter used solely for covariate-adjusted biased coin design. The detailed meanings of
these function options are listed as follows.

data: A data frame. A row of the data frame corresponds to the covariate profile of a
patient.

omega: A vector of weights at the overall, within-stratum, and within-covariate-margin levels.
It is required that at least one element is larger than 0. If omega = NULL (default), the
overall, within-stratum, and within-covariate-margin imbalances are weighted with the

14 carat: Covariate-Adaptive Randomization in Clinical Trials in R

proportions 0.2, 0.3, and 0.5/cov_num for each covariate-margin, respectively, where
cov_num is the number of covariates of interest.

weight: A vector of weights for within-covariate-margin imbalances. It is required that at
least one element is larger than 0. If weight = NULL (default), the within-covariate-
margin imbalances are weighted with an equal proportion, 1/cov_num, for each covariate-
margin.

p: The biased coin probability. p should be larger than 1/2 and less than 1. The default
is 0.85.

bsize: The block size for stratified randomization. It is required to be a multiple of 2. The
default is 4.

a: A design parameter governing the degree of randomness. The default is 3.

For covariate data to be used in the randomization functions, they should be stored in a
data frame in which each row contains an individual’s covariate profile and each column
corresponds to a covariate. We use the provided dataset as an example.

R> data("pats", package = "carat")
R> head(pats, 10)

gender employment.status income marriage.status
1 Female full. <= 0.5w unmarried
2 Female full. >= 1w married
3 Male unemp. <= 0.5w unmarried
4 Male part. 0.5~1w married
5 Female full. >= 1w unmarried
6 Female unemp. >= 1w divorced
7 Female part. >= 1w unmarried
8 Male unemp. <= 0.5w married
9 Male part. >= 1w divorced
10 Female unemp. >= 1w married

For the purpose of illustration, we use the function PocSimMIN() to assign these 1000 patients
with Pocock and Simon’s minimization to one of the two treatments.

R> PS_RealD <- PocSimMIN(data = pats, weight = c(1, 2, 1, 1), p = 0.85)

An overview of the result is displayed with print(PS_RealD) or simply PS_RealD.

R> PS_RealD

Pocock and Simon's Procedure with Two Arms

Data: Real
group = A B

Journal of Statistical Software 15

Sample size = 1000
cov_num = 4
considered covariates: gender employment.status

income marriage.status
level_num = 2 3 3 3

the first three patients' covariate-profiles and assignments:
covariate1 covariate2 covariate3 covariate4 assignment

pat1 1 1 1 1 A
pat2 1 1 2 2 B
pat3 2 2 1 1 A

Mean absolute imbalances at overall, within-strt., and
within-cov.-margin levels:

overall within-strt. within-cov.-margin
2.000 2.593 1.091

Remark-Index:
1 -- gender

1 <--> Female; 2 <--> Male
2 -- employment.status

1 <--> full.; 2 <--> unemp.; 3 <--> part.
3 -- income

1 <--> <= 0.5w; 2 <--> >= 1w; 3 <--> 0.5~1w
4 -- marriage.status

1 <--> unmarried; 2 <--> married; 3 <--> divorced

The output printed in class ‘carandom’ contains a short summary of design information,
such as the number of patients (Sample size), the number of covariates (cov_num), and the
number of levels within each covariate (level_num). In this example, there are four covariates,
which are “gender”, “employment.status”, “income”, and “marriage.status”, and with two,
three, three and three levels, respectively. The covariate levels have been converted to numeric
values for concise outputs, and the convention rules are given in the Remark-Index section at
the bottom of the output. The function also returns the covariate profiles of the first three
patients and their assignments, and a rough analysis of the imbalances at different levels.
Here, the mean absolute imbalances at the within-stratum and within-covariate-margin levels
are calculated by taking the average of the absolute differences over all the strata and margins,
respectively. The detailed imbalances of each stratum and margin are stored in the component
of Imb in the output list. The whole assignment sequence is not output by default, but users
can access it through the generic accessor.

R> PS_RealD$assignments[1:10]

[1] "A" "B" "A" "A" "B" "A" "B" "B" "B" "A"

The format of the output for other randomization functions is almost identical to the above
output. However, within-stratum imbalances are additionally summarized, according to the
stratum size, when the number of strata is large relative to the number of patients.

16 carat: Covariate-Adaptive Randomization in Clinical Trials in R

Generating randomization sequence with a covariate data-generating mechanism

The package carat also supports generation of assignment sequences with covariate-adaptive
randomization by providing a data-generating mechanism for the covariates. This feature is
achieved by the functions Design.sim(), where Design is one of the function names listed in
the main body of Table 2. Thus, instead of inputting a covariate data set, users specify the
number of patients (n), the number of covariates (cov_num), and the number of levels within
each covariate (level_num), so that the function can generate the values of covariates used for
randomization. Note that all of these functions assume independence between the covariates.
Therefore no correlation between covariates needs to be specified. The input arguments for
data generation are detailed as follows, while the design parameters are the same as those
in Section 3.2 under the header “generating randomization sequence with complete covariate
data”, and thus are omitted here.

n: The number of patients. The default is 1000.

cov_num: The number of covariates. The default is 2.

level_num: A vector of level numbers for each covariate. Hence the length of level_num
should be equal to the number of covariates. The default is c(2, 2).

pr: A vector of probabilities. Under the assumption of independence between covariates,
pr is a vector containing probabilities for each level of each covariate. The length of pr
should correspond to the number of all levels, and the sum of the probabilities for each
margin should be 1. The default is rep(0.5, 4), which corresponds to cov_num = 2,
and level_num = c(2, 2).

We next consider an example of using Hu and Hu’s randomization method, where there are
three covariates with 2, 5, and 10 levels, respectively. We set pr to be c(rep(0.5, 2),
rep(0.2, 5), rep(0.1, 10)), and omega to be the default value.

R> HuHuCAR.sim(n = 1000, cov_num = 3, level_num = c(2, 5, 10),
+ pr = c(rep(0.5, 2), rep(0.2, 5), rep(0.1, 10)), p = 0.85)

Hu and Hu's General CAR

Data: Simulated
group = A B
Sample size = 1000
cov_num = 3
level_num = 2 5 10

the first three patients' covariate-profiles and assignments:
covariate1 covariate2 covariate3 assignment

pat1 1 1 3 B
pat2 2 5 3 A
pat3 2 4 10 A

Mean absolute imbalances at overall, within-strt., and

Journal of Statistical Software 17

within-cov.-margin levels:
overall within-strt. within-cov.-margin

0.000 1.300 1.176

The output has a similar format as that of PocSimMIN(). From the output, it is clearly seen
that a total of 1000 patients are involved, and three covariates are considered with two, five,
and ten levels, respectively. The default weights are used in this example, and all of the
covariate-margins are treated equally. More details can be accessed by the generic accessor
$. The result is that 500 patients are assigned to group A, and also 500 patients are assigned
to group B.

Command-line interface

In addition to the above functions that generate all treatment assignments at the same time,
we also developed a command-line interface (CLI) to enable use in real-world applications
where treatment assignments may be allocated one by one by users. Thus, the purpose
of the CLI is to deal with scenarios where the covariate information of patients is collected
gradually during the process of enrollment. The CLI is invoked by the user-interface functions
Design.ui(), where Design corresponds to one of the supported randomization procedures
in the package. To run these functions, the options below must be specified, and a folder will
be automatically created to store all of the information related to the randomization process,
such as patients’ covariates and treatment assignments.

path: The path in which a folder used to store variables will be created.

folder: Name of the folder. If default, a folder named “Design” will be created, where
“Design” corresponds to the function name Design.ui().

Before entering the first patient’s information, users must follow the CLI instructions to
initialize the randomization process, which may involve designating labels of covariates and
design parameters. For the subsequent patients, only the covariate profiles must be provided,
and the CLI will output the treatment assignment immediately. The backend database of
covariates and assignments will be automatically updated. A flowchart of the process of
covariate-adaptive randomization using the CLI is displayed in Figure 1. An example of
running the HuHuCAR.ui() is given below, with the corresponding outputs.

R> HH.ui <- HuHuCAR.ui(path = getwd(), folder = "HuHuCAR")

Due to space limitations, the detailed process of interactions between the user and the CLI are
presented in Appendix A. The typical output of a patient, which is printed in class ‘carseq’,
is as follows.

R> HH.ui

Hu and Hu's General CAR

group = A B

18 carat: Covariate-Adaptive Randomization in Clinical Trials in R

Start

Input

Is this the first
patient?

Call the data
of previous
information

automatically.

Initialize labels of covariates, corre-
sponding levels and specific parameters.

Enter covariate profile of the new
patient following instructions.

Collect the
new patient’s

covariate profile.

Output

Next patient?

Stop

Yes

No

No

Yes

Figure 1: A general process of command-line user-interface functions.

Stamps for covariates: 1--sex; 2--age; 3--pills
Stamps for levels of each covariate:

1 -- sex
1 <--> male; 2 <--> female

2 -- age
1 <--> 0-30; 2 <--> 30-50; 3 <--> >=51

3 -- pills
1 <--> 0; 2 <--> 1-3; 3 <--> 3-5; 4 <--> >=6

covariate profile: 2 2 4

assignment: B

Journal of Statistical Software 19

From the output, we can easily see the patient’s covariate profile and the resulting treatment
assignment: This female patient, aged between 30 and 50, and addicted heavily to pills
(pills ≥ 6), is assigned to treatment B.

