
TYPE Original Research
PUBLISHED 18 September 2023
DOI 10.3389/fnins.2023.1184990

OPEN ACCESS

EDITED BY

Ahmadreza Keihani,
University of Pittsburgh, United States

REVIEWED BY

Shirin Jamal-Omidi,
University of Texas Health Science Center at
Houston, United States
Ángel Canal-Alonso,
University of Salamanca, Spain

*CORRESPONDENCE

Yael Yaniv
yaely@bm.technion.ac.il

†These authors have contributed equally to this
work

RECEIVED 13 March 2023
ACCEPTED 25 August 2023
PUBLISHED 18 September 2023

CITATION

Segal G, Keidar N, Lotan RM, Romano Y,
Herskovitz M and Yaniv Y (2023) Utilizing
risk-controlling prediction calibration to reduce
false alarm rates in epileptic seizure prediction.
Front. Neurosci. 17:1184990.
doi: 10.3389/fnins.2023.1184990

COPYRIGHT

© 2023 Segal, Keidar, Lotan, Romano,
Herskovitz and Yaniv. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Utilizing risk-controlling
prediction calibration to reduce
false alarm rates in epileptic
seizure prediction

Galya Segal1,2†, Noam Keidar1†, Roy Maor Lotan3,4†,

Yaniv Romano3,4, Moshe Herskovitz2,5 and Yael Yaniv1*

1Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-Israel
Institute of Technology (IIT), Haifa, Israel, 2Faculty of Medicine, Technion-Israel Institute of Technology
(IIT), Haifa, Israel, 3Computer Science Department, Technion-Israel Institute of Technology (IIT), Haifa,
Israel, 4Electrical and Computer Engineering Department, Technion-Israel Institute of Technology (IIT),
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Introduction: Epilepsy is a neurological disease characterized by sudden,
unprovoked seizures. The unexpected nature of epileptic seizures is a major
component of the disease burden. Predicting seizure onset and alarming patients
may allow timely intervention, whichwould improve clinical outcomes and patient
quality of life. Currently, algorithms aiming to predict seizures su�er from a high
false alarm rate, rendering them unsuitable for clinical use.

Methods: We adopted here a risk-controlling prediction calibration method
called Learn then Test to reduce false alarm rates of seizure prediction. This
method calibrates the output of a “black-box” model to meet a specified false
alarm rate requirement. The method was initially validated on synthetic data and
subsequently tested on publicly available electroencephalogram (EEG) records
from 15 patients with epilepsy by calibrating the outputs of a deep learning model.

Results and discussion: Validation showed that the calibration method rigorously
controlled the false alarm rate at a user-desired level after our adaptation. Real data
testing showed an average of 92% reduction in the false alarm rate, at the cost of
missing four of nine seizures of six patients. Better-performing prediction models
combined with the proposed method may facilitate the clinical use of real-time
seizure prediction systems.

KEYWORDS

EEG, epilepsy, artificial intelligence, deep learning, seizure prediction, risk-controlling
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1. Introduction

Epilepsy is a prevalent condition characterized by abnormal brain activity and

seizures (Fisher et al., 2005). The unpredictable nature of seizures is associated

with severe injuries and reduced quality of life (Fisher et al., 2005). Early seizure

prediction would allow patients to take precautions to increase their safety and

even prevent the upcoming seizure by administration of abortive treatments, such as

benzodiazepines (Appleton and Camfield, 2011).

The electroencephalogram (EEG) records of patients with epilepsy can be divided into

three periods: an ictal state which is the seizure itself, an interictal state which is the time

between seizures, and a preictal state defined as the time preceding each seizure and holds

potential for seizure prediction within a specific time range (Rasheed et al., 2020). Seizure

prediction involves triggering alarms during the preictal periods while avoiding false alarms

during the interictal periods or the ictal state.
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Several algorithms for seizure prediction have been developed

over the past 50 years (Kuhlmann et al., 2018). Early research

focused on identifying preictal patterns using linear features

extracted from EEG signals. In 2013, the first clinical study was

conducted by Cook et al. (2013) using an implanted warning

system and demonstrated the feasibility of seizure prediction,

although it was not yet clinically applicable. In the following

years, numerous algorithms for seizure prediction were proposed,

including machine-learning algorithms such as support vector

machines, random forests, and k-nearest neighbors. Although

many algorithms performed better than a random guess, they all

had high false-positive (false alarm) rates.

