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Abstract: The movement of cells during (normal and abnormal) wound healing is the result of biome-
chanical interactions that combine cell responses with growth factors as well as cell-cell and cell-matrix
interactions (adhesion and remodelling). It is known that cells can communicate and interact locally and
non-locally with other cells inside the tissues through mechanical forces that act locally and at a distance,
as well as through long non-conventional cell protrusions. In this study, we consider a non-local partial
differential equation model for the interactions between fibroblasts, macrophages and the extracellular
matrix (ECM) via a growth factor (TGF-β) in the context of wound healing. For the non-local interactions,
we consider two types of kernels (i.e., a Gaussian kernel and a cone-shaped kernel), two types of cell-ECM
adhesion functions (i.e., adhesion only to higher-density ECM vs. adhesion to higher-/lower-density
ECM) and two types of cell proliferation terms (i.e., with and without decay due to overcrowding). We
investigate numerically the dynamics of this non-local model, as well as the dynamics of the localised
versions of this model (i.e., those obtained when the cell perception radius decreases to 0). The results
suggest the following: (i) local models explain normal wound healing and non-local models could also
explain abnormal wound healing (although the results are parameter-dependent); (ii) the models can
explain two types of wound healing, i.e., by primary intention, when the wound margins come together
from the side, and by secondary intention when the wound heals from the bottom up.
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1. Introduction

Wound healing is a complex process through which an organism tries to restore the integrity of
biological tissue following physical damage [1, 2]. While different tissues in the body are able to
heal after wounding, here we focus only on normal and abnormal wounds associated with skin tissue.
There are two main ways for cutaneous tissue to heal: (i) by primary intention, where the incision is
narrow and the wound heals as its edges are brought close together; (ii) by secondary intention, where
the wound heals from the bottom of the wound up. A normal wound healing process (i.e., either by
primary or secondary intention) follows a series of interconnected phases (i.e., hemostasis, inflammation,
proliferation and remodelling) [3], which eventually returns the wounded tissue close to its original
state. However, when there is dysregulation during the various phases of wound healing, it can lead to
abnormal wounds and excessive scars [4], such as hypertrophic scars and keloids. In regard to these
fibrotic pathologies, we first note that both hypertrophic and keloid scars can occur following healing by
primary and/or secondary intention. Second, we note that although both hypertrophic scars and keloids
are both characterised by the presence of excessive scar tissue, only keloids grow beyond the borders of
the original wound in a tumour-like manner [5, 6].

Unfortunately, neither hypertrophic scars nor keloids benefit from satisfactory prevention tools or
treatment; they thus remain an uncovered clinical need. Deciphering the overlapping phases involved in
normal and abnormal wound healing is key to understanding how these types of fibrosis are triggered
and evolve over time. In what follows, we briefly detail the key biological aspects associated with each
of these four phases:

• Hemostasis: following an injury, blood fills the wound area and blood platelets coagulate to
form a fibrin mesh (i.e., blood clot) that prevents further blood loss. Moreover, this fibrin mesh
(which forms the basis of the new ECM inside the wounded tissue) acts as a scaffold for early
cell migration into the wound. Platelets also release different inflammatory cytokines and growth
factors, such as TGF-β, which promote the inflammatory phase [7–9]. In fact, as we will see
below, TGF-β has a critical role in the different phases of wound healing [10], and, for this reason,
throughout this study, we focus on this growth factor.
• Inflammation: this phase is characterised by increased capillary permeability and cell infiltration

and migration into the wound site [7]. The neutrophils that arrive within hours to the wound area
to clean the debris are followed, within 3–4 days, by macrophages that also clean the wound and
secrete various cytokines and growth factors, such as TGF-β, which then recruit fibroblasts and
initiate the formation of granulation tissue [7, 9].
• Proliferation: this phase is characterised by ECM protein deposition and connective tissue con-

traction through the differentiation of fibroblasts into myofibroblasts, and, finally wound re-
epithelialisation. During the proliferation phase, fibroblasts are chemo-attracted and migrate
(particularly in response to TGF-β); they then proliferate and produce ECM components (e.g.,
collagens and fibronectin) that lead to the formation of granulation tissue [7, 9].
• Remodelling: this phase is characterised by a re-organisation of collagen fibres in granulation tis-

sue [9], with type III collagen being replaced with newly secreted type I collagen. Such remodelling
is the result of a “synthesis-degradation” balance under the control of matrix metalloproteinases
that cause collagen breakdown. These proteinases, and their inhibitors are secreted by fibroblasts
and macrophages as well. TGF-β can inhibit the secretion of these metalloproteinases leading to
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the accumulation of collagen fibres [7], as observed in both hypertrophic scars and keloids.

Since the complexity of the above mentioned wound healing processes makes it challenging to
interpret the experimental results, over the past three decades, various mathematical models have
been derived to investigate the biological mechanisms involved in wound healing [11, 12]. Some
of these models focus on normal wounds [13–16], while others focus on abnormal wounds [17–19].
Models usually describe healing by primary intention [20], focus mainly on the biochemical interactions
between cells (or between cells and ECM) and do not include the biomechanical forces involved in
wound contraction. In contrast, models that focus on mechanical interactions [2, 9, 21, 22] usually
describe healing by secondary intention [20]. However, to the best of our knowledge, there are not many
models that concurrently investigate the biological mechanisms behind healing by primary or secondary
intentions in the context of understanding normal versus abnormal healing phenomena. Also, there
are not many models that investigate keloid formation as a result of abnormal wound healing (see the
review in [12]).

The goal of this study was to shed new light on the biological mechanisms that could generate
different types of wounds (i.e., normal or abnormal) that heal by primary or secondary intention. To this
end, we have considered a theoretical (i.e., modelling and numerical) approach to investigate some of
the inflammatory and biomechanical aspects involved in the different phases of wound healing discussed
above. Here we focus on the roles of TGF-β, macrophages and fibroblasts during the inflammation,
proliferation and remodelling steps. The non-local model developed here accounts for the non-local
impact of biomechanical interactions between cells, as well as among cells and the ECM as recent
experimental studies have shown long-distance interactions between cells [23–25]. By considering
different non-local interaction kernels, different cell adhesion functions and cell proliferation functions,
we aim to shed light on the potential mechanisms involved in normal and abnormal wounds healed by
primary or secondary.

The paper is structured as follows. In Section 2, we describe the non-local model and present its
reduction to a local model when we assume that the interactions become very localised. In Section 3,
we describe briefly the finite element approach used to discretise the equations and present a series of
numerical simulations of the local and non-local models. We conclude in Section 4 with a summary and
discussion of the results

2. Description of the mathematical model

To describe the wound healing process, we focus on the coupled dynamics of the following main
variables: the concentration of a growth factor such as TGF-β, g(x, t), the density of fibroblasts, f (x, t),
the density of macrophages, m(x, t), and the density of the ECM, e(x, t). For simplicity, throughout
this study, we use the compact vector notation u = (g, f ,m, e)

T
. The time and space evolution of these

variables can be described by the following equations:

∂g
∂t
= Dg∆g − λgg +W( f ,m), (2.1a)

∂ f
∂t
= ∇ · (D f∇ f − µ f f A f

[
g, f ,m, e

]
) − λ f f + p f (g) f (1 − ρ(u)), (2.1b)

∂m
∂t
= ∇ · (Dm∇m − µmmAm

[
g, f ,m, e

]
) − λmm + pm(g)m(1 − ρ(u)), (2.1c)

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17446–17498.
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∂e
∂t
= −e(α f f + αmm) + pe( f ) e(1 − ρ(u)). (2.1d)

These equations incorporate the following biological assumptions:

• The changes in the concentration of the growth factor (Eq (2.1a)) at a position (x, t) are the result of
the diffusion of these molecules (with diffusion coefficient Dg) [26], the decay of the growth factor
(at a rate λg) [7,27] and the secretion of this growth factor by fibroblasts and macrophages [28–30],
as described by the term W( f ,m) below:

W( f ,m) = p
f

g
f + p

m

g
m, (2.2)

where p
f

g
is the production rate for the growth factor due to fibroblasts [28–30], and p

m

g
is the

production rate for the growth factor due to macrophages [28].
• The changes in the density of fibroblasts (Eq (2.1b)) at a position (x, t) are the result of the flux of the

fibroblasts [28,31] (which consists of a linear diffusion term with coefficient D f and a cell migration
term with the coefficient µ f , which is a consequence of cell-cell and cell-ECM adhesion [32,33]). In
addition, the change in fibroblast densities is the result of fibroblast apoptosis [28] (at a rate λ f ) and
fibroblast self-renewal via proliferation [31,34] (at a rate p f (g) which depends on the concentration
of the growth factor g). Note that since various experimental studies have shown that cells can
interact at a distance from other cells [23–25], in Eq (2.1b), A f

[
g, f ,m, e

]
denotes a non-local

spatial flux term describing the adhesion processes between the fibroblasts, macrophages and ECM,
responsible for the directed movement of the fibroblasts as well as the role of growth factor in
these processes. A detailed description of this non-local flux term is given below. Moreover,

ρ(u) = wg g + w f f + wm m + we e

is the cumulative volume fraction space occupied by the components of our system. Here
wg ,w f ,wm ,we > 0 are indices for the volume fraction spaces occupied by the growth factor,
fibroblasts, macrophages and ECM respectively. Therefore, the proliferation of cells is described
by the logistic term f (1 − ρ(u)) that models cell proliferation according to nutrient availability,
which is consistent with some experimental studies [35].
• The changes in the density of macrophages (Eq (2.1c)) at a position (x, t) are a result of the

flux of macrophages [36] (which consists of a linear diffusion term with the coefficient Dm and
a cell migration term with thecoefficient µm , which is a consequence of cell-cell and cell-ECM
adhesion [32,33]), macrophage apoptosis (at a rate λm) and the logistic proliferation of macrophages
(at a rate pm(g), which depends on the growth factor g) [37]. Here, Am