3.3. Evaluation and comparison

In the package carat, the Monte Carlo-based evaluation of a covariate-adaptive randomiza-
tion procedure is implemented through functions evalRand() and evalRand.sim(), which
correspond to the cases of complete covariate data and specified data-generating mechanism,
respectively. In addition to the design parameters used in randomization functions, some
extra input arguments are required, as listed below.

N: The iteration number. The default is 500.

Replace: A bool. If Replace = FALSE, the function does clinical trial design for N iterations
for one group of patients. If Replace = TRUE, the function does clinical trial design for
N iterations for N different groups of patients. This is only applicable for evalRand.sim.

method: The randomization procedure to be evaluated. This package provides assessment
for "HuHuCAR", "PocSimMIN", "StrBCD", "StrPBR", "AdjBCD", and "DoptBCD".

...: Arguments to be passed to method. These arguments depend on the randomization
method and the following arguments are accepted:

omega: Only applicable for the method of "HuHuCAR".
weight: Only applicable for the method of "PocSimMIN".
p, only applicable for the methods of "HuHuCAR", "PocSimMIN" and "StrBCD".
bsize: Only applicable for the method of "StrPBR".
a: Only applicable for the method of "AdjBCD".

In the following example, we use the function evalRand.sim() to evaluate Hu and Hu’s
method through the covariate data-generating mechanism, and we need to specify the omega
and p in “...” for this method.

R> n <- 1000
R> N <- 500
R> p <- 0.85
R> cov_num <- 3
R> level_num <- c(2, 5, 2)
R> pr <- c(rep(0.5, 2), rep(0.2, 5), rep(0.5, 2))
R> omega <- c(1, 2, rep(1, cov_num))
R> evalR.HH_simD <- evalRand.sim(n, N, TRUE, cov_num, level_num,
+ pr, "HuHuCAR", omega, p)
R> evalR.HH_simD

Hu and Hu's General CAR

20 carat: Covariate-Adaptive Randomization in Clinical Trials in R

call:
evalRand.sim(method = HuHuCAR)

group = A B
Sample size = 1000
iteration = 500
cov_num = 3
level_num = 2 5 2
Data type: Simulated
Data generation mode: TRUE

assignments of the first 3 iterations for the first 7 patients :
pat1 pat2 pat3 pat4 pat5 pat6 pat7

iter1 A B B B A B A
iter2 A B B B A A A
iter3 A B A B B A A

Evaluation by imbalances:
absolute overall imbalances:

max 95% quan median mean
4.00 2.00 0.00 1.02

absolute within-strt. imbalances for the first 3 strata:
max 95% quan median mean

stratum1(1,1,1) 4 2 1 0.988
stratum2(1,1,2) 6 3 1 1.010
stratum3(1,2,1) 5 3 1 0.998

absolute within-cov.-margin imbalances for 3 margins:
max 95% quan median mean

margin(1;1) 5 3 1 1.24
margin(2;1) 5 3 1 1.21
margin(3;1) 5 3 1 1.19

The output is printed in class ‘careval’ and illustrates the information, as well as a brief
analysis of the designing study, such as sample size (Sample size), number of iterations
(iteration) and imbalances (Evaluation by imbalances). The strata are sorted in in-
creasing order based on the values of the first covariate, followed by the second, and so on
through all the covariates under consideration. The detailed labels of each stratum are stored
in the component of All strata in the output list. In this example, a dataset of 1000 pa-
tients with three covariates with 2, 5, and 2 levels, respectively, is generated to evaluate the
procedure with 500 iterations. Users can evaluate the goodness of Hu and Hu’s randomization
procedure through analysis of the absolute imbalances.
For comparison of two or more randomization procedures, compRand(), should be used. The
inputs are objects of the class ‘careval’. We compare all of the included randomization
procedures through a data-generating mechanism.

Journal of Statistical Software 21

0

5

10

HuHuCAR PocSimMIN StrPBR

M
ea

n
ab

s.
 o

ve
ra

ll
im

ba
la

nc
e

0

2

4

6

HuHuCAR PocSimMIN StrPBR

M
ea

n
ab

s.
 w

ith
in

−
st

rt
. i

m
ba

la
nc

e
0

1

2

3

4

HuHuCAR PocSimMIN StrPBR

M
ea

n
ab

s.
 w

ith
in

−
co

v−
m

ar
gi

n
im

ba
la

nc
e

Randomization HuHuCAR PocSimMIN StrPBR

Figure 2: Boxplots of overall, within-stratum, and within-covariate-margin imbalances for the
Hu and Hu’s randomization (HuHuCAR), the Pocock and Simon’s minimization (PocSim-
MIN), and the stratified permuted block randomization (StrPBR).

R> weight <- rep(1, cov_num)
R> bsize <- 4
R> a <- 3
R> evalR.PS_simD <- evalRand.sim(n, N, TRUE, cov_num, level_num, pr,
+ "PocSimMIN", weight, p)
R> evalR.STR_simD <- evalRand.sim(n, N, TRUE, cov_num, level_num, pr,
+ "StrPBR", bsize)
R> compRand(evalR.HH_simD, evalR.PS_simD, evalR.STR_simD)

Detailed outputs are displayed in Appendix B. The comparison of mean absolute imbalances
at the overall, within-stratum, and within-covariate-margin levels are visualized in Figure 2.
Among the mean absolute imbalances at all aspects, the within-stratum and within-covariate-
margin ones are calculated by taking the average over all strata and covariate-margins.

3.4. Hypothesis testing

The package carat offers three different testing functions that correspond to the three tests
described in Section 2.3, i.e., the bootstrap t test, the corrected t test, and the randomization
test. These functions are developed to determine the differences in treatment effects based
on the data from a covariate-adaptive clinical trial. Similar to the randomization functions,
the testing functions can be used for different types of data, whether it is user-provided or
generated by a specified mechanism. For the latter usage, the patients’ outcomes also need to
be generated, for which the package provides a data generation function. We next introduce
the data generation process, and then use the generated data to illustrate the usage of the
testing functions.

Data generation

The function getData() is implemented to create a dataset, comprising covariate profiles,

22 carat: Covariate-Adaptive Randomization in Clinical Trials in R

assignments, and outcomes, based on the user-specified randomization procedure and data-
generating mechanism. It currently supports the generation of continuous and binary out-
comes based on linear and logit models. For details, see Section 2.4. The required inputs,
other than those listed in the randomization part, are:

type: A data-generating method. Optional input: "linear" or "logit".

beta: A vector of coefficients of covariates. The length of beta must correspond to the sum
of all covariates’ levels.

mu1, mu2: Main effects of treatment 1 and treatment 2.

sigma: The error variance for the linear model. The default is 1. This should be a positive
value and is only used when type = linear.

For an illustration of the tests, we first generate patient data with the function getData(), in
which the underlying model is specified as the logistic model with binary outcomes, and the
randomization method is the stratified biased coin design. Here, we consider the case of 2 × 2
strata for 100 patients, the logit link function, and the biased coin probability p = 0.85.

R> dataS <- getData(n = 100, cov_num = 2, level_num = c(2, 2),
+ pr = rep(0.5, 4), type = "logit", beta = c(0.1, 0.2, 0.4, 0.8),
+ mu1 = 0, mu2 = 0, method = "StrBCD", p = 0.85)
R> dataS[, 1:4]

The first four columns of generated data are displayed below.

X1 X2 X3 X4
covariate1 2 1 1 1
covariate2 2 2 2 1
assignment 1 1 2 2
outcome 1 1 1 0

The reason we focus on continuous or binary outcomes in the current version of carat is in
part because inferences are better studied for these two types of outcomes. Our software can
potentially be extended to incorporate other types of outcomes, such as time-to-event data
or count data.

Bootstrap t test

The implementation of the bootstrap t test depends on the process of data collection, so the
randomization method and the corresponding parameters must be specified, and must be
exactly the same as those used in the data simulation or the real experiment. Other inputs
of the bootstrap t test are:

data: A data frame. It consists of patients’ covariate profiles, treatment assignments, and
outcomes.

B: An integer. It is the number of bootstrap samples. The default is 200.

Journal of Statistical Software 23

conf: Confidence level of the interval. The default is 0.95.

We now perform the bootstrap t test on the previously generated dataset named dataS.
The null hypothesis is that there is no difference in treatment effects between groups. This is
indeed true. The default values are used for both B and conf, such that the inputs are omitted.
Note that the randomization method method = "StrBCD" and the biased coin probability p
= 0.85 are the same as those used in the data generation process.

R> boot.test(data = dataS, method = "StrBCD", p = 0.85)

Bootstrap t-test

data: dataS
t = 1.1093, p-value = 0.2673
95 percent confidence interval:
-0.07057956 0.25465319

sample estimates:
difference for treatment effect

0.09203681

The result of the bootstrap t test conveys four messages. First, it prints the name of the data:
dataS. Second, the calculated t statistic is 1.1093, and the corresponding p value is 0.2673.
Thus, we cannot reject the null hypothesis under the 0.05 significance level. Third, the 95%
confidence interval is [−0.07, 0.25]. Fourth, the estimated difference is around 0.09.