In recent years, attempts to improve predictions were mainly

focused on enhancing the prediction model. For example, Tsiouris

et al. (2018) used a long short-term memory (LSTM) network

for the first time to predict epileptic seizures, and Duy Truong

et al. (2019) were the first to apply generative adversarial network

(GAN) for seizure prediction. Although these methods succeeded

in reducing false alarm rates, the false alarm rates remained

excessively high for clinical utilization. Additionally, they lack

the ability to adjust the false alarm rates according to specific

clinical requirements. Furthermore, all these methods are model

specific, which tightly couples the challenges of improving model

performance and controlling the false alarm rate. In other words,

reducing the false alarm rate requires improving the model itself.

The statistical literature is replete with methods that offer

model-agnostic risk control for predictive models, ensuring

rigorous statistical guarantees. These methods calibrate the outputs

of an arbitrary model to limit a specific risk metric while potentially

affecting other metrics. In the case of seizure prediction, these

methods enable control over the false alarm rate of any seizure

prediction model at a specified level, although it may come at

the expense of sensitivity. Such methods include tolerance regions

(Krishnamoorthy and Mathew, 2008), conformal prediction (Vovk

et al., 1999), risk-controlling prediction sets (Bates et al., 2021), and

the Learn Then Test method (LTT) (Angelopoulos et al., 2022),

a recently published method that was shown to be superior to

the others in both risk control and the variety of cases it can

be applied to. The LTT method divides the risk-control problem

into two well-known problems in statistics—computing p-values

and multiple testing correction, providing a simple method to

control the expectancy of an arbitrary risk of any given black-box

machine-learning model.

Here, we present our novel approach to false alarm rate

reduction in seizure prediction. Our method is based on the

LTT risk-controlling prediction calibration (Angelopoulos et al.,

2022), with false alarm rate as the controlled risk. This method is

independent of the prediction model used and allows improving

the false alarm rate separately from improving the base prediction

Abbreviations: AI, Artificial intelligence; CLT, Central limit theorem; CPU,

Central processing unit; DC, Direct current; EEG, Electroencephalogram;

FN, False negative; FP, False positive; FST, Fixed-sequence testing; FWER,

Familywise error rate; GPU, Graphics processing unit; iEEG, intracranial

EEG; i.i.d, independent and identically distributed; LTT, Learn Then Test;

MHC, Multiple hypothesis correction; PID, Patient ID; RCP, Risk-controlling

prediction; RID, Record ID; TP, True positive.

model. The LTT framework was adapted to a time series setting

where the desired risk is defined over the time horizon. The

adaptation was then validated on synthetic data and tested as a post-

processing procedure on top of a deep-learning model predicting

epileptic seizures on EEG recordings from patients with epilepsy.

Implementation of the LTT framework applied to time series along

with experiments on synthetic data is available at our GitHub

repository: https://github.com/yyLabPhysAI/TS-LTT.

2. Methods

2.1. Data

2.1.1. Synthetic
Many statistical methods are evaluated asymptotically when the

amount of data go to infinity. When performance is guaranteed on

real data where the number of samples is finite, the method is said

to have finite sample guarantees.

As a start, we validated that the adaption of the LTT method to

a time series case yields the finite sample guarantees demonstrated

in the original paper (Angelopoulos et al., 2022). This validation

involved performing an analysis using synthetic data. Because the

LTT calibration requires model outputs and corresponding ground

truth labels as input, we simulated two binary time series. The

first time series represented preictal intervals and was generated

as a window of ones with zeros elsewhere. The second time series

mimicked the behavior of a model by indicating the occurrence or

absence of alarms over time.