[
g, f ,m, e

]
denotes a non-

local spatial flux term describing the adhesion processes between the fibroblasts, macrophages and
ECM as well as the role of TGF-β in these adhesive interactions. The proliferation of macrophages
is described by the logistic term m(1 − ρ(u)).
• The changes in the density of the ECM (Eq (2.1d)) are the result of degradation [38, 39] caused by

ECM-degrading enzymes secreted by fibroblasts [40] at a constant rate α f , and by macrophages [41,
42] at a constant rate αm . It is also the result of ECM remodelling [37, 43] at a rate pe( f ) which is
assumed to depend linearly on the density of fibroblasts (i.e., since dermal fibroblasts are closely
linked to the ECM as both producer and resident cells [44]). Finally, as in [45, 46], we consider a
logistic-type remodelling of the ECM.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17446–17498.
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The adhesive cell-cell and cell-ECM interactions between the cells distributed at x and the surrounding
cells and ECM perceived over a ball-shaped sensing region B(x,R) := x + B(0,R) of radius R > 0 are
expressed via the non-local terms:

A f ,m[g, f ,m, e](x, t) =
1
R

∫
B(0,R)

K(∥y∥2)n(y)(1 − ρ(u))
+

Γ f ,m(x + y, t) dy. (2.3)

Here, B(0,R) := {ζ ∈ R
2

: ∥ζ∥2 ≤ R} is the usual closed ball of radius R centred at 0, and n(y) denotes
the unit radial vector originating from x and moving towards x + y ∈ B(0,R) for any y ∈ B(0,R); it is
defined as follows:

n(y) :=

 y
∥y∥2

, if y ∈ B(0,R) \ {(0, 0)}

(0, 0), otherwise,
(2.4)

where ∥ · ∥2 is the usual Euclidean norm. The kernel K(·) : [0,R] −→ [0, 1] is a radially symmetric kernel
that gives the interaction range of cells (i.e., interactions between the reference cell at position x and the
neighbours at x + y). Examples of such kernels are as follows:

a. Gaussian kernel (see Figure 1(a))

K1(z) =
1

2πσ2 e
−

z
2

2σ2
. (2.5)

b. Cone-shaped kernel (see Figure 1(b))

K2(z) =
3
πR2

(
1 −

z
R

)
. (2.6)

Figure 1. Kernels describing the long-distance cell-cell and cell-ECM interactions. (a)
Gaussian kernel (see Eq (2.5)) with standard deviation σ = 0.04; (b) cone-shaped kernel (see

Eq (2.6)) with R = 0.1. In Eqs (2.6) and (2.5), z =
√

y2

1
+ y2

2
.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17446–17498.
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Moreover, the term (1 − ρ(u))
+

:= max{(1 − ρ(u)), 0} is included to avoid overcrowding within the
non-local interactions. Finally, the function Γ f ,m(x + y, t) describes the type and magnitude of cell-cell
and cell-ECM adhesive interactions between cells at position x and the neighbours at position x + y.
To define these Γ f ,m functions, we assume that the fibroblasts are cocultured with macrophages on the
ECM. Note here that some experimental studies observed that macrophages cannot adhere to the ECM
(at least to that of type I collagen) [47], while other experimental studies showed that macrophages can
adhere to some type of substrate (e.g., cross-linked hydrogel) [48]. To investigate these contradictory
experimental results, in this study, we consider two sub-cases:

I. No macrophage-ECM adhesion.

Γ f (x + y, t) := S f f f (x + y, t) + S f mm(x + y, t) + S f ee(x + y, t), (2.7a)
Γm(x + y, t) := Smmm(x + y, t) + Sm f f (x + y, t). (2.7b)

II. Including macrophage-ECM adhesion (S me > 0 in Γm).

Γ f (x + y, t) := S f f f (x + y, t) + S f mm(x + y, t) + S f ee(x + y, t), (2.8a)
Γm(x + y, t) := Smmm(x + y, t) + Sm f f (x + y, t) + Smee(x + y, t). (2.8b)

In the above equations, we consider the strengths of fibroblast-fibroblast interactions (S f f ), fibroblast-
macrophage interactions (S f m), fibroblast-ECM interactions (S f e), macrophage-macrophage interactions
(Smm), macrophage-fibroblast interactions (Sm f ) and macrophage-ECM interactions (Sme). Since these
interaction strengths depend on TGF-β and the presence of the ECM [49], to define them, we consider a
monotonically increasing Hill-type function that depends on “ e + g ” and satisfies S j(e, g)= 0 for e = 0
and g = 0:

S j := S
max

j

e + g
1 + e + g

, j ∈ { f f , f m,mm,m f , f e,me}. (2.9)

The above function is used to describe cell movement against the gradient of the ECM and neighbouring
cells in the presence of the growth factor (and it will be used throughout this study). However, in the
early stages of wound healing, the fibroblasts and macrophages leave the healthy tissue to move onto the
newly formed fibrin mesh at the bottom of the wound, to help with the formation of granulation tissue.
To describe these dynamics, in Section 3.3, we use the following function for cell-cell and cell-ECM
adhesion:

S j := S
max

j

(e − ec) + g
1 + e + g

, j ∈ { f f , f m,mm,m f , f e,me}, (2.10)

where ec is a matrix threshold for the transition between up gradient cell movement and down gradient
cell movement.
Because we do not really know the spatial range over which these adhesive cell-cell and cell-ECM
interactions have an impact (although some experimental studies have suggested that cells can sense up
to a few rows of neighbouring cells [50]), in the next section, we also consider localised versions of
model (2.1). To this end, we assume that the cell perception radius R→ 0; thus, we can use classical
Taylor expansions to transform the non-local interactions into local interactions.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17446–17498.
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2.1. Reduction of the non-local models to local models: Gaussian kernel

The non-local term in Eq (2.3), with the Gaussian kernel defined by Eq (2.5) on a square domain (see
also Figure 1(a)) can be written as

A(.)[g, f ,m, e](x, t) :=
1
R

R∫
−R

R∫
−R

K(y)n(y)(G(u(x + y, t)) dy1dy2 , (2.11)

where A(.)[g, f ,m, e] ∈ {Am[g, f ,m, e], A f [g, f ,m, e]} and y = (y1 , y2). The function G(u(x + y, t)) is
defined by the following expressions:

• for A f , we have

G(u(x + y, t)) = (S f f f (x + y, t) + S f mm(x + y, t)
+S f ee (x + y, t)) (1 − ρ(u))+; (2.12)

• for Am , we have the following general expression:

G(u(x + y, t)) =
(
Smmm(x + y, t) + Sm f f (x + y, t)
+ Smee(x + y, t)

)
(1 − ρ(u))+. (2.13)

Case I (i.e., Eq (2.7), no macrophage-ECM adhesion) corresponds to S me = 0 in Eq (2.13), while
Case II (i.e., Eq (2.8), with macrophage-ECM adhesion) corresponds to S me > 0.

The truncated local Taylor expansion of G(u(x + y, t)) around x := (x1 , x2) is given as

G(u(x + y, t)) = G(u(x, t)) + y1

∂

∂x1

G(u(x, t)) + y2

∂

∂x2

G(u(x, t)) + O
(
y

2

1
+ y

2

2

)
. (2.14)

Inserting Eq (2.14) into Eq (2.11) we have that

A(.)[g, f ,m, e](x, t) =
1
R

R∫
−R

R∫
−R

K(y)n(y)
(
G(u(x, t)) + y1

∂

∂x1

G(u(x, t))+

y2

∂

∂x2

G(u(x, t)) + O
(
y

2

1
+ y

2

1

) )
dy1dy2 . (2.15)

Choosing a kernel as in Eq (2.5) and n(y) defined as in Eq (2.4), and then inserting them into Eq (2.15)
(ignoring the higher order terms), we have that

A(.)[g, f ,m, e](x, t) =

1
R

G(u(x, t))
( R∫
−R

R∫
−R

y1

2πσ2
√

y2

1
+ y2

1

exp

−y
2

1
+ y

2

2

2σ2

dy1dy2 ,

R∫
−R

R∫
−R

y2

2πσ2
√

y2

1
+ y2

1

exp

−y
2

1
+ y

2

2

2σ2

dy1dy2

)
+

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17446–17498.
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+
1
R

(
∂

∂x1

G(u(x, t))
R∫

−R

R∫
−R

y
2

1

2πσ2
√

y2

1
+ y2

1

exp

−y
2

1
+ y

2

2

2σ2

 dy1dy2 ,

∂

∂x2

G(u(x, t))
R∫

−R

R∫
−R

y
2

2

2πσ2
√

y2

1
+ y2

1

exp

−y
2

1
+ y

2

2

2σ2

 dy1dy2

)
. (2.16)

Following the steps detailed in Appendix A, we obtain that A(.)[g, f ,m, e] −→ 0, as R −→ 0 for all
considered cases (see Eq (4.1)). Hence, model (2.1) reduces to

∂g
∂t
= Dg∆g − λgg +W( f ,m), (2.17a)

∂ f
∂t
= ∇ · (D f∇ f ) − λ f f + p f (g) f (1 − ρ(u)), (2.17b)

∂m
∂t
= ∇ · (Dm∇m) − λmm + pm(g)m(1 − ρ(u)), (2.17c)

∂e
∂t
= −e(α f f + αmm) + pe( f ) e(1 − ρ(u)). (2.17d)

We emphasise that the difference between the localised model (2.17) and the non-local model (2.1) (for
the case of the Gaussian kernel) is that the cell motility in the local model is given only by the diffusion
terms.

2.2. Reduction of the non-local models to local models: Cone-shaped kernel.

Now, we consider, as did Gerisch and Chaplain [51], a cone-shaped kernel given by Eq (2.6) on a
circular domain with a radius R. Then, the non-local term in Eq (2.3) takes the following form:

A(.)[g, f ,m, e](x, t) :=
1
R

R∫
0

r

2π∫
0

n(θ)K(r)G(u(x + rn(θ), t)) dθdr. (2.18)

Here, n(θ) = (cos θ, sin θ)
T

is a vector denoting the outer unit normal of the angle θ.