Corrected t test

Here we generate patients’ profiles with a linear model, and obtain assignments under Hu
and Hu’s randomization, which satisfies the conditions to apply the corrected t test. We then
consider the case where the difference in treatment effect is 2.0. As the implementation of
the corrected t test does not rely on randomization methods, the required inputs are much
simple; only the data and the level of confidence interval are required:

R> dataH <- getData(n = 100, cov_num = 2, level_num = c(2, 2),
+ pr = rep(0.5, 4), type = "linear", beta = c(0.1, 0.2, 0.4, 0.8),
+ mu1 = 2.0, mu2 = 0, sigma = 1, method = "HuHuCAR",
+ omega = c(0.1, 0.1, 0.4, 0.4), p = 0.85)
R> corr.test(data = dataH, conf = 0.95)

Corrected t-test

data: dataH
t = 6.4183, p-value = 1.378e-10
95 percent confidence interval:
0.9754009 1.8330159

sample estimates:
difference for treatment effect

1.404208

24 carat: Covariate-Adaptive Randomization in Clinical Trials in R

The output of the corrected t test contains the same information as that of the bootstrap
t test. In this simulation, the calculated value of the t statistic is 6.4183, and the corresponding
p value is almost 0, so the null hypothesis is rejected under the 0.05 significance level. The
estimated difference is approximately 1.40, which is close to the real value.

Randomization test
For the randomization test, the p value is determined by the location of observed statistics
over the whole set of replications, so we also provide a histogram as an intuitive illustration.
The inputs that must be specified are:

Reps: An integer. It is the number of randomized replications used in the randomization
test. The default is 200.

binwidth: The number of bins for each bar in the histogram. The default is 30.

We consider the covariate-adjusted biased coin design, and use the default values for Reps
and binwidth.

R> dataA <- getData(n = 100, cov_num = 2, level_num = c(2, 2),
+ pr = rep(0.5, 4), type = "linear", beta = c(0.1, 0.2, 0.4, 0.8),
+ mu1 = 0, mu2 = 0, method = "AdjBCD", a = 3)
R> rand.test(data = dataA, method = "AdjBCD", a = 3)

Randomization test

data: dataA
p-value = 0.32
95 percent confidence interval:
-0.1522571 0.3134017
sample estimates:
difference for treatment effect

-0.103843

The estimated difference is approximately −0.10, and the calculated p value is 0.32, so the
null hypothesis is not rejected. The histogram represents the distribution of sample statistics,
and the red dotted line indicates the observed statistic.

3.5. Power analysis

In the planning stage of a covariate-adaptive randomized clinical trial, one of the main tasks is
to ensure that the study is adequately powered to detect a meaningful clinical benefit. To fulfill
this purpose, the package carat is equipped with two easy-to-use power analysis functions:
evalPower() is used for calculating the power of a single test under a particular covariate-
adaptive randomization procedure, while compPower() is used to compare the powers between
various tests or randomization procedures, or combinations thereof. All of the aforementioned
randomization and testing methods are supported. Corresponding plots are also optional
for better illustration and intuitive understanding. We describe these two functions in the
following two sections.

Journal of Statistical Software 25

0

10

20

30

−0.4 −0.2 0.0 0.2
Difference in means

F
re

qu
en

cy

Figure 3: Histogram of the randomization test under the covariate-adjusted biased coin design.

Power calculation

The function evalPower() allows users to simulate the power (and also type I error), under
either a single value of the difference in treatment effects or under a sequence of values to
better understand the trend. The calculations are performed using the Monte Carlo method,
and we provide parallel computation to accelerate the algorithm. For the randomization test
and the bootstrap t test, the number of cores to be used must be specified. The algorithm
of corrected t test is much faster than the other two tests, so parallel computation is not
provided. In addition to the arguments used in the functions evalRand(), evalRand.sim(),
and getData(), some extra input arguments used for power calculation are as follows.

di: A value or a vector of values of difference in treatment effects. The default value is a
sequence from 0 to 0.5 with increments of 0.1. The value(s) forms the horizontal axis
of the plot.

Iternum: An integer. It is the number of iterations required for power calculation.

sl: The significance level. If the p value returned by the test is less than sl, the null
hypothesis will be rejected. The default value is 0.05.

test: A character string specifying the alternative tests used to verify hypothesis, must be
one of "boot.test", "corr.test" or "rand.test", which are the bootstrap t test, the
corrected t test, and the randomization test, respectively. The arguments associated
with the testing function can be specified; otherwise, the default value will be used.

plot: A bool. It indicates whether to plot or not. Optional input: TRUE or FALSE.

nthreads: The number of threads to be used in parallel computation. This is needed only
under rand.test and boot.test. The default is 1.

26 carat: Covariate-Adaptive Randomization in Clinical Trials in R

We calculate the power and type I error for the randomization test under the stratified per-
muted block design, with significance level α = 0.05, with 100 patients, and 1000 iterations.
The block size 4 is used for the stratified permuted block design (bsize = 4), and 200 repli-
cations are used for the randomization test (Reps = 200):

R> evalPower(n = 100, cov_num = 3, level_num = rep(2, 3), pr = rep(0.5, 6),
+ type = "linear", beta = c(0.1, 0.2, 0.1, 0.2, 0.2, 0.4), sigma = 1,
+ di = seq(0, 0.8, 0.1), Iternum = 1000, sl = 0.05, method = "StrPBR",
+ bsize = 4, test = "rand.test", Reps = 200, plot = FALSE, nthreads = 1)

$Powers
diff value se

1 0.0 0.052 0.007
2 0.1 0.097 0.009
3 0.2 0.162 0.012
4 0.3 0.270 0.014
5 0.4 0.494 0.016
6 0.5 0.689 0.015
7 0.6 0.810 0.012
8 0.7 0.908 0.009
9 0.8 0.975 0.005

$Time
[1] "Execute time: 3.96 mins"

The type I error is 0.052, which is obtained with diff = 0.0. It is close to the nominal level
of 0.05. As the difference in treatment effects increases, the power of the randomization test
also increases, as expected. The standard errors of the powers are reported to quantify the
precision of the power estimate. The formula for the standard error of power is

se =
√

value(1 − value)/Iternum,

where value is the estimated power, and Iternum is the number of iterations. This formula
stems from the fact that each iteration can be thought of as a Bernoulli trial. The total
execution time is 3.96 minutes, and this may vary from computer to computer. Computations
throughout this paper except for Table 4 were all performed on a machine with an Intel Core
i7-9750H CPU 2.60GHz processor and 16GB RAM.

Power comparison

Based on evalPower(), we can compare power between different tests under different ran-
domization procedures. In consideration of extendability, the power from other test functions
can also be compared, as long as they all have the required format. Inputs needed for
compPower() are:

powers: A list. Each argument consists of the power generated by evalPower() in this
package or by other sources. The length of each argument must match.

Journal of Statistical Software 27

diffs: A vector. It contains values of group treatment effect differences. The length of this
argument and the length of each argument of powers must match.

testname: A vector. Each element is the name of test and the randomization method
used. For example, when applying rand.test and corr.test under HuHuCAR, it can
be c("HH.rand","HH.corr"). The length of this argument must match the length of
diffs.

Here, we calculate the power of the bootstrap t test and the corrected t test under Hu and
Hu’s randomization method, and the bootstrap t test under Atkinson’s DA-optimal biased
coin design. The simple two-sample t test is also performed for comparison.

R> HHbtp <- evalPower(n = 100, cov_num = 2, level_num = c(2, 2),
+ pr = rep(0.5, 4), type = "linear", beta = c(1, 2, 2, 4),
+ sigma = 1, di = seq(0, 1.5, 0.3), Iternum = 1000, sl = 0.05,
+ method = "HuHuCAR", omega = c(0.1, 0.1, 0.4, 0.4), p = 0.85,
+ test = "boot.test", B = 200, plot = FALSE, nthreads = 1)
R> HHctp <- evalPower(n = 100, cov_num = 2, level_num = c(2, 2),
+ pr = rep(0.5, 4), type = "linear", beta = c(1, 2, 2, 4),
+ sigma = 1, di = seq(0, 1.5, 0.3), Iternum = 1000, sl = 0.05,
+ method = "HuHuCAR", omega = c(0.1, 0.1, 0.4, 0.4), p = 0.85,
+ test = "corr.test", plot = FALSE)
R> Doptbtp <- evalPower(n = 100, cov_num = 2, level_num = c(2, 2),
+ pr = rep(0.5, 4), type = "linear", beta = c(1, 2, 2, 4),
+ sigma = 1, di = seq(0, 1.5, 0.3), Iternum = 1000, sl = 0.05,
+ method = "DoptBCD", test = "boot.test", B = 200,
+ plot = FALSE, nthreads = 1)
R> di <- seq(0, 1.5, 0.3)
R> Iternum <- 1000
R> Hpvs <- matrix(0, nrow = length(di), ncol = Iternum)
R> Dpvs <- matrix(0, nrow = length(di), ncol = Iternum)
R> for (i in 1:length(di)) {
+ for (j in 1:Iternum) {
+ dataDt <- getData(n = 100, cov_num = 2, level_num = c(2, 2),
+ pr = rep(0.5, 4), type = "linear", beta = c(1, 2, 2, 4),
+ mu1 = di[i], mu2 = 0, sigma = 1, method = "DoptBCD")
+ dataHt <- getData(n = 100, cov_num = 2, level_num = c(2, 2),
+ pr = rep(0.5, 4), type = "linear", beta = c(1, 2, 2, 4),
+ mu1 = di[i], mu2 = 0, sigma = 1, method = "HuHuCAR",
+ omega = c(0.1, 0.1, 0.4, 0.4), p = 0.85)
+ dataDt <- data.frame(t(dataDt))
+ dataHt <- data.frame(t(dataHt))
+ ocD1 <- subset(dataDt, assignment == 1, select = outcome)
+ ocD2 <- subset(dataDt, assignment == 2, select = outcome)
+ ocH1 <- subset(dataHt, assignment == 1, select = outcome)
+ ocH2 <- subset(dataHt, assignment == 2, select = outcome)
+ reD <- t.test(ocD1, ocD2)
+ reH <- t.test(ocH1, ocH2)

