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Objective: Individuals with neurodevelopmental disorders such as global
developmental delay (GDD) present both genotypic and phenotypic
heterogeneity. This diversity has hampered developing of targeted interventions
given the relative rarity of each individual genetic etiology. Novel approaches to
clinical trials where distinct, but related diseases can be treated by a common
drug, known as basket trials, which have shown benefits in oncology but have yet
to be used in GDD. Nonetheless, it remains unclear how individuals with GDD
could be clustered. Here, we assess two different approaches: agglomerative and
divisive clustering.
Methods: Using the largest cohort of individuals with GDD, which is the
Deciphering Developmental Disorders (DDD), characterized using a systematic
approach, we extracted genotypic and phenotypic information from 6,588
individuals with GDD. We then used a k-means clustering (divisive) and
hierarchical agglomerative clustering (HAC) to identify subgroups of individuals.
Next, we extracted gene network and molecular function information with regard
to the clusters identified by each approach.
Results: HAC based on phenotypes identified in individuals with GDD revealed 16
clusters, each presenting with one dominant phenotype displayed by most
individuals in the cluster, along with other minor phenotypes. Among the most
common phenotypes reported were delayed speech, absent speech, and seizure.
Interestingly, each phenotypic cluster molecularly included several (3–12) gene
sub-networks of more closely related genes with diverse molecular function.
k-means clustering also segregated individuals harboring those phenotypes, but
the genetic pathways identified were different from the ones identified from HAC.
Conclusion: Our study illustrates how divisive (k-means) and agglomerative
clustering can be used in order to group individuals with GDD for future basket
trials. Moreover, the result of our analysis suggests that phenotypic clusters should
be subdivided into molecular sub-networks for an increased likelihood of
successful treatment. Finally, a combination of both agglomerative and divisive
clustering may be required for developing of a comprehensive treatment.
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1. Introduction

Neurodevelopmental disorders/difference (NDDs) are a broad

group of disabilities characterized by impairments of personal,

social, academic, or occupational functioning and/or skill

development (1). NDDs affect approximately 18% of the

population (2–8) and have a significant impact on the individual,

their family, and society (9, 10). Global developmental delay

(GDD) is a subtype of NDD and has a prevalence rate of

approximately 3% (11, 12). GDD is diagnosed when an

individual under the age of 5 years fails to meet the expected

developmental milestones in two or more domains of

development, such as language, gross or fine motor skills, or

social functioning (13).

Individuals with GDD, as in most NDD, present within a

spectrum of severity (14). Moreover, several genes have now been

linked to GDD (15), but each gene individually affects a

relatively small number of individuals, making them known as

rare disorders in most cases. The phenotypic complexity,

combined with the genetic heterogeneity and rarity, has

hampered our ability to translate our understanding of the

molecular underpinning of GDD into targeted interventions that

are clinically approved and mechanism-based. Most trials

conducted previously have been focused on translating candidate

drugs identified from pre-clinical investigations on a given gene

into individuals with mutation in that gene. Unfortunately, this

approach has been accompanied by challenges in recruitment,

clinical diversity, and a high number of genes to target.

Fortunately, a novel approach to clinical trials is emerging,

known as basket trials (16), which aims at testing candidate

drugs in a group of disorders related by shared pathophysiology,

consequently improving the cost-effectiveness of the trial. So far,

this approach has been proven to be very productive in oncology,

where participants with different diagnoses but share a common

underlying dysregulated molecular pathway are treated with the

same therapeutics (17). In GDD, individuals could be

subgrouped based on their phenotypic or genotypic profiles (18).

Therefore, it is important to gain a better understanding of how

GDD individuals could be clustered.

In general, two approaches have been used in clustering:

agglomerative (also referred to as bottom-up) or divisive

(referred to as top-down) (19, 20). Hierarchical agglomerative

clustering (HAC) aims at identifying homogeneous groups of

individuals based on their phenotypic profiles, which does not

assume a given number of cluster and therefore can lead to a

combination of phenotypes (21, 22). HAC has been widely used

due to its ability to detect the natural number of clusters in a

dataset (23–25). On the other hand, a divisive approach such as

k-means clustering (19) requires a set number of clusters to be

established and then assigns individuals to each cluster based on

their similarity (26–28).