• For the fibroblasts non-local flux term A f

[
g, f ,m, e

]
, the cell-cell and cell-ECM interactions are

given by

G(u(x + rn(θ), t)) = (S f f f (x + rn(θ), t) + S f mm(x + rn(θ), t)
+S f ee(x + rn(θ), t))(1 − ρ(u)).

• For the macrophages non-local flux term Am

[
g, f ,m, e

]
, the cell-cell and cell-ECM interactions

are given by

G(u(x + rn(θ), t)) = (Smmm(x + rn(θ), t) + Sm f f (x + rn(θ), t)
+Smee(x + rn(θ), t))(1 − ρ(u)).

As before, in the above equation, condition Sme = 0 corresponds to Case I (i.e., no macrophage-
ECM adhesion), while condition Sme > 0 corresponds to Case II (i.e., macrophage-ECM adhesion
present).

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17446–17498.
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The Taylor series expansion of G(u(x + rn(θ), t)) = (G ◦ u)(x + r n(θ), t) around r = 0 is given as

G(u(x + rn(θ), t)) = G(u(x, t)) +
〈 d

dr
G(u(x, t)), rn(θ)

〉
+ . . . , (2.19)

where
d
dr

G(u(x, t)) = ∇uG(u(x, t))∇u(x, t).

Assuming that the functions G and u are smooth, Equation (2.18) becomes

A(.)[g, f ,m, e] =
1
R

R∫
0

r

2π∫
0

n(θ)K(r)G(u(x, t)) dθdr

+
1
R

R∫
0

r

2π∫
0

n(θ)K(r)⟨∇uG(u(x, t))∇u(x, t), rn(θ)⟩ dθ dr. (2.20)

For K(r) chosen as in Eq (2.6) and using the expression in Eq (4.2) in Appendix A, we obtain that, for
R −→ 0, A(.)[g, f ,m, e]→ A

0

(.)
(g, f ,m, e). Since the limit function A

0

(.)
depends on G, in what follows, we

describe in detail this limit function. To this end, we also assume that (1 − ρ(u)) > 0. Moreover, we
write u(x, t) as u to simplify the notation.

In the limit R → 0, the non-local flux term A f ,m

[
g, f ,m, e

]
approach the local term A

0

f ,m
(g, f ,m, e),

where

A
0

f
(g, f ,m, e) =

1
4

{
(1−ρ(u))

(
S f f∇ f +S f m∇m+S f e∇e+ f

(
∂

∂g
S f f∇g +

∂

∂e
S f f∇e

)
+ m

(
∂

∂g
S f m∇g +

∂

∂e
S f m∇e

)
+e

(
∂

∂g
S f e∇g +

∂

∂e
S f e∇e

))
−

(
S f f f + S f mm + S f ee

) (
wg∇g + w f∇ f + wm∇m + we∇e

) }
, (2.21a)

A
0

m
(g, f ,m, e) =

1
4

{
(1 − ρ(u))

(
Sm f∇ f + Smm∇m + Sme∇e+ f

(
∂

∂g
Sm f∇g +

∂

∂e
Sm f∇e

)
+ m

(
∂

∂g
Smm∇g +

∂

∂e
Smm∇e

)
+ e

(
∂

∂g
Sme∇g+

∂

∂e
Sme∇e

))
−

(
Sm f f + Smmm + S f ee

) (
wg∇g + w f∇ f + wm∇m + we∇e

) }
. (2.21b)

In Eq (2.21a), the term S f f∇ f + S f m∇m + S f e∇e on the right-hand side describes fluxes due to
fibroblast-fibroblast, fibroblast-macrophage and fibroblast-ECM adhesions, with strengths S f f , S f m and
S f e , respectively. The term f

(
∂
∂gS f f∇g + ∂

∂eS f f∇e
)
+ m

(
∂
∂gS f m∇g + ∂

∂eS f m∇e
)
+ e

(
∂
∂gS f e∇g + ∂

∂eS f e∇e
)

describes the changes in the strengths of fibroblast-fibroblast, fibroblast-macrophage, and fibroblast-
ECM adhesion with respect to the growth factor and ECM, along the positive gradients of the growth
factor and ECM, respectively. Finally, the term −(S f f f + S f mm + S f ee)(wg∇g + w f∇ f + wm∇m + we∇e)
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prevents the uncontrolled accumulation of fibroblasts, macrophages and ECM by directing them down
the gradients of growth factor, fibroblasts, macrophages and ECM.

In Eq (2.21b), the term Sm f∇ f + Smm∇m on the right-hand side represents macrophage-
fibroblast and macrophage-macrophage adhesion with strengths Sm f and Smm , respectively. The
term f

(
∂
∂gSm f∇g + ∂

∂eSm f∇e
)
+ m

(
∂
∂gSmm∇g + ∂

∂eSmm∇e
)

represents the changes in the macrophage-
fibroblast and macrophage-macrophage adhesion strengths with respect to the growth factor and
ECM in the direction of the positive gradients of growth factor and ECM, respectively. The term
−(Sm f f +Smmm)(wg∇g+w f∇ f +wm∇m+we∇e) prevents the uncontrolled accumulation of macrophages
and fibroblasts by directing them along the negative gradients of the growth factor, fibroblasts,
macrophages and ECM.

The difference between Case I (i.e., no macrophage-ECM adhesion; S me = 0) and Case II (i.e.,
macrophage-ECM adhesion present; S me > 0) lies in the additional terms on the right-hand side of
Eq (2.21b) that contain Sme . The term e

(
∂
∂gSme∇g + ∂

∂eSme∇e
)

represents the change in the macrophage-
ECM adhesion strength with respect to the growth factor and ECM that occur along the positive gradients
of the growth factor and ECM, respectively.

The term −Smee (wg∇g+w f∇ f+wm∇m+we∇e) prevents the uncontrolled accumulation of macrophage-
ECM, by directing them along the negative gradients of the growth factor, fibroblasts, macrophages and
ECM.

Substituting Eq (2.21) into Eq (2.1) leads to the following local model:

∂g
∂t
=Dg∆g − λgg +W( f ,m), (2.22a)

∂ f
∂t
=∇ ·

[
(D f∇ f −

1
4
µ f f

{
(1 − ρ(u))

(
S f f∇ f + S f m∇m + S f e∇e

+ f
(
∂

∂g
S f f∇g +

∂

∂e
S f f∇e

)
+ m

(
∂

∂g
S f m∇g +

∂

∂e
S f m∇e

)
+ e

(
∂

∂g
S f e∇g +

∂

∂e
S f e∇e

) )
− (S f f f + S f mm + S f ee)(wg∇g

+ w f∇ f + wm∇m + we∇e)
}]
− λ f f + p f (g) f (1 − ρ(u)), (2.22b)

∂m
∂t
=∇ ·

[
Dm∇m −

1
4
µmm

{
(1 − ρ(u))

(
Sm f∇ f + Smm∇m + Sme∇e

+ f
(
∂

∂g
Sm f∇g +

∂

∂e
Sm f∇e

)
+ m

(
∂

∂g
Smm∇g +

∂

∂e
Smm∇e

)
+ e

(
∂

∂g
Sme∇g +

∂

∂e
Sme∇e

) )
− (Smmm + Sm f f + Smee)(wg∇g

+ w f∇ f + wm∇m + we∇e)
}]
− λmm + pm(g)m(1 − ρ(u)), (2.22c)

∂e
∂t
= − e(α f f + αmm) + pe( f )e (1 − ρ(u)) . (2.22d)
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3. Numerical approach and simulations

Throughout this section, we investigate numerically the macrophage-ECM hypothesis mentioned
above (see Cases I and II). We do this for both the original non-local system (2.1) and the local versions
of it: systems (2.17) and (2.22).

3.1. The finite element discretisation

Denoting by Ω the 2D spatial domain of interest and I = [0,T ] the temporal domain, we seek to
approximate here the solution g, f ,m, e over H

1
(Ω; I). For a concise presentation of the discretisation of

Eq (2.1), let us denote u := (g, f ,m, e)
T

and the right-hand side operator by G : (H1(Ω; I))
4
→ R

4
. Thus,

our dynamics can now be described as follows:
∂u
∂t
= G(u),

u(x, 0) = u0 ,
∂u
∂n

∣∣∣∣∣
∂Ω

= 0.

(3.1)

For the spatial discretisation, we use the finite element method (FEM). Thus, as usual, we multiply the
equation by a test function v ∈ D(Ω) (i.e., the usual space of test functions, which coincides with C

∞

0
(Ω)

as a family of functions only) and integrate over Ω. Therefore, using weak formulation, our problem is
recast as follows:

find u ∈ (H1(Ω; I))4 such that:

∫
Ω

∂u
∂t

v dx =

∫
Ω

G(u)v dx, ∀v ∈ C
∞

0
(Ω)

u(x, 0) = u0 ,
∂u
∂n

∣∣∣∣∣
∂Ω

= 0,

(3.2)

where n is the usual normal to Ω. Thus, explicitly, the first equation in system (3.2) becomes∫
Ω

∂g
∂t

vg dx =−
∫
Ω

Dg∇g · ∇vg dx −
∫
Ω

λgg vg dx +
∫
Ω

W( f ,m)vg dx

+

∫
∂Ω

Dg

∂g
∂n

vg dS , (3.3a)

∫
Ω

∂ f
∂t

v f dx =−
∫
Ω

D f∇ f · ∇v f dx +
∫
Ω

∇ · ( f A f

[
g, f ,m, e

]
)v f dx −

∫
Ω

λ f f v f dx

+

∫
Ω

p f (g) f (1 − ρ(u))v f dx +
∫
∂Ω

D f

∂ f
∂n

v f dS , (3.3b)

∫
Ω

∂m
∂t

vm dx = −
∫
Ω

Dm∇m · ∇vm dx +
∫
Ω

∇ · (mAm

[
g, f ,m, e

]
)vm dx
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−

∫
Ω

λmmvm dx+
∫
Ω

pm(g)m(1 − ρ(u))vm dx+
∫
∂Ω

Dm

∂m
∂n

vm dS (3.3c)