28 carat: Covariate-Adaptive Randomization in Clinical Trials in R

+ Dpvs[i, j] <- (reD$p.value < 0.05)
+ Hpvs[i, j] <- (reH$p.value < 0.05)
+ }
+ }
R> powerD <- data.frame(diff = di, value = apply(Dpvs, 1, sum) /
+ Iternum, se = round(sqrt((apply(Dpvs, 1, sum) / Iternum) *
+ (1 - apply(Dpvs, 1, sum) / Iternum) / Iternum), 3))
R> powerH <- data.frame(diff = di, value = apply(Hpvs, 1, sum) /
+ Iternum, se = round(sqrt((apply(Hpvs, 1, sum) / Iternum) *
+ (1 - apply(Hpvs, 1, sum) / Iternum) / Iternum), 3))
R> Doptp <- list(Powers = powerD)
R> HHtp <- list(Powers = powerH)

Then, we combine the results above as input for compPower().

R> powers_compare <- list(HHbtp, HHctp, HHtp, Doptbtp, Doptp)
R> testname_compare <- c("HH.boot", "HH.corr", "HH.simple",
+ "Dopt.boot", "Dopt.simple")
R> compPower(powers_compare, di, testname_compare)

$powers
0 0.3 0.6

HH.boot 0.055(0.007) 0.332(0.015) 0.845(0.011)
HH.corr 0.058(0.007) 0.323(0.015) 0.856(0.011)
HH.simple 0.002(0.001) 0.077(0.008) 0.492(0.016)
Dopt.boot 0.058(0.007) 0.293(0.014) 0.774(0.013)
Dopt.simple 0.006(0.002) 0.091(0.009) 0.51(0.016)

0.9 1.2 1.5
HH.boot 0.992(0.003) 1(0) 1(0)
HH.corr 0.997(0.002) 0.999(0.001) 1(0)
HH.simple 0.924(0.008) 0.999(0.001) 1(0)
Dopt.boot 0.981(0.004) 0.999(0.001) 1(0)
Dopt.simple 0.918(0.009) 0.993(0.003) 1(0)

$plot

From these outputs, we observe that under both covariate-adaptive randomization methods
the corrected t test and the bootstrap t test are able to preserve the type I error rate. The
simple two-sample t test tends to be conservative, in terms of a smaller type I error, than
the nominal level. Importantly, we observe from Figure 4 that between these three tests, the
corrected t test has the highest power, followed by that of the bootstrap t test, while the
simple t test has the lowest power. From the perspective of the randomization method, Hu
and Hu’s method increased the power of the bootstrap t test, compared to Atkinson’s DA

optimal biased coin design, which can be attributed to the more balanced covariates induced
by Hu and Hu’s randomization method.

Journal of Statistical Software 29

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5
Difference in means

P
ow

er

Tests HH.boot HH.corr HH.simple Dopt.boot Dopt.simple

Figure 4: Power comparison between tests, i.e., the bootstrap t test (boot), the simple two-
sample t test (simple) and the corrected t test (corr) under Hu and Hu’s randomization
method (HH) and Atkinson’s DA-optimal biased coin design (Dopt), with different values of
difference in means.

4. Application of carat
The nefazodone CBASP trial (Keller et al. 2000) is a randomized clinical trial to contrast
the effects of three alternative treatments for chronic depression. The trial randomized 681

Characteristic Nefazodone
(N = 226)

Psychotherapy and
Nefazodone
(N = 227)

All patients
(N = 453)

Gender (%)
Female 64.2 69.2 66.7
Male 35.8 30.8 33.3

Race (%)
White 87.2 92.5 89.8
Black or African American 3.1 3.5 3.3
American Indian or Alaska Native 6.6 1.8 4.2
Asian 1.3 2.2 1.8
Native Hawaiian or Pacific Islander 1.8 0.0 0.9

Obsessive compulsive disorder (%)
Sub-threshold 2.7 2.6 2.6
Otherwise 97.3 97.4 97.4

Table 3: The characteristics of the patients for the chosen treatments in the original clinical
trial.

30 carat: Covariate-Adaptive Randomization in Clinical Trials in R

0

10

20

HuHuCAR PocSimMIN StrBCD StrPBR AdjBCD DoptBCD

M
ea

n
ab

s.
 o

ve
ra

ll
im

ba
la

nc
e

1

2

3

4

HuHuCAR PocSimMIN StrBCD StrPBR AdjBCD DoptBCD

M
ea

n
ab

s.
 w

ith
in

−
st

rt
. i

m
ba

la
nc

e

2.5

5.0

7.5

HuHuCARPocSimMIN StrBCD StrPBR AdjBCD DoptBCD

M
ea

n
ab

s.
 w

ith
in

−
co

v−
m

ar
gi

n
im

ba
la

nc
e

Randomization
AdjBCD

DoptBCD

HuHuCAR

PocSimMIN

StrBCD

StrPBR

Figure 5: Boxplots of overall, within-stratum, and within-covariate-margin imbalances for the
Hu and Hu’s randomization (HuHuCAR), Pocock and Simon’s minimization (PocSimMIN),
stratified biased coin design (StrBCD), stratified permuted block randomization (StrPBR),
covariate-adjusted biased coin design (AdjBCD) and Atkinson’s DA-optimal biased coin de-
sign (DoptBCD) applied to nefazodone CBASP data.

patients to nefazodone, CBASP, or combinations thereof. We choose this nefazodone CBASP
data as an enlightening example and only consider two treatments, i.e., nefazodone and the
combination. The characteristics of the patients for the chosen treatments in the original clin-
ical trial are displayed in Table 3. We consider three covariates of strong association, namely,
race, gender, and obsessive compulsive disorder, with five, two, and two levels, respectively.
Hereafter, we only consider 440 patients, excluding 13 patients with missing outcomes.

4.1. Randomization
To select the well-behaved randomization for the nefazodone CBASP data, we need to evaluate
and compare different randomization procedures. Based on the published recommendations,
the biased coin probability, the block size, and the design parameter are set as follows.

• Weights:

– omega = c(1, 2, rep(1, 3)) for Hu and Hu’s randomization.
– weight = rep(1, 3) for Pocock and Simon’s minimization.

• Specific parameters:

– p = 0.85 for Hu and Hu’s randomization, Pocock and Simon’s minimization, and
stratified biased coin design.

– bsize = 4 for stratified permuted block randomization.
– a = 3 for covariate-adjusted biased coin design.

• Iteration number: N = 500.

Detailed outputs are displayed in Appendix C, and the comparison is illustrated in Figure 5.
These results show that all the considered covariate-adaptive randomization methods per-
form satisfactorily in achieving balances, although the covariate-adjusted biased coin design

Journal of Statistical Software 31

and Atkinson’s DA-optimal biased coin design are somewhat suboptimal. For the covariate-
adjusted biased coin design, very small values of a, such as a < 2, can substantially increase
the likelihood of imbalances in covariates in our experience, and thus are not recommended.
Moreover, large values of a can make the procedure too deterministic, thus increasing the se-
lection bias. In this example, we set the value of a to be 3 to ensure a good trade-off between
balance and selection bias. Although the Atkinson’s DA-optimal biased coin design attains
a balanced allocation under the assumed homogeneous linear models, its performance of co-
variate balance is still inferior to the covariate-adaptive randomization methods that directly
deal with covariate imbalances, either within-stratum or within-covariate-margin. Therefore,
we do not recommend the Atkinson’s DA-optimal biased coin design if the primary goal of
randomization is to balance covariates.
To achieve general balance, we apply Hu and Hu’s randomization method to the dataset based
on the aforementioned comparison analysis.

Hu and Hu's General CAR

Data: Real
group = A B
Sample size = 440
cov_num = 3
considered covariates: ObsCompul GENDER RACE
level_num = 2 2 5

the first three patients' covariate-profiles and assignments:
covariate1 covariate2 covariate3 assignment

pat1 1 1 1 A
pat2 1 1 1 B
pat3 1 1 1 A

Mean absolute imbalances at overall, within-strt., and
within-cov.-margin levels:

overall within-strt. within-cov.-margin
0.0000 0.9231 1.5556

Remark-Index:
1 -- ObsCompul

1 <--> Otherwise; 2 <--> Sub-threshold
2 -- GENDER

1 <--> Female; 2 <--> Male
3 -- RACE

1 <--> White; 2 <--> Black or African American;
3 <--> American Indian or Alaska Native;
4 <--> Asian; 5 <--> Native Hawaiian or Pacific Islander

The detailed analysis of output is similar to that in Section 3.2 under the header “generating
randomization sequence with complete covariate data”. As the output outlined, half of the
patients are assigned to each of the two treatments, respectively, because the overall absolute
mean is 0.0000.