Here, we show how these two approaches can be applied

to clustering individuals in the largest cohort of individuals

with GDD: the Deciphering Developmental Disorders (DDD)

cohort (29).
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2. Materials and methods

2.1. Cohort description

The data included in the DDD dataset were acquired from 24

clinical genetics centers in the United Kingdom National Health

Service and the Republic of Ireland. A total of 13,462 individuals

with undiagnosed developmental disorders were included in this

study. After obtaining ethics approval at our centers, and with

permission from the DDD consortium, we analyzed the dataset

for phenotypes of the individuals.

In DDD, the human phenotype ontology (HPO) is used to

describe the phenotypic information of the individuals (30).

HPO contains over 15,000 terms, which describes phenotypic

abnormalities and allows the use of standardized and controlled

vocabulary for listing phenotypes (31). We divided the HPO

identified in individuals with GDD between structural

(dysmorphic features or congenital malformation) and functional

(affecting behavior or clinical symptoms). We focused this study

on functional HPO, considering our goal to cluster patients for

future interventions.
2.2. Genomic sequence analysis

The exome sequence data of GDD-phenotyped individuals

were analyzed in two stages. In the first stage, the existing

GRCh37/hg19 exome sequence was realigned to the GRCh38

genome reference sequence. Then, short variant [single

nucleotide variants (SNVs) and indels] calling was performed

using the GATK best practices (32), which involves realigning

reads to the GRCh38 reference genome, variant calling using the

HaplotypeCaller and joint genotyping. Finally, variant quality

recalibration and refinement steps were performed, leading to

high quality variant callset. In the second stage, these variants

were annotated for gene information (Ensembl), frequencies

(from gnomAD, ExAC, and internal cohort GDD), and

pathogenicity (from CADD, ClinVar, and ClinGen). The

annotated set of variants in the callset were filtered for gene

information, rare variants having minor allele frequency (MAF)

value of ≤1%, impact on the transcript, and pathogenicity. The

details of the annotation and filtering criteria can be found in

Section 1.1 in the Supplementary Material.
2.3. Candidate gene list

We searched PubMed using the keywords intellectual disability

(ID) and global developmental delay (GDD), and compiled a list of

genes from original research and review papers (33–36). We also

used genes listed in databases related to NDDs for diseases and

phenotypes, and even included the genome-wide association

studies (GWAS) using the same keywords [SysID (37, 38),

DisGenet (39, 40), HPO (31, 41), OMIM (42, 43), Orphanet

(44), Phenolyzer (45, 46), Ingenuity Pathway Analysis (Qiagen),
frontiersin.org

https://doi.org/10.3389/fped.2023.1171920
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Cuppens et al. 10.3389/fped.2023.1171920
Open Targets (47, 48), AutDB (49)]. We have added the

Intellectual Disability NGS Radboudumc and Fulgent gene panels

to achieve the most complete overview. Each gene list was

obtained separately, and then only those genes that appeared at

least three times in the collected data were retained, resulting in

a final list of 2,537 genes (see Supplementary Table 1).
2.4. Clustering strategies

2.4.1. Hierarchical agglomerative clustering of
phenotypes

Among all the HPO-based phenotypes identified in individuals

with GDD, we considered the functional phenotypes (as opposed

to morphological features) for this cluster analysis. Since all the

phenotypes can be treated as binary features and the dissimilarity

between two individuals can be calculated based on their shared

and distinct phenotypes, Jaccard distance was used (50) to

measure the dissimilarity between the individuals, which is

calculated as follows:

D(Ii, Ij) ¼ 1� jPi > Pjj
jPi < Pjj

where D(Ii, Ij) is the distance between individual Ii and Ij with set of

phenotypes Pi and Pj, respectively. Once the distance matrix

representing the Jaccard dissimilarity between all the individuals is

obtained, hierarchical clustering with ward linkage method is

applied. To assess the cluster validity, we selected the silhouette

index (SIL) due to its ability to provide assessment at the cluster

and individual level. SIL is an internal measure that considers both

the intra-cluster and inter-cluster distances to provide the estimate

of compactness and separateness of the clusters (51). For each data

point Ii, the distance to all data points belonging to the same

cluster is calculated, and the average of these distances is referred as

Ij. Then, the distance to all data points belonging to other clusters

is calculated, and the smallest of them is referred as bi. The

silhouette coefficient for each individual is calculated as follows:

SILi ¼ (bi � ai)
max(ai, bi)

Overall clustering results can be assessed by taking the average

silhouette index of all the individual points, and its value ranges

from worst value −1 to best value 1.
2.4.2. Dependency model for genes/
phenotype clustering

We performed a divisive clustering approach with k-means

using a dependency model to cluster the genes associated to

phenotypes. The dependency model (Supplementary Figure S1)

was created under a probabilistic framework where the

relationship between a given set of phenotypes (H) and genes
Frontiers in Pediatrics 03
(G) is inferred for the affected individuals (I). This dependency

model captures the direct relation among individuals having

distinct GDD phenotypes (solid red line in Supplementary

Figure S1). Similarly, the same affected individuals carry those

rare genetic variants among a set of genes. However, it is difficult

to establish whether these genes cause the individuals to acquire

GDD or because of inheriting these GDD-related traits, the

individuals acquired mutations in these genes. The direction of

causality cannot be established between phenotype and genes;

hence, these can only be inferred probabilistically (represented by

a broken red line in Supplementary Figure S1).

The underlying dependency model facilitates a framework to

identify clusters of genes with respect to a given set of

phenotypes. Mathematically, this can be represented as

computing probability distribution of genes, which is conditional

to the phenotypes given by P(G|H ):

P(GjH) ¼
XN

j¼1

P(Ij)P(Ij)P(Ij)PN
j¼1 P(Ij)P(Ij)

Since our task is to compare probability distribution of genes with

respect to a given set of phenotypes, the denominator in the above

equation can be ignored, and it can be simplified as follows:

P(GjH)1
XN

j¼1

P(Ij)P(Ij)P(Ij)

This eventually yields a matrix of probability distribution where

rows represent the genes and columns represent the phenotypes.

A k-means clustering was then applied to a subset of the

probability matrix, including the phenotypes of interest (52).

The elbow and silhouette methods were used to determine the

optimal number of clusters (53). To highlight significant

differences between phenotypes for each gene group, a t-test was

applied to the clustering results. We corrected the results

obtained using the Bonferroni correction to adjust the p-values

for multiple comparisons. Adjusted p-values less than or equal to

0.05 were considered statistically significant.
2.5. Protein–protein interaction and
pathway enrichment analysis

The resulting gene clusters were then analyzed by protein–

protein interaction prediction, clustering, and pathway

enrichment using STRING v11.5 (54). The Markov clustering

algorithm (MCL) was used to identify the gene sub-networks

(55). The inflation parameter of MCL was set to 1.5 (56). The

functional enrichment analysis of each module was also

performed in the STRING v11.5 database using the GO terms

and REACTOME pathway. The false discovery rate obtained

from the functional enrichment analysis describes the degree of

significance of the enrichment. The p-values are corrected for

multiple testing in each category using the Benjamini–Hochberg
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procedure. Visualizations of protein–protein interactions and

clusters were also obtained using STRING v11.5.
3. Results

3.1. Individuals with GDD present with
phenotypic diversity

Among all participants with NDD in the DDD cohort, the

individuals with GDD represent 49.13% (6,588 probands) of the

population. We identified 761 physiological phenotypes and

2,158 morphological phenotypes occurring in this cohort. The

phenotypes that are most commonly represented (>1%) affected

multiple systems (neurological, gastrointestinal, locomotor) in

individuals with GDD (Figure 1, Table 1). The physiological

phenotypes that are neurodevelopmental-related comprised

autistic behavior (6.25%), autism (4.57%), absent speech (AS)

(4.36%), aggressive behavior (3.25%), and stereotypy (4.42%)