To imitate the structure of the seizure prediction labels, we

created signals with fixed-length windows of ones randomly spread

and zeros elsewhere, representing the preictal periods of the

seizures that occur occasionally. To construct a random series with

this behavior, we first created a random series with mostly zeros

and ones only occasionally, Ypoint [t], and then turned each of the

sparse ones into a window of ones with a convolution operation to

get the ground truth series Y [t]. Then, a “noisy oracle” was used to

obtain synthetic model predictions, flipping the ground truth with

a determined probability to achieve mostly good but not perfect

predictions, Ypred [t ].

For a window length w and temporal probability of an event p,

the synthetic data at any point are

Ypoint [t] = I[U (0, 1) < p] (1)

where U(a, b) is a uniform distribution between a and b. Then, to

transform each zero point into a window of ones, Ypoint [t] was

convolved with a rectangular window, and an indicator function

was applied again:

Y [t] = I
[

Ypoint∗W (w) > 0
]

(2)

where W(w) is a rectangular window of length w∈ N and ∗ refers

to the convolution operation. This step converts the sparse series

created in the previous step (Ypoint , described in Equation 1) into

a series of sparsely distributed windows of ones. Observe how the

error is defined over the time horizon.
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For pw << 1, this construction yields amostly zero time series

with occasional windows of ones, resembling the structure of the

seizure prediction label.

The syntheticmodel predictions are constructed as a pflip oracle,

being equal to the ground truth (Y [t], described in Equation

2) anywhere but certain points for which the label was flipped

according to a determined probability pflip:

Ypred [t] =

{

Y [t] U (0, 1) < pflip
not(Y [t]) else

(3)

2.1.2. Real data
We used non-invasive scalp EEG recordings from the Siena

Scalp EEG Database (Goldberger et al., 2000; Detti et al., 2020),1

consisting of 34 long-term recordings from 15 patients. Each

recording was at least 1-h long and included a minimum of 30min

of preictal intervals before each seizure. The dataset contained a

total of 48 seizures.

To enhance result resilience against overfitting, complete

records were allocated to the train, calibration, and test sets. The

test set followed a patient-specific approach, including patients

with a minimum of three records, two of which had seizures.

This biased selection ensured the representation of each patient

for learning patient-specific patterns and calculating sensitivity

(Figure 1). However, this split compromised the i.i.d assumption

required for the LTT theorem.

2.2. Pre-processing

The raw EEG signal contained constant trend and high-

frequency noise due to patient movement and acquisition noise.

Therefore, frequencies below 0.5Hz and above 75Hz were filtered

with a digital finite impulse response bandpass filter. Then, 10

features (see Table 1) were extracted from each channel in a rolling-

window fashion to achieve an efficient representation of the signal.

These features are widely used in neuroscience and were proven

to be important in the field of seizure prediction and detection

(Mormann et al., 2005; Kuhlmann et al., 2018; Boonyakitanont

et al., 2020; Wong et al., 2023). Each feature was calculated over

a 6-s window, with an overlapping window of 3 s.

The pipeline of filtering and feature extraction ran on a Ubuntu

Linux machine with 80 CPU cores and 8 GPUs and took 48 h to

complete with 80 worker multi-processing for the entire dataset.

To label the data, the preictal state was defined as the window

of 60min to 30 s before seizure onset, a period sufficient to warn the

patient of an imminent seizure (Tsiouris et al., 2018). The window

did not include the 30 s preceding a seizure, to prevent the model

from performing seizure detection, rather than seizure prediction.

1 Siena Scalp EEG Database v1.0.0.

2.3. Models and training

The training setup was standard supervised learning. A

convolutional learning neural network was chosen, as this

method has a proven track record of success in solving a

wide range of problems, specifically in tasks among other

medical fields (LeCun et al., 2015). The input was fed to

five convolutional layers, then flattened and passed on to fully

connected layers. A binary cross-entropy loss (Keren et al.,

2018), with Adam optimizer (Kingma and Ba, 2015) using cosine

annealing learning rate scheduling (Loshchilov and Hutter, 2017),

was chosen.