32 carat: Covariate-Adaptive Randomization in Clinical Trials in R

4.2. Hypothesis testing

Power analysis is essential in determining the proper sample size required to detect a mean-
ingful treatment effect in clinical trials. Here we use one of the most commonly used random-
ization methods in practice – Pocock and Simon’s minimization – to illustrate an example
of sample size determination by calculating the power of the corrected t test with different
sample sizes.
In the sample size determination, we first use the selected variables above and the treatment
indicator to fit a linear model using the function lm() in the R package stats. Then, we
use three loops, each of which corresponds to a key step in the sample size determination
process. The outermost loop over i corresponds to different sample sizes, the second loop
over j corresponds to different treatment effects, and the innermost loop over k contains
Iternum = 1000 times of data generation, hypothesis testing, and p value calculation.
In the innermost loop, for a given sample size and treatment effect, we randomly sam-
ple the profiles of patients with replacement from the original data with equal probability.
Then, we perform Pocock and Simon’s minimization on sampled profiles using the function
PocSimMIN() in carat and obtain new assignments. Next, we simulate new outcomes using
the function predict() under the given value of treatment effect (determined by the loop
over j). Finally, we perform the corrected t test using the function corr.test() in carat on
the new data to obtain the corresponding p value.
For hypothesis testing, we assume that the null hypothesis is that the treatment effect equals
zero, and set significance level at 0.05. After obtaining the above p values, we calculate
the empirical probabilities of the rejection of the null hypothesis as estimated powers. The
detailed code for sample size determination is displayed as follows.

R> Iternum <- 1000
R> sslm4 <- lm(FinalHAMD ~ A2 + ObsCompul + GENDER + RACE, data = data)
R> nop <- seq(50, 300, 50)
R> diffs <- seq(0, 11, by = 1.5)
R> nop.name <- rep("", length(nop))
R> PSnop <- list()
R> pvals <- matrix(0, length(diffs), Iternum)
R> for (i in 1:length(nop)) {
+ for (j in 1:length(diffs)) {
+ sslm4$coefficients[2] <- diffs[j]
+ for (k in 1:Iternum) {
+ PSind <- sample(1:nrow(cont_subset), nop[i],
+ replace = TRUE)
+ data_temp <- data[PSind,]
+ data_combine <- rbind(PSCovA, predict(sslm4, data_temp) +
+ rnorm(nrow(data_temp), sd = summary(sslm4)$sigma))
+ pvals[j, k] <- (corr.test(data_combine)$p.value < 0.05)
+ }
+ }
+ result.temp <- data.frame(diff = diffs,
+ value = apply(pvals, 1, sum) / Iternum,
+ se = round(sqrt((apply(pvals, 1, sum) / Iternum) *

Journal of Statistical Software 33

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
Difference in means

P
ow

er

Sample Size
50

100

150

200

250

300

Figure 6: Power comparison for different sample sizes under Pocock and Simon’s minimization
with different values of difference in means.

+ (1 - apply(pvals, 1, sum) / Iternum) / Iternum), 3))
+ eval(parse(text = paste("PSnop[[", i, "]]",
+ "=list(Powers = result.temp)", sep = "")))
+ nop.name[i] <- nop[i]
+ }
R> compPower(PSnop, diffs = diffs, nop.name)

$powers
0 1.5 3 4.5

50 0.053(0.007) 0.084(0.009) 0.218(0.013) 0.398(0.015)
100 0.047(0.007) 0.14(0.011) 0.391(0.015) 0.692(0.015)
150 0.048(0.007) 0.181(0.012) 0.532(0.016) 0.844(0.011)
200 0.047(0.007) 0.211(0.013) 0.642(0.015) 0.957(0.006)
250 0.044(0.006) 0.272(0.014) 0.747(0.014) 0.979(0.005)
300 0.056(0.007) 0.306(0.015) 0.844(0.011) 0.991(0.003)

6 7.5 9 10.5
50 0.644(0.015) 0.83(0.012) 0.924(0.008) 0.977(0.005)
100 0.91(0.009) 0.987(0.004) 0.999(0.001) 1(0)
150 0.981(0.004) 1(0) 1(0) 1(0)
200 0.998(0.001) 1(0) 1(0) 1(0)
250 0.998(0.001) 1(0) 1(0) 1(0)
300 1(0) 1(0) 1(0) 1(0)

$plot

The simulated power of the corrected test is presented in Figure 6. For a fixed sample size,

34 carat: Covariate-Adaptive Randomization in Clinical Trials in R

the power first increases rapidly as the difference in treatment effect increases, and then it
slows down and levels off. In this case, there is a trade-off between the power and the number
of enrolled patients in a clinical trial. For example, a sample size of 200 is sufficient to give
over 95% power to detect a treatment effect difference of 4.5, based on Figure 6.

5. Computational details
The primary purpose of this section is to discuss the implementation of modern computation
tools, such as Rcpp and OpenMP, to deal with the most computationally intensive tasks
in the development of carat and illustrate the substantial benefits gained by these tools. It
worths noting that the run-time in this section may not be reproducible exactly due to the
different performances from computers to computers or from servers to servers.
We first emphasize that the covariate-adaptive randomization and the associated tests cause
lots of challenges in computation due to the following reasons. First, for covariate-adaptive
randomization, the randomization sequence has to be updated sequentially, which is more
complicated than the non-adaptive methods where the entire randomization sequence can
be generated at once. Second, the bootstrap test and the randomization test depend on
replicating the randomization procedure hundreds of times for a single test. Third, the Monte
Carlo method implemented for power calculation adds another layer of complexity on top of
the previous concerns.
These issues inevitably cause nested loops, which generally slow the performance of R. To
overcome this drawback of R, we extensively use Rcpp in our package, which provides an
efficient way of combining R and C++ to significantly accelerate the speed of the algorithms.
To illustrate the improvement delivered with C++, we compare the performance of the func-
tion DoptBCD() in carat with that of the function Atkinson() fully coded with R (Ma et al.
2020). The setting is as follows:

• The number of covariates of interest is two with two levels for each covariate.

• Sample size n traverses from 200 to 2500 with increments of 200.

The run-time of the two functions is presented in Figure 7. They were evaluated using
the function microbenchmark() in R, and we set the number of evaluation times to be 20.
It is clear that the function DoptBCD() coded with Rcpp is much faster than the function
Atkinson() coded fully with R. We also observe from Figure 7 that the difference in run-time
tends to be more noticeable as the sample size increases. These findings are as expected
because the run-time of compiled loops is generally less than that when using an interpreted
language, such as R (Eddelbuettel et al. 2023).
In addition to Rcpp, another computational feature of the package is parallel computing per-
formed by OpenMP. Thus, using OpenMP, the Monte Carlo tasks can be parallelized and
executed in multiple threads. Combined with Rcpp, this can markedly reduce the computa-
tional time of the power analysis functions, which are the most computationally intensive part
in the package, as discussed at the beginning of this section. The gain of computational effi-
ciency is illustrated in the following example, in which power calculations based on different
test functions are compared under the following settings:

• The number of patients n = 10.

Journal of Statistical Software 35

0.0

0.2

0.4

0.6

0.8

0 500 1000 1500 2000 2500
Sample size

T
im

e
(s

)

Compiled language R Rcpp

Figure 7: Comparison of the run-time (s) for R and Rcpp under Atkinson’s DA-optimal biased
coin design with various sample sizes.

• The number of covariates cov_num = 4, and each covariate has two levels.

• The probability of one covariate falling into each level is equivalent.

• The number of replications in tests is 10.

• Data is generated by a linear model with the coefficient beta = c(0.1, 0.4, 0.3,
0.1, 0.3, 0.2, 0.1, 0.2), the group treatment effect difference is 0.1, and the vari-
ance of the error term is 1.

• The randomization method is Hu and Hu’s method with omega = c(0.1, 0.1, 0.2,
0.2, 0.2, 0.2), and the bias coin probability p = 0.85.

• The number of Monte-Carlo samples Iternum = 25600.

The run-time of test functions based on different computing tools is displayed in Table 4.
The run-time in this table was generated on a 1456 core high-performance computing (HPC)
cluster, comprising 55 computing nodes (including 4 four-way computing nodes and 50 dual-
way computing nodes), with 4608 GB RAM in total. These were also evaluated through
the function microbenchmark() in R, and the number of evaluation times was set to be 10.
From the first two rows, the improvement caused solely by Rcpp is already significant. Then,
we compare two of the most commonly used parallel computation tools: OpenMP in Rcpp,
and doSNOW (Daniel, Microsoft Corporation, and Weston 2022) in R. The execution time
of doSNOW markedly exceeds that of OpenMP. Moreover, the run-time is further reduced
by enabling OpenMP with multiple cores. For example, the run-time of the function in
carat with 16 cores is only approximately 0.056% of the function solely coded by R, and the
execution time will be even less with more cores.

36 carat: Covariate-Adaptive Randomization in Clinical Trials in R

Computing tools 25% Quantile Mean Median 75% Quantile
R only 23325.86 23434.64 23420.90 23542.22
Rcpp 21.99 22.18 22.16 22.30
Rcpp + OpenMP (2 cores) 14.99 15.00 15.03 15.18
Rcpp + OpenMP (4 cores) 14.28 14.31 14.33 14.37
Rcpp + OpenMP (8 cores) 13.67 13.46 13.74 13.75
Rcpp + OpenMP (16 cores) 13.03 13.17 13.18 13.28
Rcpp + doSNOW 2174.15 2177.60 2177.36 2181.38
Rcpp + doSNOW (2 cores) 1659.96 1666.32 1662.31 1663.37
Rcpp + doSNOW (4 cores) 5651.76 6818.12 7226.78 8096.69
Rcpp + doSNOW (8 cores) 8856.10 9283.81 9197.05 9849.45
Rcpp + doSNOW (16 cores) 8995.08 9145.53 9235.94 9378.86

Table 4: Comparison of run-times (in minutes) of different computing tools for power calcu-
lation, under the covariate-adjusted biased coin design and the randomization test.