(including 2.34% of the global term, 2.06% recurrent hand

flapping, 0.18% repetitive compulsive behavior, and 0.17% tongue

thrusting). For other physiological issues, seizures were reported

in 21.71% of individuals with GDD (Supplementary Table S2),

followed by hypotonia (15.12%), strabismus (8.76%), joint

hypermobility (6.60%), and sleep disturbance (4.36%). The most

frequent systemic phenotypes involved constipation (5.6%) and

gastroesophageal reflux (5.12%).
FIGURE 1

Most prevalent physiological phenotypes in individuals with GDD using H
neurological, respiratory, gastrointestinal, and locomotor systems. Created wi
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We also delineated the morphological features observed most

frequently in individuals with GDD (Supplementary Table S3).

With regard to growth parameters, microcephaly was found in

19.74% of individuals. Macrocephaly was much less common in

GDD (5.53%). Short stature was also frequently reported (5.83%).

Cardiac malformations were the most commonly encountered

malformation with a prevalence rate of 7.14%. Scoliosis was

present in 2.58% of individuals.
3.2. Genotypic diversity in individuals with
GDD

We identified likely pathogenic and pathogenic variants in the

individuals with GDD using ClinVar (57). From our list of 2,537

candidate causal genes, we found that 1,416 genes were affected

by pathogenic or likely pathogenic variants in individuals with

GDD in the DDD cohort. We found that most genes contained

pathogenic variants in only a small number of individuals,

suggesting an important genotypic diversity (Figure 2,

Supplementary Table S1). Indeed, only 86 genes were found in

more than 1% of individuals. We also looked at how many genes

from our list were affected by pathogenic/likely pathogenic

variants per individual in the GDD cohort. A total of 3.5% of the

GDD cohort has no pathogenic/likely pathogenic variants from

our gene list, and more than 20% of individuals have three

mutated genes (Figure 2).
PO ontology (frequency >1%). Multiple systems are affected including
th BioRender.com.
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TABLE 1 Most prevalent (>1%) physiological phenotypes in individuals
with GDD.

Physiological phenotype No. of all
GDD

% of all
GDD

Neurodevelopmental
Delayed speech and language development 1,037 15.74

Autistic behavior 412 6.25

Autism 301 4.57

Absent speech 287 4.36

Specific learning disability 173 2.63

Cognitive impairment 121 1.84

Delayed gross motor development 113 1.72

Attention deficit hyperactivity disorder 106 1.61

Developmental regression 105 1.59

Motor delay 91 1.38

Intellectual disability, moderate 74 1.12

Intellectual disability 69 1.05

Intellectual disability, severe 68 1.03

Other neurological
Seizure 796 12.08

Sleep disturbance 287 4.36

Aggressive behavior 214 3.25

Generalized-onset seizure 178 2.70

Drooling 167 2.53

Stereotypy 154 2.34

Behavioral abnormality 145 2.20

Recurrent hand flapping 136 2.06

Generalized non-motor (absence) seizure 121 1.84

Central hypotonia 113 1.72

Bilateral tonic-clonic seizure 108 1.64

Gait ataxia 107 1.62

Epileptic spasm 93 1.41

Broad-based gait 87 1.32

Febrile seizure (within the age range of 3 months
to 6 years)

81 1.23

Generalized myoclonic seizure 75 1.14

Impaired social interactions 73 1.11

Abnormal aggressive, impulsive, or violent
behavior

69 1.05

Ataxia 69 1.05

Short attention span 69 1.05

Dysphagia 67 1.02

Eyes
Strabismus 577 8.76

Hypermetropia 205 3.11

Nystagmus 124 1.88

Myopia 121 1.84

Bilateral ptosis 94 1.43

Astigmatism 82 1.24

Visual impairment 78 1.18

Cerebral visual impairment 66 1.00

Ears
Sensorineural hearing impairment 88 1.34

Hearing impairment 87 1.32

Conductive hearing impairment 75 1.14

Cardiovascular system
Pulmonic stenosis 66 1.00

Respiratory system
Recurrent respiratory infections 72 1.09

(Continued)

TABLE 1 Continued

Physiological phenotype No. of all
GDD

% of all
GDD

Digestive system
Constipation 369 5.60

Gastroesophageal reflux 337 5.12

Feeding difficulties in infancy 174 2.64

Feeding difficulties 122 1.85

Gastrostomy tube feeding in infancy 115 1.75

Other
Joint hypermobility 435 6.60

Generalized hypotonia 371 5.63

Muscular hypotonia 281 4.27

Joint laxity 135 2.05

Eczema 123 1.87

Neonatal hypotonia 75 1.14

We present the number of individuals with GDD from the DDD dataset presenting

with the phenotypes listed. The phenotypes were structured as either

neurodevelopmental, other neurological, or by target organs outside the brain.