Training was performed on a GeForce RTX 2080 with 8 GB of

RAM on a Ubuntu Linux server with 64 CPU cores. Model and

training were implemented using PyTorch 1.10.1 (Paszke et al.,

2019), Python 3.9 (van Rossum, 1995), and CUDA 11.3.2

The model was trained with a batch size of 512 samples,

for 50 epochs using early stopping, with label noise (randomly

replacing the current label with the opposite one) of probability

0.2. By introducing noise into the labels, the model was forced to

consider a wider range of possible correct answers while training

and was less likely to memorize specific patterns in the training

data, which can prevent overfitting. The data preparation including

feature extraction took ∼ 48h and training the model about

2min. Post-processing time and inference took <1 s over 24% of

the data.

2.4. Risk-controlling prediction

Risk-controlling prediction (RCP) is a statistical method that

allows a limitation of a specific risk measure of a model, e.g.,

the false alarm rate. It treats the predictive model as a black

box, modifying only the model outputs, so it is not specific to

a certain type of model. The predictions are transformed by

a function gλ, which receives the model outputs as input and

returns new predictions after calibration. It is dependent on a

parameter λ, which depends on the probability of an alarm. For

example, if we have a model that distinguishes between dog and

cat images by assigning probabilities to each (e.g., the image is

70% likely to be a “dog” and 30% to be a “cat”) and we want to

control the false prediction of the “dog” label, the post-processing

can be a function that favors the “cat” label, e.g., choose “dog”

only if the “dog” probability is higher than λ = 60% . If the

threshold λ is calibrated using the proposed process, finite sample

guarantees on the expectancy of the risk can be obtained. In our

example, we can demand a false detection rate of “dog” to be

<5%. This is achieved by using calibration to get a λ value that

will guarantee this condition when the results are averaged over

many experiments.

Let DN = {Xi,Yi}
n
i=1 be a set of independent and identically

distributed (i.i.d) examples in the dataset, s.t. Xi ∈ X, Yi ∈ Y. Let

A :X → Y be a model. For a parameter λ, let gλ :Y → Y′ be

2 CUDA Toolkit 11.3 Downloads | NVIDIA Developer Available online

at: https://developer.nvidia.com/cuda-11.3.0-download-archive (accessed

October 3, 2022).
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TABLE 1 Features that were extracted from EEG signals.

Feature Short explanation

Delta power Fraction of spectral energy in the delta band in the interval of (0.4, 4) Hz (Mormann et al., 2005).

Theta power Fraction of spectral energy in the theta band which is the interval of (4, 8) Hz (Mormann et al., 2005).

Alpha power Fraction of spectral energy in the alpha band which is the interval of (8, 13) Hz (Mormann et al., 2005).

Beta power Fraction of spectral energy in the beta band which is the interval of (13, 30) Hz (Mormann et al., 2005).

Gamma power Fraction of spectral energy in the gamma band which is the interval of (30, 48) Hz (Mormann et al., 2005).

Spectral entropy Quantifies the level of information or uncertainty to a possible outcome of a variable. We used spectral power to estimate entropy due to the

fast computation (Boonyakitanont et al., 2020).

Detrended fluctuation

analysis

Measures the statistical self-similarity of a signal and is useful for analyzing time series that appear to be long-memory processes, such as EEG

signals (Boonyakitanont et al., 2020).

Hjorth mobility Estimates the standard deviation of the power (Boonyakitanont et al., 2020).

Hjorth complexity Estimates the mean frequency (Boonyakitanont et al., 2020)

Higuchi fractal

dimension

Quantifies how a fractal pattern changes with a measured scale. It is associated with neurological conditions, such as epilepsy, Alzheimer’s

disease, and anxiety (Boonyakitanont et al., 2020).

TABLE 2 Comparison of synthetic data results with and without pooling at di�erent α levels.