Unfortunately, we were recently informed that OpenMP will not be supported in R 4.0.0 on
macOS because of the system compiler. As a temporary solution, we have removed the parallel
computation in the Comprehensive R Archive Network (CRAN) release of carat, but the
parallel version is still available via GitHub https://github.com/yexiaoqingruc/caratOMP.
We will pay close attention to the subsequent development of OpenMP in R and make the
required modifications.
As a byproduct of the computational efficiency of carat, the asymptotic properties of a
covariate-adaptive randomization procedure can be easily verified by gradually increasing
the sample size. Here, a simulation of the 2 × 2 case (i.e., two covariates with two levels for
each covariate) is conducted for all the randomization procedures included in the package
with different sample sizes. The settings are as follows:

• Sample sizes are 200, 400, 600, . . . , 1800, 2000.

• 1000 iterations are imposed on each case with each fixed sample size.

• Specific parameters for different procedures: omega = c(1, 2, rep(1, 2)), weight =
rep(1, 2), p = 0.85, bsize = 4 and a = 3.0.

Standard deviations for all of the imbalances of different levels have been achieved. For
simplicity, only the overall imbalance and the results corresponding to covariate-margin (1;
1) and strata (1, 1) are reported in Figure 8. It can be seen that the standard deviations
of the three levels stabilize as the sample size increases under Hu and Hu’s general ran-
domization, the stratified biased coin design, the stratified permuted block randomization,
and the covariate-adjusted biased coin design. This result indicates that these imbalances
are bounded in probability. The standard deviations at the within-stratum level also increase
with the sample size under Pocock and Simon’s minimization, although the overall and within-
covariate-margin imbalances tend to be stable with various sample sizes. As for Atkinson’s
DA-optimal biased coin design, the standard deviations of the imbalances at all the levels in-
crease with the sample size, whereas it outperforms the complete randomization. All of these

https://github.com/yexiaoqingruc/caratOMP

Journal of Statistical Software 37

0

10

20

30

40

500 1000 1500 2000
Sample size

S
D

 o
f o

ve
ra

ll
im

ba
la

nc
es

0

5

10

15

20

500 1000 1500 2000
Sample size

S
D

 o
f w

ith
in

−
st

r.
im

ba
la

nc
es

 (
1,

 1
)

0

10

20

30

500 1000 1500 2000
Sample size

S
D

 o
f w

ith
in

−
co

v.
−

m
ar

gi
n

im
ba

la
nc

es
 (

1;
 1

)

Randomization
AdjBCD

CR

DoptBCD

HuHuCAR

PocSimMIN

StrBCD

StrPBR

Figure 8: Standard deviations (SD) of imbalances at the overall, within-stratum, and within-
covariate-margin levels under various randomization procedures and sample sizes. Here, “CR”
represents the complete randomization.

findings are consistent with results previously reported in the literature (e.g., Atkinson 1982;
Baldi Antognini and Zagoraiou 2011; Hu and Hu 2012), which partly validates the accuracy
of the algorithms in the package carat.

6. Summary and discussion

In this paper, we have presented the package carat to facilitate the design and analysis of
covariate-adaptive clinical trials. The highlights of carat are as follows. (1) It provides the
most comprehensive spectrum of covariate-adaptive randomization and inference methods,
and incorporates recent developments in the field. It currently supports six randomization
procedures and three hypothesis tests. (2) It contains evaluation and comparison tools to
enable users to easily assess the performances of the randomization and testing functions under
different scenarios. (3) A command-line interface is implemented for interactive allocations
when patients are enrolled sequentially. (4) The package provides power analysis tools to
assist investigators in performing power calculations for the determination of sample size at
the planning stage of a covariate-adaptive clinical trial. (5) C++ code is used throughout the
package to deal with computationally intensive tasks, and parallelization by OpenMP is also
available to fully utilize the power of multi-core processors.
To the best of our knowledge, the current version of carat is the most comprehensive software
tool for covariate-adaptive randomization and associated statistical inference. Moreover, sev-
eral extensions can be made to further improve the package. Extensions may be desired to
cover the cases of multi-arm clinical trials, or additional endpoint types such as time-to-event
data or count data. More assessment criteria may be added to enable determination of the
superiority and suitability of a covariate-adaptive randomization procedure, such as selection
bias or predictability. In addition, a more user-friendly interface, such as Shiny (Chang et al.
2022) or other web-based applications, can be developed for an online interactive allocation
system.

38 carat: Covariate-Adaptive Randomization in Clinical Trials in R

Acknowledgments
This work was supported by the Fundamental Research Funds for the Central Universities,
and the Research Funds of Renmin University of China (grant number 20XNA023).

References

Atkinson AC (1999). “Optimum Biased-Coin Designs for Sequential Treatment Allocation
with Covariate Information.” Statistics in Medicine, 18(14), 1741–1752. doi:10.1002/
(sici)1097-0258(19990730)18:14<1741::aid-sim210>3.0.co;2-f.

Atkinson AC (1982). “Optimum Biased Coin Designs for Sequential Clinical Trials with
Prognostic Factors.” Biometrika, 69(1), 61–67. doi:10.1093/biomet/69.1.61.

Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA,
Rouphael N, Creech CB, McGettigan J, Khetan S, Segall N, Solis J, Brosz A, Fierro C,
Schwartz H, Neuzil K, Corey L, Gilbert P, Janes H, Follmann D, Marovich M, Mascola
J, Polakowski L, Ledgerwood J, Graham BS, Bennett H, Pajon R, Knightly C, Leav B,
Deng W, Zhou H, Han S, Ivarsson M, Miller J, Zaks T (2021). “Efficacy and Safety of the
mRNA-1273 SARS-CoV-2 Vaccine.” New England Journal of Medicine, 384(5), 403–416.
doi:10.1056/NEJMoa2035389.

Baldi Antognini A, Zagoraiou M (2011). “The Covariate-Adaptive Biased Coin Design for
Balancing Clinical Trials in the Presence of Prognostic Factors.” Biometrika, 98(3), 519–
535. doi:10.1093/biomet/asr021.

Begg CB, Kalish LA (1984). “Treatment Allocation for Nonlinear Models in Clinical Trials:
The Logistic Model.” Biometrics, 40(2), 409–420. doi:10.2307/2531394.

Bland M (2004). Clinstat: Simple Statistical Software. URL https://www-users.york.ac.
uk/~mb55/soft/soft.htm.

Cai HW, Xia JL, Gao DH, Cao XM (2010). “Implementation and Experience of a Web-
Based Allocation System with Pocock and Simon’s Minimization Methods.” Contemporary
Clinical Trials, 31(6), 510–513. doi:10.1016/j.cct.2010.07.009.

Canty A, Ripley BD (2022). boot: Bootstrap Functions. R package version 1.3-28.1, URL
https://CRAN.R-project.org/package=boot.

Carey V, Gentleman R (2023). randPack: Randomization Routines for Clinical Trials. Bio-
conductor package version 1.44.0, URL https://bioconductor.org/packages/randPack.

Chang W, Cheng J, Allaire JJ, Sievert C, Schloerke B, Xie Y, Allen J, McPherson J, Dipert
A, Borges B (2022). shiny: Web Application Framework for R. R package version 1.7.4,
URL https://CRAN.R-project.org/package=shiny.

Coppock A, Cooper J, Fultz N (2023). randomizr: Easy-to-Use Tools for Common Forms
of Random Assignment and Sampling. R package version 0.24.0, URL https://CRAN.
R-project.org/package=randomizr.

https://doi.org/10.1002/(sici)1097-0258(19990730)18:14<1741::aid-sim210>3.0.co;2-f
https://doi.org/10.1002/(sici)1097-0258(19990730)18:14<1741::aid-sim210>3.0.co;2-f
https://doi.org/10.1093/biomet/69.1.61
https://doi.org/10.1056/NEJMoa2035389
https://doi.org/10.1093/biomet/asr021
https://doi.org/10.2307/2531394
https://www-users.york.ac.uk/~mb55/soft/soft.htm
https://www-users.york.ac.uk/~mb55/soft/soft.htm
https://doi.org/10.1016/j.cct.2010.07.009
https://CRAN.R-project.org/package=boot
https://bioconductor.org/packages/randPack
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=randomizr
https://CRAN.R-project.org/package=randomizr

Journal of Statistical Software 39

Dagum L, Menon R (1998). “OpenMP: An Industry-Standard API for Shared-Memory
Programming.” IEEE Computational Science and Engineering, 5(1), 46–55. doi:
10.1109/99.660313.

Dallal GE (2003). Randomization Plans: Never the Same Thing Twice! URL http://www.
randomization.com/.