Cuppens et al. 10.3389/fped.2023.1171920
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3.3. Comparison of clustering approaches

Next, we compared two approaches of clustering: (1)

hierarchical agglomerative where clustering of individuals was

based on phenotypes, and (2) where individuals with and

without a phenotype are compared for their genetic mutations.

For each approach, we identified the genes (from our curated list

of GDD/ID genes) harboring likely pathogenic or pathogenic

variants (ClinVar).

(1) A hierarchical agglomerative clustering of all individuals with

GDD resulted in 16 distinct clusters (as visualized in the

dendrogram in Figure 3A). The silhouette index of all the

individuals is displayed in Figure 3B. In order to validate

the clustering results, we assessed each cluster separately.

Except for cluster 16, all other clusters had a positive

silhouette index for majority of the individuals, indicating

that the individuals are clustered in the correct group.

However, in each cluster, some individuals had a negative

silhouette index. The variability in the number of

phenotypes per individual and fewer shared phenotypes

among individuals could possibly lead to the distortion in

the coherence of the clusters (detailed analysis in

Supplementary Figure S2). While we observed more than

two phenotypes per cluster, most individuals presented with

GDD + 1 dominant phenotype. Cluster 16, containing 3,077

individuals, showed no dominant phenotype apart from

the GDD.

We focused on clusters related to speech since 20% of

individuals from the GDD cohort presented with delayed

speech to various degrees. Milder defects were categorized as

delayed speech, which was present in 15.74% of individuals

with GDD, and more severe defects were categorized as

absent speech, present in 4.36% of individuals. HAC Cluster

4 was characterized by delayed speech and language
frontiersin.org
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FIGURE 2

Analysis of the overall cohort of individuals with GDD from DDD reveals the genotypic complexity of GDD. (A) Individual GDD/ID candidate genes are rare,
as observed clinically. Using the DDD cohort allows us to quantify this with only one to five individuals in a cohort of 6,588 individuals with GDD. (B)
Individuals with GDD present most of the time with multiple pathogenic variants in distinct genes. The dotted line refers to the median at three
genes per individual.

FIGURE 3

Hierarchical agglomerative clustering using phenotypic profiles of individuals with GDD. (A) Dendrogram presenting 16 clusters of individuals.
(B) Silhouette plot for all the individuals for cluster validity analysis.

Cuppens et al. 10.3389/fped.2023.1171920
development (DSLD), which presented in 329 out of 376

individuals in this cluster, while Cluster 14 defined

individuals with absent speech, which presented in134 out

of 143 individuals in this cluster (Figures 4A, 5A). Cluster 4

comprised 376 individuals with likely pathogenic or

pathogenic variants in 483 candidate genes, while Cluster 14

comprised 143 individuals with likely pathogenic or

pathogenic variants in 303 candidate genes. We then

identified a gene network for each cluster (Figures 4B, 5B).

We observed that in both networks, there were
Frontiers in Pediatrics 06
sub-networks (of more closely related genes with different

significantly enriched molecular functions). For DSLD, we

identified 27 sub-networks, with 12 of these sub-networks

containing more than 10 genes with enrichment in the

following pathways: sub-network 1: DNA repair, cell cycle,

transcription, meiosis, and regulation of TP53 activity; sub-

network 2: cilium assembly, visual photo transmission, cargo

trafficking, and Hedgehog signaling; and sub-network 3:

cation channel complex, channel activity, and plasma

membrane complex (see Supplementary Table S4 for all
frontiersin.org
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FIGURE 4