∫
Ω

∂e
∂t

ve dx = −
∫
Ω

e
(
α f f + αmm

)
ve dx +

∫
Ω

epe(1 − ρ(u))ve dx. (3.3d)

Thus, since, for each component ui of u, i = 1, . . . , 4, a representation in terms of P2−basis functions
{ψτ(·)}τ=0,l corresponding to the rectangular grid (consisting of l + 1 uniformly distributed nodes) is given
as ũ(x, t) =

∑l
τ=0 cui

τ (t)ψ
τ
(x), we therefore obtain

∂ui(x, t)
∂t

=

l∑
τ=0

∂cui
τ (t)
∂t

ψ
τ
(x). (3.4)

For the time discretisation, we use a standard backward Euler scheme; thus from Eq (3.2), we obtain

∫
Ω

u
N+1
−u

N

∆t v dx =
∫
Ω

G
(
u

N+1
)

v dx, ∀v ∈ D(Ω)

u(x, 0) = u0 ,

∂u
N+1

∂n
= 0,

(3.5)

where u
N

is the approximation of u(N∆t), with the uniform time discretisation step ∆t := T
Nmax

and
N = 0, . . . ,Nmax represents the time indices. Further, in order to finally write our discretised dynamics
in the standard form of a linear system of equations, we first proceed by taking the L2−scalar product
with respect to each basis function ψ j , j = 0, . . . , l, on both sides of the equations in system (3.3); then
we apply the time discretisation outlined in system (3.5). This results in a linear system associated with
the fully discretised model, as detailed in Appendix C.

3.2. Numerical simulations

Numerical implementation. For the numerical simulations, we consider the FEM implemented in
FEniCS, an open-source computing platform. In particular, here, we used a triangular mesh with P2
elements (i.e., on every single side (edge) of the triangles in the mesh, the solution is approximated
by a quadratic that is sampled at the following three points: the two vertices and the middle point);
for precise details, see [52]. For the details of the weak-form discretisation, see Subsection 3.1 and
Appendix C. For details on the time-marching using the backward Euler method, see Appendix D. We
ran the simulations on a time interval [0,T ] with T = 100 and a step size ∆t = 0.2.
Finally, the parameter values used for the numerical simulations are listed in Table 1, together with
their descriptions. We assumed homogeneous Neumann boundary conditions on all sides of the spatial
domain Ω.
Initial conditions. To properly model the healing of a wound (i.e., a decrease in the normal density
of cells due to a cut in the tissue), we chose the following initial conditions on the square domain
Ω = [−1, 1]

2
:

g(x, 0) = 0.1, (3.6)
f (x, 0) = 0.4

[(
0.5 + 0.5 tanh(20x1− 3)

)
+
(
0.5 + 0.5 tanh(−20x1− 3)

)]
, (3.7)
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m(x, 0) = 0.1
[(

0.5 + 0.5 tanh(20x1− 3)
)
+
(
0.5 + 0.5 tanh(−20x1− 3)

)]
, (3.8)

e(x, 0) = 1.0
[(

0.5 + 0.5 tanh(20x1− 3)
)
+
(
0.5 + 0.5 tanh(−20x1− 3)

)]
, (3.9)

where x = (x1 , x2). Thus, the wound was assumed to be parallel to the x2-axis; see also Figure 2.

Table 1. Summary of dimensionless model parameters, together with the baseline values used
for the numerical simulations corresponding to limit local models.

Parameter Value Description Reference
Dg 0.0035 Diffusion coeff. for growth-factor population [53]
D f 0.0008 Diffusion coeff. for fibroblast population [53]
Dm 0.0008 Diffusion coeff. for macrophage population [53]
λg 0.2 Decay rate of growth-factor population Estimated
λ f 0.025 Apoptotic rate of fibroblast population Estimated
λm 0.025 Apoptotic rate of macrophages population Estimated
p f

g
0.2 Secretion rate of growth-factor by fibroblasts Estimated

pm
g

0.2 Secretion rate of growth-factor by macrophages Estimated
p f (g) 5.0g Proliferation rate of fibroblasts population de-

pending on the growth factor
Estimated

pm(g) 5.0g Proliferation rate of macrophages population de-
pending on the density of the growth factor

Estimated

α f 0.015 Degradation rate of ECM by fibroblasts [53]
αm 0.015 Degradation rate of ECM by macrophages [53]
pe( f ) 5.0 f Remodelling rate of ECM population Estimated
wg 1 Fraction of physical space occupied by growth

factor
[54]

w f 1 Fraction of physical space occupied by fibrob-
lasts

[54]

wm 1 Fraction of physical space occupied by
macrophages

[54]

we 1 Fraction of physical space occupied by ECM [54]
Smax

f f
0.2 Maximum strength of fibroblast-fibroblast adhe-

sive junction
Estimated

Smax
f m

0.1 Maximum strength of fibroblast-macrophages
adhesive junction

[51]

Smax
m f

0.1 Maximum strength of macrophages-fibroblast
adhesive junction

[51]

Smax
mm

0.2 Maximum strength of macrophages-
macrophages adhesive junction

Estimated

Smax
f e

0.1 Maximum strength of fibroblast-ECM adhesive
junction

[51]

Smax
me

1.0 Maximum strength of macrophages-ECM adhe-
sive junction

[51]

µ f 0.08 Haptotactic rate of the fibroblasts Estimated
µm 0.08 Haptotactic rate of the macrophages Estimated
R 0.1 Sensing radius for the non-local interaction [51]

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17446–17498.



17459

Note that, in Appendix F, we also present numerical simulations for the baseline parameters when
we choose different initial conditions: a circular initial wound (see Eq (4.13d) and first column in
Figure A3) and a linear but irregular initial wound (see Eq (4.12d) and first column in Figure A4).

Figure 2. Initial conditions (see Eqs (3.6)–(3.9)) for (a) growth factor, g; (b) fibroblasts, f ; (c)
macrophages, m and (d) ECM, e. We considered a square domain Ω = [−1, 1]

2
.

3.2.1. Numerical simulations for the local models: Gaussian kernel
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Figure 3. Numerical simulations of the local model (2.17), obtained as a limit from the
non-local model with the Gaussian kernel. The rows correspond to the spatial distribution of
the growth factor (g), fibroblasts ( f ), macrophages (m), and ECM (e) at times t = 2, t = 20,
t = 100 and t = 200 (shown on the columns). The parameter values are listed in Table 1.
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We start the numerical simulations by focusing first on local models, and, in particular on Eq (2.17).
Here, the motility of cells is only due to diffusion because the cellular flux vanishes locally (see the
detailed calculations in Appendix A). Figure 3 shows the spatiotemporal evolution of the growth factor
g (first row), fibroblasts f (second row), macrophages m (third row) and ECM e (fourth row) at four
different time points: t = 2, t = 20, t = 100 and t = 200.

We see in Figure 3 that, due to diffusion, there is an invasion of fibroblasts and macrophages into the
wound between their initial states (t = 0, see Figure 2) and time t = 2, which helps in the remodel of the
ECM. Note that, at time t = 20, the fibroblasts and macrophages have completely invaded the wound
and have started decaying. For the parameter values used here (and listed in Table 1), the ECM returns
to its maximum level, while the fibroblast and macrophage tissue levels decay relative to their initial
baseline levels (at t = 0).

3.2.2. Numerical simulations for the local models: Cone-shaped kernel
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Figure 4. Numerical simulations of the local model (2.22) with Sme = 0 obtained as a limit
from the non-local model Case I with the cone-shaped kernel. The rows correspond to the
spatial distribution of the growth factor (g), fibroblasts ( f ), macrophages (m) and ECM (e) at
time points t = 2, t = 20 and t = 100 (shown on the columns). The parameter values are listed
in Table 1.
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No macrophage-ECM adhesion (Case I: Sme = 0). First, we numerically investigate the
behaviour of the local model (2.22) under the assumption that the macrophages cannot adhere to
the ECM, i.e., Case I above with Sme = 0. As before, in Figure 4, we present the spatiotemporal
evolution of the growth factor g (first row), fibroblasts f (second row), macrophages m (third
row) and ECM e (fourth row). In contrast to Figure 3 in which the fibroblasts were smoothly
invading the wound area, in Figure 4, we see that at t = 2, the fibroblasts invade the wound
area in oscillatory waves. Then, at t = 20, there is a very large density of fibroblasts that are
built up in the middle of the wound (max( f ) ≈ 0.5), and a slightly lower fibroblast density at the
wound edges. This very high peak of fibroblasts then starts decreasing and at t = 100, the wound
is almost healed and the fibroblasts are almost homogeneously spread throughout the tissue at
very low densities. For the parameter values used here (and listed in Table 1), the ECM returns
to its maximum level, while the fibroblast tissue level decays relative to its initial baseline level (at t = 0).
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Figure 5. Numerical simulations of the local model (2.22), obtained as a limit from the
non-local model in Case II (Sme > 0), with the cone-shaped kernel. The rows correspond to
the spatial distribution of the growth factor (g), fibroblasts ( f ), macrophages (m) and ECM (e)
at time points t = 2, t = 20 and t = 100. The parameter values are listed in Table 1.

Including macrophage-ECM adhesion (Case II: Sme > 0). Next, we numerically investigated the case
in which macrophages could adhere to the ECM. In contrast to the previous figure (i.e., Figure 4), we see
in Figure 5 that at t = 2, there is an invasion of macrophages into the wound (in an oscillatory manner)
as a result of cell-ECM adhesion, which helps to remodel the ECM. Another interesting macrophage
behaviour can be observed at time t = 20, when there are fewer macrophages inside of the wound
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(slightly darker colour) compared to the edge of the wound and the rest of the tissue (see row 3 column
2 of Figure 5). This is in contrast to Figures 3 and 4. For the parameter values used here (and listed in
Table 1), the ECM in the wound region remodels faster and reaches its maximum level at t = 100. This
is in contrast to Figures 4 and 3, where ECM remodelling is slightly slower.