Daniel F, Microsoft Corporation, Weston S (2022). doSNOW: Foreach Parallel Adaptor for the
snow Package. R package version 1.0.20, URL https://CRAN.R-project.org/package=
doSNOW.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Eddelbuettel D, François R, Allaire JJ, Ushey K, Kou Q, Russell N, Bates D, Chambers J
(2023). Rcpp: Seamless R and C++ Integration. R package version 1.0.10, URL https:
//CRAN.R-project.org/package=Rcpp.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics & Data Analysis, 71, 1054 –1063. doi:
10.1016/j.csda.2013.02.005.

Efron B (1971). “Forcing a Sequential Experiment to Be Balanced.” Biometrika, 58(3),
403–417. doi:10.1093/biomet/58.3.403.

Evans S, Day S, Royston P (1995). Minim: Minimisation Program for Allocating Patients to
Treatments in Clinical Trials. Department of Clinical Epidemiology, The London Medical
College, URL https://www-users.york.ac.uk/~mb55/guide/minim.htm.

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier
L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C,
Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang
J (2004). “Bioconductor: Open Software Development for Computational Biology and
Bioinformatics.” Genome Biology, 5(10), R80. doi:10.1186/gb-2004-5-10-r80.

GraphPad Software Inc (2017). GraphPad QuickCalcs. URL http://www.graphpad.com/
quickcalcs.

Greg S (2020). blockrand: Randomization for Block Random Clinical Trials. R package
version 1.5, URL https://CRAN.R-project.org/package=blockrand.

Hothorn T, Hornik K, Van de Wiel MA, Zeileis A (2006). “A Lego System for Conditional
Inference.” The American Statistician, 60(3), 257–263. doi:10.1198/000313006X118430.

Hu Y, Hu F (2012). “Asymptotic Properties of Covariate-Adaptive Randomization.” The
Annals of Statistics, 40(3), 1794–1815. doi:10.1214/12-aos983.

Kalish LA, Begg CB (1985). “Treatment Allocation Methods in Clinical Trials: A Review.”
Statistics in Medicine, 4(2), 129–144. doi:10.1002/sim.4780040204.

https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
http://www.randomization.com/
http://www.randomization.com/
https://CRAN.R-project.org/package=doSNOW
https://CRAN.R-project.org/package=doSNOW
https://doi.org/10.18637/jss.v040.i08
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=Rcpp
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1093/biomet/58.3.403
https://www-users.york.ac.uk/~mb55/guide/minim.htm
https://doi.org/10.1186/gb-2004-5-10-r80
http://www.graphpad.com/quickcalcs
http://www.graphpad.com/quickcalcs
https://CRAN.R-project.org/package=blockrand
https://doi.org/10.1198/000313006X118430
https://doi.org/10.1214/12-aos983
https://doi.org/10.1002/sim.4780040204

40 carat: Covariate-Adaptive Randomization in Clinical Trials in R

Keller MB, McCullough JP, Klein DN, Arnow B, Dunner DL, Gelenberg AJ, Markowitz
JC, Nemeroff CB, Russell JM, Thase ME, Trivedi MH, Blalock JA, Borian FE, Jody DN,
DeBattista C, Koran LM, Schatzberg AF, Fawcett J, Hirschfeld RMA, Keitner G, Miller I,
Kocsis JH, Kornstein SG, Manber R, Ninan PT, Rothbaum B, Rush AJ, Vivian D, Zajecka
J (2000). “A Comparison of Nefazodone, the Cognitive Behavioral-Analysis System of
Psychotherapy, and Their Combination for the Treatment of Chronic Depression.” New
England Journal of Medicine, 342(20), 1462–1470. doi:10.1056/nejm200005183422001.

Kundt G (2009). “Comparative Evaluation of Balancing Properties of Stratified Randomiza-
tion Procedures.” Methods of Information in Medicine, 48, 129–134. doi:10.3414/me0538.

Lin Y, Zhu M, Su Z (2015). “The Pursuit of Balance: An Overview of Covariate-Adaptive
Randomization Techniques in Clinical Trials.” Contemporary Clinical Trials, 45, 21–25.
doi:10.1016/j.cct.2015.07.011.

Ma W, Hu F, Zhang L (2015). “Testing Hypotheses of Covariate-Adaptive Randomized
Clinical Trials.” Journal of the American Statistical Association, 110(510), 669–680. doi:
10.1080/01621459.2014.922469.

Ma W, Qin Y, Li Y, Hu F (2020). “Statistical Inference for Covariate-Adaptive Randomization
Procedures.” Journal of the American Statistical Association, 115(531), 1488–1497. doi:
10.1080/01621459.2019.1635483.

Metropolis N, Ulam S (1949). “The Monte Carlo Method.” Journal of the American Statistical
Association, 44(247), 335–341. doi:10.1080/01621459.1949.10483310.

Pocock SJ, Simon R (1975). “Sequential Treatment Assignment with Balancing for Prog-
nostic Factors in the Controlled Clinical Trial.” Biometrics, 31(1), 103–115. doi:
10.2307/2529712.

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rosenberger WF, Lachin JM (2015). Randomization in Clinical Trials: Theory and Practice.
John Wiley & Sons, New Jersey.

Rosenberger WF, Sverdlov O (2008). “Handling Covariates in the Design of Clinical Trials.”
Statistical Science, 23(3), 404–419. doi:10.1214/08-sts269.

Rosenberger WF, Uschner D, Wang Y (2019). “Randomization: The Forgotten Component
of the Randomized Clinical Trial.” Statistics in Medicine, 38(1), 1–12. doi:10.1002/sim.
7901.

Ryan P (2018). “RALLOC: Stata Module to Design Randomized Controlled Trials.” URL
https://EconPapers.repec.org/RePEc:boc:bocode:s319901.

Saghaei M (2004). “Random Allocation Software for Parallel Group Randomized Trials.”
BMC Medical Research Methodology, 4(1), 1–6. doi:10.1186/1471-2288-4-26.

Saghaei M, Saghaei S (2011). “Implementation of an Open-Source Customizable Minimiza-
tion Program for Allocation of Patients to Parallel Groups in Clinical Trials.” Journal of
Biomedical Science and Engineering, 4(11), 734–739. doi:10.4236/jbise.2011.411090.

https://doi.org/10.1056/nejm200005183422001
https://doi.org/10.3414/me0538
https://doi.org/10.1016/j.cct.2015.07.011
https://doi.org/10.1080/01621459.2014.922469
https://doi.org/10.1080/01621459.2014.922469
https://doi.org/10.1080/01621459.2019.1635483
https://doi.org/10.1080/01621459.2019.1635483
https://doi.org/10.1080/01621459.1949.10483310
https://doi.org/10.2307/2529712
https://doi.org/10.2307/2529712
https://www.R-project.org/
https://doi.org/10.1214/08-sts269
https://doi.org/10.1002/sim.7901
https://doi.org/10.1002/sim.7901
https://EconPapers.repec.org/RePEc:boc:bocode:s319901
https://doi.org/10.1186/1471-2288-4-26
https://doi.org/10.4236/jbise.2011.411090

Journal of Statistical Software 41

Schindler D, Uschner D, Hilgers RD, Heussen N (2023). randomizeR: Randomization for
Clinical Trials. R package version 3.0.1, URL https://CRAN.R-project.org/package=
randomizeR.

Shao J, Yu X (2013). “Validity of Tests under Covariate-Adaptive Biased Coin Randomization
and Generalized Linear Models.” Biometrics, 69(4), 960–969. doi:10.1111/biom.12062.

Shao J, Yu X, Zhong B (2010). “A Theory for Testing Hypotheses under Covariate-Adaptive
Randomization.” Biometrika, 97(2), 347–360. doi:10.1093/biomet/asq014.

Smith RL (1984). “Sequential Treatment Allocation Using Biased Coin Designs.” Jour-
nal of the Royal Statistical Society B, 46(3), 519–543. doi:10.1111/j.2517-6161.1984.
tb01323.x.

Stroustrup B (2013). The C++ Programming Language. 4th edition. Addison-Wesley.

Taves DR (1974). “Minimization: A New Method of Assigning Patients to Treatment and
Control Groups.” Clinical Pharmacology and Therapeutics, 15(5), 443–453. doi:10.1002/
cpt1974155443.

Tu F, Ye X, Ma W, Hu F (2023). carat: Covariate-Adaptive Randomization for Clinical
Trials. R package version 2.2.1, URL https://CRAN.R-project.org/package=carat.

Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, Fu S, Gao L, Cheng Z, Lu Q, Hu Y, Luo G,
Wang K, Lu Y, Li H, Wang S, Ruan S, Yang C, Mei C, Wang Y, Ding D, Wu F, Tang X,
Ye X, Ye Y, Liu B, Yang J, Yin W, Wang A, Fan G, Zhou F, Liu Z, Gu X, Xu J, Shang
L, Zhang Y, Cao L, Guo T, Wan Y, Qin H, Jiang Y, Jaki T, Hayden FG, Horby PW,
Cao B, Wang C (2020). “Remdesivir in Adults with Severe COVID-19: A Randomised,
Double-Blind, Placebo-Controlled, Multicentre Trial.” The Lancet, 395(10236), 1569–1578.
doi:10.1016/s0140-6736(20)31022-9.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.

Yu J, Lai D (2019). “Sequential Monitoring of Covariate Adaptive Randomized Clinical Trials
with Sample Size Re-Estimation.” Contemporary Clinical Trials, 87. doi:10.1016/j.cct.
2019.105874.

Zelen M (1974). “The Randomization and Stratification of Patients to Clinical Trials.” Journal
of Chronic Diseases, 27(7), 365–375. doi:10.1016/0021-9681(74)90015-0.