False alarm rate (hr−1)∗ Accuracy ( )∗ λ

α Without pooling With pooling Without pooling With pooling Without pooling With pooling

0.001 6.7e-05± 4.1e-06 3.4e-06± 2.6e-06 0.93± 0.00032 0.87± 0.00064 0.81 0.81

0.005 0.0012± 2e-05 0.00015± 0.00023 0.97± 0.00017 0.92± 0.014 0.61 0.69

0.01 0.0012± 2.2e-05 0.00073± 3.6e-05 0.97± 0.00016 0.96± 0.00032 0.61 0.61

0.05 0.0053± 5.3e-05 0.0048± 0.00011 0.98± 0.00012 0.98± 0.00021 0.51 0.51

0.1 0.0053± 4.6e-05 0.0048± 0.0001 0.98± 0.00011 0.98± 0.00021 0.51 0.51

1 0.0053± 4.7e-05 0.0048± 9.8e-05 0.98± 0.00011 0.98± 0.00018 0.51 0.51

∗Results are presented as mean± standard deviation.

a mapping function and let Tλ , A ◦ gλ (where ◦ is the standard

function composition (f ◦ h) (x) = f
(

h (x)
)

) and let R(λ) , R(Tλ)

be the risk function.

Let there be a subset 3̂ ⊆ 3 such that:

∀λ̂ ∈ 3̂ :P

[

R
(

λ̂

)

≤ α

]

≥ 1− δ. (4)

If the equation above is satisfied, we can say that ∀λ̂ ∈

3̂, Tλ is an (α, δ)- RCP. Namely, for the λ values that satisfy

this condition, the risk (e.g., false alarm rate) is lower than a

desired value α (e.g., less than one false alarm per hour) with a

probability of at least 1 − δ, where the latter probability is defined

over the calibration set. Between the “legal” values of λ, we can

choose a value that provides the best performance in a different

metric, optimizing the tradeoff between two required properties of

the system.

In the first presentation of the LTT method (Angelopoulos

et al., 2022), the proof was provided for a claim that

given valid p-values for the null hypotheses that each

λ value does not control the risk at level α, applying

a familywise error rate (FWER) controlling multiple

hypothesis correction (MHC) with an FWER of δ yields an

(α, δ)-RCP.

2.5. Time-series adaptation

To adapt the LTT framework to time-series data, a gλ function

that relates to the sequential nature of the input was found.

The function includes two steps of temporal aggregation. First, a

windowmajority vote (i.e., setting the result of the entire window to

be positive only if it has enough positives within) is performed with

windows of length w so only windows with more than λ fraction of

positives are considered positive:

YMV [t]

= I

[

Y [t − w+ 1]+ Y [t − w+ 2]+ . . . + Y [t]

w
> λ

]

. (5)

Then, the time series is max-pooled over the lower temporal

resolution, with the k pooling rate defined as

Ypooling [n]

= max
(

YMV

[

(n− 1) · k
]

,YMV

[

(n− 1) · k+ 1
]

, . . . ,YMV

[

n · k
])

(6)

with the majority vote (Equation 5) intended to add robustness

against noise in the model predictions and the pooling (Equation

6) to mitigate the effect of point mistakes.
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TABLE 3 Comparison of synthetic data results with di�erent multiple hypothesis correction methods and α levels.

False alarm rate (hr−1)∗ Accuracy ( )∗ λ

α Bonferroni FST Bonferroni FST Bonferroni FST

0.001 3.2e-06± 2.6e-06 3.4e-06± 2.6e-06 0.87± 0.0027 0.87± 0.00064 0.81 0.81

0.005 6.5e-05± 1.2e-05 0.00015± 0.00023 0.92± 0.00046 0.92± 0.014 0.7 0.69

0.01 0.00063± 0.00023 0.00073± 3.6e-05 0.95± 0.015 0.96± 0.00032 0.62 0.61

0.05 0.0048± 0.0001 0.0048± 0.00011 0.98± 0.00019 0.98± 0.00021 0.51 0.51

0.1 0.0048± 9e-05 0.0048± 0.0001 0.98± 0.00021 0.98± 0.00021 0.51 0.51

1 0.0048± 0.0001 0.0048± 9.8e-05 0.98± 0.00019 0.98± 0.00018 0.51 0.51

∗Results are presented as mean± standard deviation.