Finally, in Figure 6, we compare the solutions of these two hypotheses (i.e., Figure 4 with Sme = 0 and
Figure 5 with Sme > 0) at the spatial point x2 = 0 and times t = 2, 20, 40, 100. It is clear that the ECM
remodels faster when macrophages are allowed to adhere to the ECM.

Time-evolution of fibroblasts and macrophages: Comparison of different local models. To more
clearly see the differences between various local models in terms of the fibroblasts and macrophages, in
Figure 7, we plotted the densities of these two cell populations in the centre of the wound (i.e., at point
x1 = 0; blue curve) and just outside the wound (i.e., at point x1 = 0.5; red curve) for time t ∈ {0, 50}.
Here, we show the cell dynamics for (a),(b) local model (2.17); (c),(d) local model (2.22) for Case I
(Sme = 0) and (e),(f) local model (2.22) for Case II (Sme > 0). In Figure 7(a),(b), we observe similar
dynamics for the fibroblasts and macrophages: for t > 5, there are more cells in the wound region
than in the surrounding tissue. This is in contrast to Figure 7(c),(d), where the fibroblast population
very quickly invades the wound (t > 3) and reaches high levels very quickly, while the macrophage
population in the wound region does not exceed that of the surrounding tissue until about t ∈ {5, 10}.
Finally, in Figure 7(e),(f), the fibroblast population in the wound region exceeds that of the surrounding
tissues as early as t > 4, and it reaches its maximum peak around t = 25. The macrophage population in
the wound region exceeds the level of macrophages in the surrounding tissue at t = 3, but then quickly
decreases below the level of macrophages in the surrounding tissue at around t = 15.

Figure 6. 2D plots comparing the solutions of the local models obtained via the localisation
of the cone-shaped kernel for Cases I and II. We show the spatial distribution of variables at
(a) t = 2, (b) t = 20, (c) t = 40 and (d) t = 100. The parameter values are listed in Table 1.
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Figure 7. The evolution of fibroblasts (left column) and macrophages (right column) inside of
the wound (at x1 = 0) and in the neighbouring tissue (at x1 = 0.5) for the local models. Here,
we compare the effects of various kernels on the localised models: (a),(b) Gaussian kernel;
(c),(d) cone-shaped kernel (Case I: Sme = 0); and (e),(f) cone-shaped kernel (Case II: Sme > 0),
from t = 0 to t = 50. The parameter values are listed in Table 1.

3.2.3. Numerical simulations for the non-local models

Next, we numerically investigate the non-local model (2.1) while focusing again, mostly on Case
II (where macrophage-ECM adhesion is present). For the parameter values used here (and listed in
Table 1), the ECM returns to its maximum level, while the fibroblast level decays relative to its initial
baseline level (at t = 0).

Figure 8 shows the spatiotemporal evolution of the growth factor g (first row), fibroblasts f (second
row), macrophages m (third row) and ECM e (fourth row) for the non-local model with the cone-shaped
kernel when macrophage-ECM adhesion is allowed (Case II). We see here that as early as t > 2,
fibroblasts and macrophages invade the wound as a result of cell diffusion and adhesion, which helps
to remodel the ECM. At time t = 20, there are many more fibroblasts inside of the wound than at the
wound margins, where there are low numbers of fibroblasts.
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Figure 8. Numerical simulations of the non-local model (2.1) with the cone-shaped kernel
(2.6) for Case II (macrophage-ECM adhesion present). The rows correspond to the spatial
distribution of the growth factor (g), fibroblasts ( f ), macrophages (m) and ECM (e) at times
t = 2, t = 20 and t = 100 (on the columns). The parameter values are listed in Table 1.

In Figure 9, we compare Cases I (Sme = 0) and II (Sme > 0) for the non-local model (2.1) with a
cone-shaped kernel (Figure 9(a)–(d)), and a Gaussian kernel (Figure 9(a’)–(d’)). We see that there are
no significant differences between Cases I and II Only at t = 100 can we observe a slightly faster ECM
remodelling process for Case I than for Case II (although this difference is barely noticeable, probably
because Sme is not large enough). Moreover, there are no differences between the results obtained with
the cone-shaped kernel (top panels) and those obtained with the Gaussian kernel (bottom panels).

To confirm this similarity in the results, in Figure 10 we show a log-log plot of the L2 norm of the
difference between the solution obtained with the Gaussian kernel and the solution obtained with the
cone-shaped kernel (for Case II: Sme > 0) at each time step, i.e., from t = 0 to t = 100. In this figure, we
see that the L2 norm of the difference in the solutions is mostly between 10−7 − 10−6, confirming that the
two solutions are equal when approximated to six decimal places.

Because of these similarities in the solutions obtained with Gaussian and cone-shaped kernels,
throughout the rest of this study, we only consider the cone-shaped kernel.

3.2.4. Local versus non-local models

Next, we highlight some differences between the local model (2.22) and non-local model (2.1), when
we fix all parameters. To this end, we focus only on Case II (macrophage-ECM adhesion present) and
the cone-shaped kernel.

In Figure 11(a), we see that, as early as t = 2, fibroblasts and macrophages invade the wound
region via random movement (diffusion) and directed movement (haptotaxis), and that this invasion is
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Figure 9. 2D plots comparing the solution of the non-local model (2.1) with the cone-shaped
kernel (sub-panels (a)–(d)) and the Gaussian kernel (sub-panels (a’)–(d’)) for Case I (Sme = 0)
and Case II (Sme > 0). We show the spatial distribution of variables at (a) t = 2, (b) t = 20, (c)
t = 40 and (d) t = 100. The parameter values are listed in Table 1.

characterised by oscillations in the ECM and fibroblast densities at the wound margin. These oscillations
seem to have slightly higher amplitudes for the local model compared to the non-local one. As time
passes, these oscillations die out and the ECM repairs. However, there is an interesting difference
between the local and non-local models:

• At t = 40, for the local model (2.22), the ECM density is still very low at the initial wound point
(x1 = 0), while, for the non-local model (2.1), the ECM density is much higher at x1 = 0.
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Figure 10. Log-log representation of the L2 norm of the difference between the solution of the
non-local model (2.1) with the Gaussian kernel, and the solution of the same non-local model
with the cone-shaped kernel. Here, we focus only on Case II (macrophage-ECM adhesion
present). The L2 norm was calculated at every time point: t = 0 to t = 100.

• At t = 100, for the local model, the ECM has almost remodelled completely (especially at x1 = 0),
while, for the non-local model, the ECM is still remodelling and filling up the wound.

We suspect that this faster ECM remodelling (and wound healing) observed with the local model is the
result of higher oscillation amplitudes of the ECM densities at the wound margins (which is particularly
evident at t = 40).

Figure 11. 2D plots comparing the solution of the local model to that of the non-local model
for Case II (i.e., where macrophage-ECM adhesion is present), as obtained by using the
cone-shaped kernel at (a) t = 2, (b) t = 20, (c) t = 40 and (d) t = 100. The parameter values
are listed in Table 1.

Note that in addition to the above numerical investigation of the impact of the cell sensing radius
(R = 0 for local case; R = 0.1 for non-local case) on the healing of the wound, in Appendix G, we have
included a set of simulations showing the model dynamics for R = 0.08, R = 0.1 (i.e., baseline, also
investigated above) and R = 0.13.
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3.3. Assumption of no cell death due to overcrowding

All simulations in the previous section showed normal wound healing. To highlight one possible
biological mechanism that could lead to abnormal wound healing characterised by raised scars (as asso-
ciated with hypertrophic or keloid scars), in what follows, we numerically investigate the hypothetical
case in which cells do not die due to overcrowding. In fact, in [55], it was observed experimentally
that the fibroblasts in the centre of the keloid lesion had a reduced doubling time and lower death rates
and thus achieved higher cell densities than the saturated-like densities of normal fibroblasts. Because
of these observed higher fibroblast densities with reduced death rates, in what follows, we replace the
classical logistic proliferation terms appearing in Eqs (2.1b) and (2.1c) with the following truncated
logistic terms that ignore cell death at higher densities (see also Appendix B):

p f f (1 − ρ(u))+ and pmm(1 − ρ(u))+. (3.10)

Figures 12–14 show the model dynamics for this particular case in the context of local and non-local
interactions.
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Figure 12. Numerical simulations of the local model (2.22) for Case II with the cone-shaped
kernel under the condition of the hypothetical case in which cells do not die because of
overcrowding (see Eq (3.10)). The rows correspond to the spatial distribution of the growth
factor (g), fibroblasts ( f ), macrophages (m) and ECM (e) at t = 2, t = 20 and t = 100. The
parameter values are listed in Table 1.

• In Figure 12, we show the dynamics of the local model (2.22) (for Case II: Sme > 0) with these new
proliferation rates when we localise the cone-shaped kernel. We note that the dynamics are similar
to the dynamics in Figure 5, i.e., for normal wound healing.
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• In Figure 13, we show the dynamics of the non-local model (2.1) (for Case II: Sme > 0) with
the cone-shaped kernel. In contrast to Figure 12, here, we consider ec > 0, which describes the
possibility of cells moving down ECM gradients in the first stages of wound healing. We see
that the concentration of the growth factor and the density of fibroblasts increase significantly at
t = 100, eventually leading to the blow-up of the numerical code. The growth in the fibroblast
population is not matched by a similar growth in macrophages; this could be an indirect result
of the non-linear interactions and the asymmetry in the fibroblast-ECM and macrophage-ECM
interactions (where only fibroblasts are assumed to contribute to ECM remodelling).