Zhu H, Hu F (2019). “Sequential Monitoring of Covariate-Adaptive Randomized Clinical
Trials.” Statistica Sinica, 29(1), 265–282. doi:10.5705/ss.202016.0330.

https://CRAN.R-project.org/package=randomizeR
https://CRAN.R-project.org/package=randomizeR
https://doi.org/10.1111/biom.12062
https://doi.org/10.1093/biomet/asq014
https://doi.org/10.1111/j.2517-6161.1984.tb01323.x
https://doi.org/10.1111/j.2517-6161.1984.tb01323.x
https://doi.org/10.1002/cpt1974155443
https://doi.org/10.1002/cpt1974155443
https://CRAN.R-project.org/package=carat
https://doi.org/10.1016/s0140-6736(20)31022-9
https://doi.org/10.1016/j.cct.2019.105874
https://doi.org/10.1016/j.cct.2019.105874
https://doi.org/10.1016/0021-9681(74)90015-0
https://doi.org/10.5705/ss.202016.0330

42 carat: Covariate-Adaptive Randomization in Clinical Trials in R

A. Process of command-line interactive functions

Is this the first patient?
Enter T or F: T
Please enter the involved covariates:

Please enter a new covariate:
Notice: If no more covariates to be entered,

please PRESS Enter directly
New Covariate: sex

Please enter a new covariate:
Notice: If no more covariates to be entered,

please PRESS Enter directly
New Covariate: age

Please enter a new covariate:
Notice: If no more covariates to be entered,

please PRESS Enter directly
New Covariate: pills

Please enter a new covariate:
Notice: If no more covariates to be entered,

please PRESS Enter directly
New Covariate:
According to your input, all covariates are stamped to be

sex -- 1
age -- 2
pills -- 3

Continue or not?
'n' -- stop running input 'y' or PRESS Enter -- reenter or save

Enter y or n:
Reenter involved covariates?
Enter y or n:

Please enter LEVELs for each covariate:
Enter the new LEVEL for covariate -- sex:

Notice: If no more level to be entered for sex,
please PRESS Enter directly

New level: male
Enter the new LEVEL for covariate -- sex:

Notice: If no more level to be entered for sex,
please PRESS Enter directly

Journal of Statistical Software 43

New level: female
Enter the new LEVEL for covariate -- sex:

Notice: If no more level to be entered for sex,
please PRESS Enter directly

New level:
According to you input, levels for covariate -- sex

1--sex

male--1
female--2

Reenter LEVELs for covariate -- sex or not?
Enter y or n:

Enter the new LEVEL for covariate -- age:
Notice: If no more level to be entered for age,

please PRESS Enter directly
New level: 0-30

Enter the new LEVEL for covariate -- age:
Notice: If no more level to be entered for age,

please PRESS Enter directly
New level: 30-50

Enter the new LEVEL for covariate -- age:
Notice: If no more level to be entered for age,

please PRESS Enter directly
New level: >=51

Enter the new LEVEL for covariate -- age:
Notice: If no more level to be entered for age,

please PRESS Enter directly
New level:
According to you input, levels for covariate -- age

2--age

0-30--1
30-50--2
>=51--3

Reenter LEVELs for covariate -- age or not?
Enter y or n:

Enter the new LEVEL for covariate -- pills:
Notice: If no more level to be entered for pills,

please PRESS Enter directly
New level: 0

Enter the new LEVEL for covariate -- pills:

44 carat: Covariate-Adaptive Randomization in Clinical Trials in R

Notice: If no more level to be entered for pills,
please PRESS Enter directly

New level: 1-3
Enter the new LEVEL for covariate -- pills:

Notice: If no more level to be entered for pills,
please PRESS Enter directly

New level: 3-5
Enter the new LEVEL for covariate -- pills:

Notice: If no more level to be entered for pills,
please PRESS Enter directly

New level: >=6
Enter the new LEVEL for covariate -- pills:

Notice: If no more level to be entered for pills,
please PRESS Enter directly

New level:
According to you input, levels for covariate -- pills

3--pills

0--1
1-3--2
3-5--3
>=6--4

Reenter LEVELs for covariate -- pills or not?
Enter y or n:
Please allocate WEIGHTs to each aspects:

Notice: larger the absolute value you enter, stronger tendency
to obtain balance on the corresponding aspect.

Enter the weight for the OVERALL aspect: 1
Enter the weight for the WITHIN-STRATUM aspect: 2
Enter the weight for the MARGIN -- sex : 1
Enter the weight for the MARGIN -- age : 2
Enter the weight for the MARGIN -- pills : 1
Weights for each aspects are:

OVERALL--0.142857142857143
WITHIN-STRT.--0.285714285714286

sex--0.142857142857143
age--0.285714285714286
pills--0.142857142857143

Reenter weights or not?

Journal of Statistical Software 45

Enter y or n:
Please enter the biased coin probability (0-1):
Enter the probability: 0.85
Please enter COVARIATE PROFILE of the coming patients:

Please enter the level of covariate---sex:
Enter the level: female
Please enter the level of covariate---age:
Enter the level: 30-50
Please enter the level of covariate---pills:
Enter the level: >=6
COVARIATE PROFILE of the coming patient is:

sex -- female

age -- 30-50

pills -- >=6

Reenter COVARIATE PROFILE or not?
Enter y or n:

B. Detailed output of compRand()

Comparison:
Randomization = HuHuCAR, PocSimMIN, StrPBR
Data Type: Simulated
Data generation: TRUE
group = A B
Sample size = 1000
iteration = 500
cov_num = 3
level_num = 2 5 2

Mean absolute imbalances at overall, within-strt. and
within-cov.-margin levels:
Overall:

max 95%-quan median mean
HuHuCAR 4 2 0 1.016
PocSimMIN 6 2 0 0.948
StrPBR 14 8 2 3.144

46 carat: Covariate-Adaptive Randomization in Clinical Trials in R

Within-strt.:
max 95%-quan median mean

HuHuCAR 4.95 2.8 1 1.016
PocSimMIN 18.25 11.2 4 4.556
StrPBR 2.00 2.0 1 0.673

Within-cov.-margin:
max 95%-quan median mean

HuHuCAR 5.44 3.00 1.00 1.25
PocSimMIN 4.67 3.00 1.00 1.06
StrPBR 7.44 4.44 1.44 1.81

C. Detailed output of compRand() for nefazodone CBASP data

Comparison:
Randomization = HuHuCAR, PocSimMIN, StrBCD, StrPBR, AdjBCD, DoptBCD
Data Type: Real
group = A B
Sample size = 440
iteration = 500
cov_num = 3
level_num = 2 2 5

Mean absolute imbalances at overall, within-strt. and
within-cov.-margin levels:
Overall:

max 95%-quan median mean
HuHuCAR 6 2 0 0.892
PocSimMIN 4 2 0 0.940
StrBCD 10 8 2 2.796
StrPBR 10 8 2 2.872
AdjBCD 14 10 4 4.168
DoptBCD 26 18 6 7.584

Within-strt.:
max 95%-quan median mean

HuHuCAR 3.38 2.00 0.462 0.874
PocSimMIN 5.23 3.39 1.385 1.483
StrBCD 2.92 1.54 0.462 0.664
StrPBR 1.23 1.23 0.462 0.718
AdjBCD 2.77 1.85 1.462 1.059
DoptBCD 7.38 4.77 2.000 2.104

Within-cov.-margin:
max 95%-quan median mean

Journal of Statistical Software 47

HuHuCAR 4.67 2.67 0.667 1.17
PocSimMIN 4.89 2.67 0.667 1.09
StrBCD 6.44 4.00 1.333 1.59
StrPBR 4.89 3.78 1.333 1.62
AdjBCD 7.56 5.11 2.000 2.20
DoptBCD 14.22 9.34 3.333 3.95

Affiliation:
Feifang Hu
Department of Statistics
George Washington University
801 22nd St. NW, 7th Floor
Washington, DC 20052, United States of America
Telephone: 804-310-0383
E-mail: feifang@gwu.edu
URL: https://statistics.columbian.gwu.edu/feifang-hu

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/
September 2023, Volume 107, Issue 2 Submitted: 2020-11-02
doi:10.18637/jss.v107.i02 Accepted: 2023-01-18

mailto:feifang@gwu.edu
https://statistics.columbian.gwu.edu/feifang-hu
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v107.i02

	Introduction
	Statistical background
	Covariate-adaptive randomization
	Hu and Hu's general covariate-adaptive randomization
	Pocock and Simon's minimization
	Stratified biased coin design
	Stratified permuted block randomization
	Covariate-adjusted biased coin design
	Atkinson's DA-optimal biased coin design

	Evaluation of covariate-adaptive randomization
	Inference under covariate-adaptive randomization
	Bootstrap t test
	Corrected t test
	Randomization test

	Power calculation

	The carat package
	Overview
	Randomization
	Generating randomization sequence with complete covariate data
	Generating randomization sequence with a covariate data-generating mechanism
	Command-line interface

	Evaluation and comparison
	Hypothesis testing
	Data generation
	Bootstrap t test
	Corrected t test
	Randomization test

	Power analysis
	Power calculation
	Power comparison

	Application of carat
	Randomization
	Hypothesis testing

	Computational details
	Summary and discussion
	Process of command-line interactive functions
	Detailed output of compRand
	Detailed output of compRand for nefazodone CBASP data