TABLE 4 Statistic matrix on EEG data.

Record metadata Sensitivity (%) False alarm rate (h−1) False
alarm
rate

reduction
(%)

Test
batch
index

Number
of items

Record
duration
(H:m:s)

PID RID Number
of

seizures

Raw LTT Raw LTT

1 2,217 1:50:51 8 2 1 100 0 2.7 0 100

2 2,388 1:59:24 10 2 1 100 100 4.8 0 100

3 2,604 4:22:27 11 3 1 100 0 4.2 0 100

4 5,249 4:22:27 11 4 1 100 100 6.6 0 100

5 2,957 2:27:51 12 2 3 100 33 5.8 2.1 64

6 2,803 2:20:09 13 2 1 100 100 5.7 0 100

7 2,754 2:17:42 14 2 1 100 100 9.1 1.6 83

Total

Test

20,972 19:40:51 – – 9 100 55 5.60 0.45 93.51

Results of the prediction model, with and without LTT, are shown on the test set. The test set included seven records from six different patients. The model performance was evaluated by the

sensitivity and the false alarm rate. Those were calculated for each record in the test set, with and without the LTT post-processing calibration. The percentage of reduction in false alarm rate is

also shown for each record. The time duration of each record, along with the number of decisions made by the model during each record, is also shown.

When fixing w, k and calibrating only λ, Tλ satisfies the LTT

theorem conditions for i.i.d samples.

The central limit theorem (CLT) was used to create p-values

from the metrics calculated in the calibration set. For MHC, two

methods were compared; first, we used the Bonferroni correction

as it works under arbitrary dependence between the hypotheses.

Then, as the correction seemed to be too strict (e.g., only very small

p-values were considered significant), yielding over-tight control of

the risk, a less restrictive method was implemented. Considering

the fact that in our Tλ , higher values of λ always result in stricter

control of the false alarm rate, our use case satisfies the p-value

monotonicity requirement of the fixed-sequence testing (FST)

method (Angelopoulos and Bates, 2021). Under this requirement,

the FST provides the same guarantee on the FWER with less

restrictive conditions on the p-value significance. While many

more statistically powerful MHC methods than the Bonferroni

correction exist, some do not utilize the monotonicity of p-

values (Holm, 1979), others control only the false discovery

rate and not the FWER and therefore do not satisfy the LTT

theorem conditions (Benjamini and Hochberg, 1995), and some,

e.g., sequential graphical testing (Angelopoulos et al., 2022), are

sequential FWER controlling and even less restrictive than FST, but

with the price of being more complicated.

2.6. Performance statistics

The performance of the deep learning model was evaluated by

two measures: sensitivity and false alarm rate. Tailored definitions

of both metrics were used to allow the metrics to reliably reflect the

clinical use of such a predictive system.

2.6.1. Sensitivity
Sensitivity was intuitively defined as: “Out of all seizures that

occurred, how many seizures were correctly predicted?” A single

alarm raised during the preictal period is sufficient to warn the

patient of an upcoming seizure; the number of alarms raised during

the preictal state does not matter clinically, so long as at least one

alarm was raised. Therefore, a true positive (TP) was defined as

seizures for which at least one alarm was raised during the preictal
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state. False negatives (FN) were defined as seizures for which no

alarms were raised. The sensitivity was calculated as the number of

true positives divided by the total number of seizures that occurred:

Sensitivity =
TP

TP + FN
(7)

2.6.2. False alarm rate
An alarm raised at any time other than the preictal state was

considered a false positive. The false alarm rate was calculated as

the number of false positives divided by the number of non-preictal

hours in the record:

False Alarm Rate =
FP

non preictal hours
(8)

This is a conservative definition that will consider both “nearly

preictal” (e.g., 61min before the event) and ictal periods as false

alarms. We chose this approach for two reasons. First, the model

was trained to perform prediction within a strict time interval.