Since the non-local model (2.1) with the cone-shaped kernel, truncated logistic cell growth and ec > 0 in
the adhesion function leads to very high fibroblasts densities (as seen in Figure 13), we next investigate
whether this type of fibroblast dynamics also holds for the Gaussian kernel. In Figure 14, we see that
while the non-local model with the Gaussian kernel exhibits the same overgrowth of fibroblasts (for
the same parameter values as in Figure 13), the corresponding local model does not show fibroblast
overgrowth.
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Figure 13. Numerical simulations of the non-local model (2.1) with truncated logistic terms
for both cells and the ECM. We consider Case II with the cone-shaped kernel. The rows
correspond to the spatial distribution of the growth factor (g), fibroblasts ( f ), macrophages
(m) and ECM (e) at time points t = 2, t = 20 and t = 100. The parameter values are listed in
Table 1 with the following adjustments: µ f = µm = 10.0, p f (g) = 20g, λ f = 0.0000025 and
ec = 0.9.

3.4. Primary vs. secondary wound healing

As mentioned in the Introduction, wound healing can occur by primary intention (i.e., when the
wound heals as the wound margins are coming together, as is the case for surgical incisions, skin grafts,
or flap closures) or by secondary intention (i.e., when the wound is very large and it heals from the
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Figure 14. 2D plots comparing the solution of the local model to the non-local model for Case
II (i.e., macrophage-ECM adhesion is present: Sme > 0) as obtained by using the Gaussian
kernel and a truncated logistic term for both cells and the ECM, (a) t = 2; (b) t = 20; (c) t = 40
and (d) t = 100. The parameter values are listed in Table 1 with the following adjustments:
µ f = µm = 10.0, p f (g) = 20g, λ f = 0.0000025 and ec = 0.9

bottom up as the granulation tissue is formed and fills in the wound) [56]. In Figure 8, we observed
wound healing by secondary intention, as the ECM was remodelled from the bottom up. In contrast, in
Figure 15, we show wound healing by primary intention as the wound closes from the sides; see the
ECM progression from t = 2 to t = 20, and then at t = 100. To obtain these dynamics, we reduced the
diffusion rate of fibroblasts.

4. Summary and discussion

In this study, we developed a new mathematical model to describe some simple interactions between
fibroblasts, macrophages, the ECM and a growth factor in the context of wound healing. Due to the
non-local aspects of the cell-cell and cell-ECM interactions (which are the result of various factors,
ranging from adhesive forces [45,46,51,53] to non-conventional cell protrusions that allow long-distance
cell-cell interactions [23,24]), we started with a non-local model that considers a non-local flux generated
by these bio-mechanical attractive/adhesive/repulsive interactions. However, since the spatial range over
which cells perceive other neighbouring cells is not always very clear, we also considered localised
versions of the original non-local model by assuming that the cell perception radius (R) approaches zero.
We showed that the type of kernel that describes the non-local interactions has a significant impact on
the resulting local models.

More precisely, Gaussian kernels led to local reaction-diffusion models, while cone-shaped kernels
led to local reaction-advection-diffusion models. In addition, since the published literature is not very
clear about the adhesion of macrophages to the ECM, throughout this study we numerically investigated
two possible cases: (I) no macrophage-ECM adhesion (Sme = 0) and (II) macrophage-ECM adhesion
present (Sme > 0). Finally, since the wound starts to heal with the formation of the fibrin mesh, which
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Figure 15. Numerical simulations of the non-local model (2.1) with the classical logistic
term for both cells and the ECM. We consider case II with the cone-shaped kernel. The rows
correspond to the spatial distribution of the growth factor (g), fibroblasts ( f ), macrophages
(m) and ECM at t = 2, t = 20 and t = 100, corresponding to the columns respectively. The
parameter values are listed in Table 1 with D f = 0.000008.

acts as an early ECM, to describe the initial movement of cells into the wound, we chose two different
adhesion functions.

Numerical simulations were performed for all models (local and non-local, with/without macrophage-
ECM adhesive interactions), to illustrate some of the behaviours exhibited by these systems. The results
showed that ECM remodelling depends on the type of kernels considered and on the local versus
non-local adhesive interactions. More precisely, the results showed that ECM remodelling is slower
in the non-local models than in the local models and that ECM remodelling is slower in the presence
of macrophage-ECM adhesion than when macrophage-ECM interaction is not present in both the
local and non-local models. The results also showed that a reduction in the diffusion of fibroblasts in
the non-local model may lead to wound healing by primary intention (see Figure 15), while a higher
fibroblast diffusion is associated with healing by secondary intention (see Figure 8).

Another interesting result is the abnormal healing observed in the non-local model (Figures 13 and
14) due to the uncontrolled proliferation of fibroblasts and the production of the growth factor in specific
situations: (i) when cells do not die due to overcrowding, and (ii) when cells move along the down
gradient at the beginning of the healing process, onto the fibrin mesh that fills in the wound (process
modelled by the introduction of an ECM threshold ec > 0). Since the fibroblast density is above the
threshold f = 1 throughout a spatial region that exceeds the original wound region, we can say that this
case corresponds to keloid scar formation.

Also interesting is the transient oscillatory invasive patterns of fibroblasts into the wound gap (see
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row 2 column 1 of Figures 4 and 5). We note that oscillations of cell density fluctuations have been
observed in experiments on epithelial tissues [57], where they have been suggested to be the result of
cell-cell adhesion.

To conclude, we emphasise that all of these results are purely theoretical, showing the possible
model behaviours in response to random variation of the non-dimensional parameters. Comparison with
experimental data is necessary to quantitatively investigate biologically relevant normal and abnormal
wound healing patterns. Nevertheless, the simulation results in this study can qualitatively describe
many of the observed normal and abnormal wound healing processes, particularly, the spatial collective
oscillators in the cell density (Figures 4 and 5) observed experimentally in the proliferation stage as
the wound tissue heals [57] (note also that some clinical studies refer to the proliferation stage as the
granulation tissue formation stage due to the granular appearance of the tissue [58], which can also lead
to an oscillatory wave-like appearance of the tissue); the higher ECM densities sometimes observed
temporarily at the site of the wound (see Figures A3 and A4 in Appendix F) which then subside in the
absence of immune cells [59] as the tissue heals normally; the higher fibroblast densities (see Figure 13)
observed during abnormal wound healing that gives rise to hypertrophic or keloid scars and finally, the
healing by primary intention (Figure 15) or secondary intention (Figure 8). While the general shapes of
these numerically simulated wounds can be qualitatively compared with the shapes of actual clinical
wounds, we cannot claim that our simple mathematical model (which does not consider, for example, the
heterogeneity of macrophages or fibroblasts inside of the normal/abnormal wounds [60, 61]) accurately
captures all aspects involved in clinical wound healing.

Future work. First, as mentioned above, we need to estimate model parameters using real 2D
experimental data (e.g., using inverse problem approaches, as in [62]). In addition, we also need to
apply data to estimate the right kernels for the spatial ranges of the non-local interactions, the cell-cell
and cell-ECM adhesion functions and proliferation laws. However, at this moment, we do not have such
detailed immunological and biomechanical data (and we could not find it in the published literature).

Second, this theoretical study generated a few more theoretical questions that will be investigated
in the future. More precisely, the results of the numerical simulations in Figure 3 (last two columns)
suggest that the solution likely approaches some spatially homogeneous steady states with various
magnitudes. Hence, it is normal to investigate the existence and linear stability of such solutions
characterised by the spatially uniform spread of cell/molecule densities across the spatial domain, to
gain a better understanding of the parameters (and biological mechanisms) that are behind the various
behaviours. Such an analysis would also allow us to possibly identify the biological mechanisms
that could contribute to abnormal wound healing via instability of the analytically identified spatially
homogeneous states and stability of the spatially heterogeneous states). Moreover, some numerical
simulations (not shown here) showed numerical instabilities in the solutions, followed by numerical
blow-up. This is an expected outcome for advection-dominated models discretised by using FEM. In
the future it is important to stabilise these numerical schemes to ensure more accurate results (especially
if we want to compare with them experimental data).

Third, we will investigate the well-posedness of local and non-local models introduced in this study,
which will also ensure the local regularity of the solutions. This analysis will complement the current
numerical investigation to elucidate the mechanisms behind the numerically simulated abnormal wound
healing behaviour as characterised by excessive growth in the densities of some model components; see
Figure 13).
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Appendix

A. Reduction of the non-local terms

Gaussian kernel: Let T1 ,T2 represent the components of the term under the integral sign in Eq (2.16),
namely,

Ti :=

R∫
−R

R∫
−R

y
2

i

2πσ2
√

y2

1
+ y2

2

exp

−y
2

1
+ y

2

2

2σ2

 dy1dy2 , i = 1, 2.
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Thus, for T1 , we have

T1 =
R∫
−R

R∫
−R

|y1 |

2πσ2 ·
|y1 |√

|y1 |
2
+ |y2 |

2︸          ︷︷          ︸
≤1

· exp

−y
2

1
+ y

2

2

2σ2

︸            ︷︷            ︸
≤1

dy1dy2

≤

R∫
−R

R∫
−R

|y1 |

2πσ2 dy1dy2 =
R∫
−R

��2 ·
R∫

0

y1

�2πσ
2 dy1dy2

=
R∫
−R

R
2

2πσ2 dy2 =
R

3

πσ
2

(4.1)

Following identical steps (as for T1) and changing the order of integration, we obtain that the same
upper bound holds true for T2 .
Therefore, limR→0 T1,2(R) = 0, and the non-local fluxes disappear when we localise the integrals with
Gaussian kernels.

Cone-shaped kernel: Substituting Eq (2.6) in Eq (2.20) gives the following local approximation of the
non-local term:

A(.)[g, f ,m, e] =
1
R

R∫
0

r

2π∫
0

n(θ)K(r)G(u(x, t)) dθdr

+
1
R

R∫
0

r

2π∫
0

n(θ)K(r)⟨∇uG(u(x, t))∇u(x, t), rn(θ)⟩ dθ dr

=
1
R

R∫
0

r
3
πR2

(
1 −

r
R

)
dr dr

∫ 2π

0
(cos θ, sin θ) dθ︸                    ︷︷                    ︸
=(0,0)

+
π

R
∇uG(u(x, t))∇u(x, t)

R∫
0

r
2 3
πR2

(
1 −

r
R

)
dr

=
1
4
∇uG(u(x, t))∇u(x, t)

B. Cell growth: Logistic versus truncated logistic

Because experimental studies [55] have shown that keloid fibroblasts have lower death rates and
reach higher densities (and, implicitly, that cell death due to overcrowding was reduced), we decided to
investigate the impact of replacing the classical logistic cell growth with a truncated logistic growth
(see Eq (3.10)). In Figure A1, we show that the solution of a simple logistic growth equation (d f /dt =
p f f (1 − ρ(u)), dm/dt = pmm(1 − ρ(u))) is the same as the solution of the truncated logistic growth
equation (d f /dt = p f f (1−ρ(u))+, dm/dt = pmm(1−ρ(u))+) if the initial condition is below the carrying
capacity (as are usually our conditions). Note that an initial condition above the carrying capacity
does not lead to a reduction in cell population size since there is no cell death due to overcrowding.
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Therefore, in the situation in which the spatial flux leads to local cell population overcrowding, the
truncated logistic does not reduce the size of that population (while no further population is added).

Figure A1. Solutions of ordinary differential equations equations for temporal cell growth:
d f /dt = p f f (1 − ρ(u)) (red continuous curve) and d f /dt = p f f (1 − ρ(u))+ (blue dashed
curve), for different initial conditions.

C. FEM discretisation of non-local and local models

Using the backward (implicit) Euler method as in Eq (3.5) for the time discretisation, we have the
following:
Find {c

g

τ
}lτ=1, {c

f

τ
}lτ=1, {c

m

τ
}lτ=1, {c

e

τ
}lτ=1 such that

l∑
τ=0

c
g,N+1

τ
− c

g,N

τ

∆t
ψ

τ
(x)ψ j(x) = −Dg

l∑
τ=0

c
g,N+1

τ
∇ψ

τ
(x) · ∇ψ j(x)

− λg

l∑
τ=0

c
g,N+1

τ
ψ

τ
(x) ψ j(x) +

(
p f

g

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)

+ pm
g

l∑
τ=0

c
m,N

τ
ψ

τ
(x)

)
ψ j(x)

+ Dg

l∑
τ=0

c
g,N+1

τ
∇ψ

τ
(x) ·

∂

∂n

l∑
τ=0

c
g,N+1

τ
ψ

τ
(x)ψ j(x), ∀ j ∈ {1, . . . , l}, (4.2a)

l∑
τ=0

c
f ,N+1

τ
− c

f ,N

τ

∆t
ψ

τ
(x)ψo(x) = −D f

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)·∇ψo(x)+∇·

 l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)A

N

f

ψo(x)−λ f

l∑
τ=0

c
f ,N+1

τ
ψ
τ
(x)ψo(x)

+ p f

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ϵ ψo(x)

+ D f

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

∂

∂n

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x), ∀ o ∈ {1, . . . , l}, (4.2b)
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l∑
τ=0

c
m,N+1

τ
− c

m,N

τ

∆t
ψ

τ
(x)ψh(x) dx = −Dm

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) · ∇ψh(x) dx + ∇ ·
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ψ

τ
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m
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l∑
τ=0

c
m,N+1
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ψ

τ
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c
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τ
ψ

τ
(x)ϵ ψh(x)

+ Dm

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) ·

∂

∂n

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x), ∀ h ∈ {1, . . . , l}, (4.2c)

l∑
τ=0

c
e,N+1

τ
− c

e,N

τ
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ψ

τ
(x)ψ
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(x) = −
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τ=0
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τ
∇ψ
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(x)
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α f
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τ
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τ
ψ

τ
(x)

)
ψ

γ
(x)

+

l∑
τ=0

c
e,N+1

τ
ψ

τ
(x)peϵ ψγ

(x), ∀ γ ∈ {1, . . . , l}, (4.2d)

Next, we formulate a barycentric approximation for the non-local term A
N

f ,m
(x). We show only Case II

(i.e., macrophage-ECM adhesion present: S me > 0), since Case I (i.e., no macrophage-ECM adhesion) is
obtained for S me = 0.

A
N

f
(x) =

∑
T∈A(x)

K(∥x − q(T )∥2)
l∑

τ=0

(
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N

f f ,τ
(q(T ))c
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+

S
N

f m,τ
(q(T ))c

m,N

τ
+ S

N

f e,τ
(q(T ))c

e,N

τ

)
ψ

τ
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χT (q(T )), (4.3a)
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N
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+ c
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τ
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)
χT (q(T )), (4.3b)

Here,A(x) := {T ∈ T : ∥x − q(T )∥2 < R} is the barycentric approximation, while q : T 7→ R gives the
barycentric coordinates of triangles T ∈ T i.e.,

q(T ) := barycenter(T ), ∀T ∈ T

C1. FEM discretisation for local model (2.17), as reduced from the non-local model with the Gaussian
kernel

The weak form of our coupled dynamics shown in Eq (2.17) can now be restated in terms of the
basis functions [63], as follows:
Find {c

g

τ
}lτ=1, {c

f

τ
}lτ=1, {c

m

τ
}lτ=1, {c

e

τ
}lτ=1 such that
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τ
ψ

τ
(x)ψh(x), ∀ h ∈ {1, . . . , l}, (4.4c)
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τ
− c
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τ
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ψ

τ
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(x) = −
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τ=0

c
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τ
∇ψ
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(x)

(
α f
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τ
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(x)
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+

l∑
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c
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τ
ψ

τ
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(x), ∀ γ ∈ {1, . . . , l}. (4.4d)

Here, S κ = S max
κ ϑ , κ ∈ { f f , f m,m f ,mm, f e,me} represent the strengths of the cell-cell and cell-ECM

interactions discretised in time and space.

∇S κ = S max
κ

(
ε − ϑ

2)  l∑
τ=0

c
g,N

τ
ψ

τ
(x) +

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

 ,

κ ∈ { f f , f m,m f ,mm, f e,me}, (4.5)

represents their gradients, where

ε =
1

1 +
l∑

τ=0

c
e,N

τ
ψ

τ
(x) +

l∑
τ=0

c
g,N

τ
ψ

τ
(x)

, (4.6)
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ϑ =

l∑
τ=0

c
e,N

τ
ψ

τ
(x) +

l∑
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c
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τ ψτ
(x)

1 +
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c
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τ
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S
κ

g
= ∂

∂gS κ = S
κ

e
= ∂

∂eS κ =
1
ε2 and κ ∈ { f f , f m,m f ,mm, f e,me} ≡ {1, 2, 3, 4, 5, 6}. Also, we denote by ϵ

the overcrowding term 1 − ρ(u) discretised in time and space, i.e.,

ϵ = 1 −
l∑
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c
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τ
ψ

τ
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c
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τ
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τ
(x) (4.8)

C2. FEM discretisation for local model (2.22), as reduced from non-local model with the cone-shaped
kernel

Below, we show the FEM discretisation for the local models. However, since Case I (i.e., no
macrophage-ECM adhesion: S me = 0) is just a simplification of Case II (which includes macrophage-
ECM adhesion), in what follows, we present only the FEM discretisation for Case II (S me > 0).

The weak form of system (2.22) as obtained via Taylor-series expansion of the non-local model
with the cone-shaped kernel (2.6) is given as follows in terms of basis functions:
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− c
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2

S
1

g

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

)
ψo(x)

− w f

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

( l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)∇S

1

g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+ 2S
1

g

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)ψo(x)

− wm

( l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

l∑
τ=0

c
m,N

τ
ψ

τ
(x)∇S

1

g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)
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+

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)S

1

g

l∑
τ=0

c
m,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N

τ
ψ

τ
(x)S

1

g

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)dx

− we

( l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)∇S

1

g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)S

1

g

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
e,N

τ
ψ

τ
(x)S

1

g

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x))

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)

)
ψo(x)dx

− wg

(
S f f

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)∇S f f ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) + S f m

l∑
τ=0

c
m,N

τ
∇ψ

τ
(x)·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N

τ
ψ

τ
(x)S f m ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)+

( l∑
τ=0

c
m,N

τ
∇ψ

τ
(x)∇S

2

g ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+ S
2

g

l∑
τ=0

c
m,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)

− wg

( l∑
τ=0

c
m,N

τ
ψa(x)

l∑
τ=0

c
g,N

τ
ψ

τ
(x)∇S

2

g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N

τ
ψ

τ
(x)S

2

g

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)S

2

g

l∑
τ=0

c
m,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)dx

− w f

( l∑
τ=0

c
m,N

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)∇S

2

g ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N

τ
ψ

τ
(x) S

2

g

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)+

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)S

2

g

l∑
τ=0

c
m,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)
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− wm

( l∑
τ=0

c
m,N

τ
ψ

τ
(x)(

l∑
τ=0

c
m,N

τ
ψ

τ
(x)∇S

2

g ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+ 2S g
2

l∑
τ=0

c
m,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)

− we

( l∑
τ=0

c
m,N

τ
ψ

τ
(x)

l∑
τ=0

c
e,N

τ
ψ

τ
(x)∇ S

2

g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N

τ
ψ

τ
(x) S g

2

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)+

l∑
τ=0

c
e,N

τ
ψ

τ
(x)S

2

g

l∑
τ=0

c
m,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)

+

( l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)∇ S

5

g
· ∇

l∑
τ=0

c
g,N

τ
ψ

τ
(x)

+ S
5

g

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)

− wg

( l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x),

l∑
τ=0

c
g,N

τ
ψ

τ
(x)∇S

5

g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+ S
5

g

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)+

S
5

g

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

) l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x)

− w f

( l∑
τ=0

c
e,N

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)∇S

5

g
·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+ S
5

g

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

+ S
5

g

l∑
τ=0

c
e,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)S

2

e
ϵ +

l∑
τ=0

c
e,N

τ
ψ

τ
(x)S

5

e

ϵ + S f eϵ − weS f e

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

) l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) · ∇ψo(x)