Second, due to the short record durations, in some cases, less

conservative approaches will not have long enough non-preictal

times to stably calculate the metric.

3. Results

3.1. Synthetic data

The post-processing function and the LTT implementation

were validated on the synthetic data described above for different

risk control limits (α = 0.001, 0.005, 0.01, 0.05, 0.1, 1), with and

without the pooling step and with the two methods for multiple

hypothesis correction. Synthetic data were generated as described

in the methods section, with 10,000 sequences of length 1,000 for

each experiment, and with prediction window labels of length 8.

In all experiments, the post-processing window length was 10 and,

when applicable, the pooling length of 10. Aggregated results of 200

experiments for each α are presented in Table 2 for the pooling

and non-pooling comparison and in Table 3 for the Bonferroni

correction vs. fixed-sequence testing MHCmethods.

A comparison of the pooling and the non-pooling post-

processing model results found that pooling yields a better false

alarm rate (p < 0.001 for all α values tested), sometimes with

decreased sensitivity. The MHC method comparison showed that

FST yielded a false alarm rate that was closer to the determined risk

limit (α), but that was still controlled. Note that for some values of

the risk limit, bothmethods behaved exactly the same, as the change

in significance threshold did not change the allowed λ values.

3.2. Real data

Themodel was tested with and without LTT post-processing on

the test set. Pooling was applied, such that a prediction was given

every 60 s. The test set included seven records from six different

patients (Table 4). The false alarm rate was lower in all records in

the test set, with a weighted average of 93.5% reduction in false

alarm rate compared with the raw predictions, with the cost of

missing four of nine seizures. A reduction of 100% in the false

alarm rate (no false alarms) was observed in four of six patients (see

Figure 2 for an example). Among these four patients, all seizures

of two patients were still correctly predicted. One patient had two

seizures, of which one was now predicted and the other was missed.

The remaining patient had only a single seizure in the recording,

which was missed.

4. Discussion

This study used the LTT framework to reduce false alarms

in real-time series data. The time-series adaptation of the LTT

framework maintained the finite sample guarantees in synthetic

data experiments. Real data experiments applying the time-series

LTT to an epileptic seizure prediction deep learning model

showed a significant reduction in false alarm rate at a cost of

sensitivity reduction.

The addition of LTT dramatically reduced the false alarm rate in

all patients in the test set, but somewith a cost of a large reduction in

sensitivity.Manual comparison of the calibrated against the original

model predictions found that records suffering major sensitivity

reduction had alarms distributed evenly between interictal and

preictal windows. Thus, we attribute the original high sensitivity to

the model’s low specificity, i.e., in these records, the sensitivity loss

in calibration merely uncovered poor model performance and did

not reflect a compromise. Longer recordings from those patients

may improve the algorithm’s performance.

While the calibration significantly improved model

performance on some records, the results were still far from

clinically relevant. For example, the calibrated model gave an

average of 2.1 false alarms per hour in patient 12 and failed to

predict 4 out of 9 seizures. Future study should focus on achieving

a model with better performance. As deep learning models are

known to be “data-hungry”, a larger dataset is the key to significant

performance gain in this task. Nevertheless, our study showed

that LTT can be very useful in improving the false alarm rate of a

prediction model in a time series. A larger cohort would facilitate

a more detailed investigation of the LTT adaptation, allowing

for optimization of the MHC and p-value estimation methods

selection, and the detection of subtle effects on the results.

As stated by Angelopoulos et al. (2022), not all risks can be

controlled at any requested level. During the calibration process,

this problem was encountered when trying to control the false

alarm rate. When attempting to reduce the risk, we got an empty

set of controlling λ values. This can be explained by the model

performance, demanding low false alarm rates from an inaccurate

model results in a calibration process for which no λ is high

enough, as even with the highest values, false alarms still occur.