+

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)

( l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)S

2

eϵ − weS f f

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)

− weS f m

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x) +

l∑
τ=0

c
m,N

τ
ψ

τ
(x)S

2

e
ϵ +

l∑
τ=0

c
e,N

τ
ψ

τ
(x) S

5

e
ϵ + S f e ϵ
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− weS f e

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

)
∂

∂n

l∑
τ=0

c
e,N

τ
ψ

τ
(x)ψo(x)

−

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

(
S f m ϵ − wmS f m

l∑
τ=0

c
m,N

τ
ψ

τ
(x) − wmS f f

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)

− wmS f e

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

) l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) · ∇ψo(x)

+

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x)

(
S f mϵ − wmS f m

l∑
τ=0

c
m,N

τ
ψ

τ
(x) − wmS f f

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)

− wmS f e

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

) l∑
τ=0

c
e,N

τ

∂

∂n
ψ

τ
(x)ψo(x)

− λ f

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x)ψo(x) +

l∑
τ=0

c
f ,N+1

τ
ψ

τ
(x) ϵψo(x)

+ D f

l∑
τ=0

c
f ,N+1

τ
∇ψ

τ
(x) ·

∂

∂n

l∑
τ=0

c
f

τ
ψ

τ
(x)ψo(x), ∀ o ∈ {1, . . . , l}, (4.9b)

l∑
τ=0

c
m,N+1

τ
− c

m,N

τ

∆t
ψ

τ
(x)ψh(x) =−Dm

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) · ∇ψh(x)

+
1
8
µm

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) ·

((
Sm f ϵ − w f Smm

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)

− w f Sm f

l∑
τ=0

c
f ,N

τ
ψ

τ
(x) − w f Sme

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

) l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

+

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ϵS

4

g
− wgSmm

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x) − wgSm f

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)

+

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)ϵS

3

g
+ S

6

g

l∑
τ=0

c
e,N

τ
ψ

τ
(x)ϵ − wgSme

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

) l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

(
Smm ϵ − wmSm f

l∑
τ=0

c
f ,N

τ
ψ

τ
(x) − wmS f f

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)

− wmSme

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) +

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x) ϵ S

4

e

− weSmm

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x) − weSm f

l∑
τ=0

c
f ,N

τ
ψ

τ
(x) +

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ϵ S

3

e

+ S
6

e

l∑
τ=0

c
e,N

τ
ψ

τ
(x)ϵ − weSme

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

)) l∑
τ=0

c
e,N

τ
∇ψ

τ
(x)ψh(x)
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+ µm

1
2

( ∇Sm f ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

 l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wg

(
∇Sm f ·

l∑
τ=0

c
g,N

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

+ Sm f

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− 2w f

(
∇Sm f ·

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

+ Sm f

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wm

(
∇Sm f ·

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

+ Sm f

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− we

(
∇Sm f ·

l∑
τ=0

c
e,N

τ
ψ

τ
(x)

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

+ Sm f

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− w f Smm

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

+

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)∇Smm ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x) +

l∑
τ=0

c
e,N

τ
ψ

τ
(x)∇Sme ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

+ Sme

l∑
τ=0

c
e,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

+ S
4

g

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

+

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)∇S

4

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wg

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
g,N

τ
ψ

τ
(x)∇S

4

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)S

4

g

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)
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+

l∑
τ=0

c
g,N

τ
ψ

τ
(x)S

4

g

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− wm

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)∇S

4

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+ 2S
4

g

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− w f

( l∑
τ=0

c
f ,N

τ
ψ

τ
(x)

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)∇S

4

g
·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)S

4

g

l∑
τ=0

c
f ,N

τ
∇ψ

τ
(x) ·

l∑
τ=0

c
g,N

τ
∇ψ

τ
(x)

+

l∑
τ=0

c
f ,N

τ
ψ

τ
(x)S

4

g

l∑
τ=0

c
m,N+1

τ
∇ψ

τ
(x)·

l∑
τ=0

c
g,N

τ
ψ

τ
(x)

) l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)ψh(x)

− we

( l∑
τ=0

c
m,N+1

τ
ψ

τ
(x)

l∑
τ=0

c
e,N

τ
ψ

τ
(x)∇S

4

g
·
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D. Time-marching in FEniCS

We rewrite Eq (3.5) in the standard form F
(
u

N+1
; u

N
; v

)
= 0, where
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; u

N
; v

)
=
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(
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(
u

N+1))
v dx. (4.10)

Substituting Eq (3.4) into Eq (4.10) we have:
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ψ j(x) dx,∀ j ∈ {1, . . . , l} (4.11)

Below is an algorithmic form of the FEniCS procedure at each time step for a nonlinear F [64]:
Set some stopping time T
t = ∆t
while t ≤ T do

evaluate J (i.e., the Jacobian matrix of F)
solve F = 0 using a nonlinear solver that relies on the Jacobian of F (i.e.,
Newton’s method)
t ←− t + ∆t (update time)
zprev ←− z (update solution).

end while

E. Mesh refinement analysis: A justification for the choice of mesh size

In deciding the choice of mesh dimension for our simulations, a mesh refinement analysis was carried
out by using the fine mesh 256×256 for our exact solution while mesh sizes 4×4, 8×8, 16×16, 32×32,
64 × 64, and 128 × 128 represented our approximate solutions. Figure A2 is a plot of the L2 errors
obtained against the different mesh sizes. The errors observed using mesh sizes 32 × 32 are insignificant
compared to those of mesh sizes 4 × 4 and 8 × 8. For this reason, we decided to use a mesh size of
32 × 32 for all simulations presented in this study.

F. Simulation results for two new initial conditions

Next, we show the simulation results obtained for Case II of the non-local model with the cone-
shaped kernel and two new initial conditions: one describing a linear but irregular cut in the tissue, as
given by Eq (4.12d):

g(x, 0) =0.1, (4.12a)
f (x, 0) =0.4

[(
0.5 + 0.5 tanh(20x1− 9)

)
+
(
0.5 + 0.5 tanh(−20x1− 9)

)]
, (4.12b)

m(x, 0) =0.1
[(

0.5 + 0.5 tanh(20x1− 9)
)
+
(
0.5 + 0.5 tanh(−20x1− 9)

)]
, (4.12c)

e(x, 0) =1.0
[
(0.5 + 0.5 tanh(20x1 − 9)) + 0.5 + 0.5 tanh(−20x1 − 9)
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Figure A2. L2 error of the fibroblast solution for different mesh grid sizes {2i×2i : i = 2, . . . , 5},
calculated with respect to the solution at 128 × 128.

+ 0.5 − ((0.2 + 0.2 tanh(20x1− 3)) − 0.2) − 0.2 tanh(−20(x1− 0.2) − 2)
− 0.1 − (0.2 + 0.2 tanh(20x1− 0.03) − 0.1) + (0.2 − 0.2 tanh(−20x1− 0.001))−3] , (4.12d)

and the other describing a circular wound, as given by Eq (4.13d):

g(x, 0) = 0.1, (4.13a)

f (x, 0) = 0.4

1 − exp

− x
2

1
+ x

2

2

0.04

, (4.13b)

m(x, 0) = 0.1

1 − exp

− x
2

1
+ x

2

2

0.04

, (4.13c)

e(x, 0) = 1 − exp

− x
2

1
+ x

2

2

0.04

 . (4.13d)

In Figures A3 and A4, we see that at time t = 100, both of the wounds heal normally as the ECM density
approaches its maximum level while the fibroblast and macrophage tissue levels approach their baseline
levels. However, unlike the healing in the previous figures (i.e., for the original initial conditions), here,
we see that, just before the final healing, the ECM density is increased in the wound region (i.e., above
the density of the ECM density in the surrounding tissue), and then it decreases towards its density in the
surrounding tissue. We note that such transient behaviour could have been possible for the simulations
performed under the original initial conditions. However, since we did not show the solutions at every
single time step, such detailed behaviour was lost before and was randomly revealed through Figures
A3 and A4. This suggests that a more thorough analytical and numerical investigation of the transient
model dynamics is necessary to understand the behaviour of these non-local mathematical models.
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Figure A3. Initial Conditions: circular wound (see Eq (4.13d)). Simulations of the non-local
model (2.1) with the classical logistic terms for both cells and the ECM. We consider Case II
with the cone-shaped kernel. The rows correspond to the spatial distribution of the growth
factor (g), fibroblasts ( f ), macrophages (m) and ECM (e) at time points t = 0, t = 2, t = 20
and t = 100. The parameter values are listed in Table 1.
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Figure A4. Initial Conditions: irregular linear cut (see Eq (4.12d)). Simulations of the non-
local model (2.1) with the classical logistic terms for both cells and the ECM. We consider
Case II with the cone-shaped kernel. The rows correspond to the spatial distribution of the
growth factor (g), fibroblasts ( f ), macrophages (m) and ECM (e) at time points t = 0, t = 2,
t = 20 and t = 100. The parameter values are listed in Table 1.
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G. Sensitivity test for the sensing radius

Since there are some small differences between the non-local models and the corresponding local
models (i.e., as obtained in the limit R→ 0), in what follows, we present a numerical sensitivity test
for the shape of the solutions for different values of the cell sensing radius R. In Figure A5, we show a
series of space slices of these solutions for R = 0.08, R = 0.1 and R = 0.13 at times t = 2, 20, 40 and
100. We see that increasing the sensing radius leads to a faster remodelling of the ECM and a faster
decay of the fibroblasts, macrophages and the growth factor.

(a) t=2 (c) t=40(b) t=20 (d) t=100
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Figure A5. Sensitivity of the non-local model (2.1) with the classical logistic terms for both
cells and ECM to the cell sensing radius R. We consider Case II with the cone-shaped kernel.
The columns correspond to the spatial distribution (along the x axis, and at y = 0) for the
growth factor (g), fibroblasts ( f ), macrophages (m) and ECM (e) at time points t = 2, t = 20,
t = 40 and t = 100. The parameter values are listed in Table 1.
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