Also, because the dataset was small and had to be divided into three

subsets, the calibration set included only five records. Estimating

p-values based on the CLT using a small sample size, resulted

in an inaccurate calibration (the CLT provides only asymptotic

convergence and no finite sample guarantees), and the false alarm

rate could only be controlled over large values. Increasing the

amount of data will not only improve the model performance
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FIGURE 1

Schematic presentation of the data extraction pipeline. Step 1—Scalp electroencephalogram (EEG) is performed on patients with epilepsy. Step
2—EEG features are extracted from the recorded signals. Step 3—The data are divided into three subsets: training set, test set, and calibration set.
Step 4—A deep learning model is trained on the training set to perform seizure prediction. Step 5—LTT calibration is performed based on the trained
model using the calibration set. Step 6—The performance of the calibrated model is tested on the test set. This figure has been designed using icons
from Flaticon.com and Vecteezy.com.

FIGURE 2

The e�ect of LTT calibration on model predictions. An example of the results of the prediction model, with and without LTT on patient 10 (record
number 2). (A) The preictal state, defined as the interval from 60min to 30 s before seizure onset is labeled as 1. Seizure onset is marked by a blue
arrow. (B) The predictions of the deep learning model without LTT. False alarms are circled. (C) The predictions with LTT post-processing.
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but will also improve the calibration process and allow for better

control over the false alarm rate.

The use of the fixed-sequence testing, a less conservative MHC

method than the Bonferroni correction, allowed for tighter control

of the risk; the risk values were controlled but not over-controlled;

i.e., actual values of the risk were closer to the limit required,

without compromising other metrics.

The LTT theorem requires calibration samples to be

independent and identically distributed (i.i.d) to provide risk

control. In the synthetic data experiment, the samples were

independently generated by a pseudorandom number generator

and therefore satisfied the i.i.d requirements. The results, as

expected, showed perfect risk control over the false alarm

rate. Although this construction ensures that the LTT theorem

requirements are met and enables empirical validation of the

adaptation and implementation, the simplistic nature of the

surrogate data does not fully capture the complexity of real

model predictions. Consequently, some phenomena may arise

in real data experiments that were not observed in this synthetic

data experiment.

However, in the real data experiment, random sampling was

not possible due to the small dataset size. Interestingly, risk control

was still achieved for all patients. This result may be attributed

to the conservative nature of the p-value estimation and MHC

methods used. With larger datasets, samples can be randomly

assigned into groups, forming an i.i.d. calibration set and formally

satisfying the LTT theorem.

Although a patient-independent approach would have been

preferable for demonstrating a clinically usable seizure prediction

system, only a patient-specific approach provided predictions of

sufficient quality to assess the effect of the LTT. As the LTT treats

the model as a black box, the conclusions regarding risk control

remain applicable to models trained using a patient-independent

approach. Future research could utilize the LTT calibration with an

improvedmodel to develop a robust and clinically useful prediction

system with well-defined risk limits.

The LTT was adapted to a time series using two aggregation

functions for the model predictions over time: majority vote and

pooled majority vote. Both methods yielded similar results, with

the pooled version providing lower false alarm rates (stricter

control of the risk), but also slightly lower sensitivity and

accuracy. As the pooled version creates a more stable prediction

(model prediction needs to be more decisive to change the

output), it might be advantageous for some applications, even if

performing significantly worse for the lower α values than the

non-pooled version.

Summarizing the limitations of the study, a larger cohort would

have facilitated additional enhancements to the LTT adaptation

and potentially resulted in a more effective prediction model.

Such a model could have enabled a patient-independent train-test

approach, thus preserving the i.i.d assumption of the LTT theorem.

These limitations do not undermine the conclusion regarding risk

control but suggest that the method can still be further improved.

Future studies on seizure prediction can potentially benefit

from the proposed method to improve robustness andmeet clinical

requirements. Additionally, further research using larger datasets

could optimize the method and enhance control over the false

alarm rate.

5. Conclusion

Learn Then Test calibration, with a majority vote and pooling

aggregation post-processing function, successfully controlled

the false alarm rate of epileptic seizure prediction while

compromising sensitivity. Better-performing base models may

improve risk control.
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