Gene network from individuals with GDD+DSLD using hierarchical agglomerative clustering (Cluster 4). (A) Cluster level analysis of the hierarchical
clustering results. (a) Top five phenotypes among the individuals. (b) Silhouette score for all the individuals and the average. (c) Distribution of number
of phenotypes per individual. (d) Distribution of shared number of phenotypes among all individual pairs. For Cluster 4, DSLD is the dominant
phenotype. With some individuals having negative silhouette index, overall cluster level index is positive, indicating that most of the individuals are in
the right cluster. Similar to Cluster 2, the majority of the individuals have two phenotypes, but the number of phenotypes per individual ranges up to
14, indicating the phenotypic variability among individuals. (B) Overall representation. Each color corresponds to a representative sub-network of
more closely related genes.

Cuppens et al. 10.3389/fped.2023.1171920
sub-networks). For AS, we identified 23 subclusters, with eight

of these containing more than 10 genes with enrichment in

the following pathways: sub-network 1: DNA repair, cell

cycle, and transcriptional regulation; sub-network 2: cilium

assembly, anchoring to the basal membrane; and sub-

network 3: interaction between LI and ankyrin, L1CAM (see

Supplementary Table S5 for all sub-networks). This overlap

in gene function enrichment between DSLD and AS was

also associated with 31.7% overlap in genes identified by

HAC for each condition (Supplementary Figure S3A).

Interestingly, those genes showed enrichment in more

specific pathways associated previously to cognition (58), such
Frontiers in Pediatrics 07
as signal transduction and secondary messenger, transcription,

and chromatin modification (Supplementary Table S6).

(2) Next, using the dependency probabilistic models, we

determined that three clusters would be optimal for k-means

clustering to see if we could identify subgroups of individuals

with speech defects. First, we noted that k-means clustering

separated individuals with DSLD and AS with no gene

overlap (Supplementary Figure S3B). As in HAC, k-means

clusters subdivided at the gene network level (Figure 6).

DSLD had three sub-networks containing more than 10

genes, and there were 24 sub-networks in total; the

enrichment was based on chromatin-modifying enzyme,
frontiersin.org
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FIGURE 5

Gene network for individuals with AS identified by hierarchical agglomerative clustering (Cluster #14). (A) (a) Top five phenotypes among the individuals.
(b) Silhouette score for all the individuals and the average. (c) Distribution of number of phenotypes per individual. (d) Distribution of shared number of
phenotypes among all individual pairs. For Cluster 14, absent speech is the dominating phenotype, and the average silhouette index for the cluster is
0.058, which is slightly above zero. Almost half of the individuals have a negative SIL index, which could possibly be due to the high variability in the
number of phenotypes per individual. As shown in the third plot for Cluster 14, the number of phenotypes per individual ranges up to 15, and the
majority of the individuals share only two phenotypes, leading to less similarity among individuals. (B) Overall representation. Each color corresponds
to a representative sub-network of more closely related genes.

Cuppens et al. 10.3389/fped.2023.1171920
signal transduction, NOTCH signaling (sub-network 1); visual

phototransduction, recruitment of mitotic centrosomes,

noradrenaline inhibition of insulin, calcium pathway (sub-

network 2); and protein interaction at the synapse, neurexin

and neuregulin, trafficking of GluR2-containing AMPA

receptors (sub-network 3) (see Supplementary Table S7 for

all sub-networks). In AS, only the sub-network 1 had more

than 10 genes: oxygen binding (subcluster 1), ribonucleoside

synthetic process (subcluster 2), and amino acid binding

(subcluster 3) (see Supplementary Table S8).

Next, we assessed if genes that were identified for DSLD and AS

overlapped between HAC and k-means clusters. Surprisingly, only

12.7% and 8.4% of genes overlapped for DSLD and AS between the

two clustering approaches, respectively (Supplementary Figure S4).
Frontiers in Pediatrics 08
In order to assess if these differences in results between

clustering approaches were phenotype-specific, we verified if the

phenotype seizure, which is commonly associated with GDD,

would provide similar results. In HAC, Cluster #2 is

characterized by GDD + seizure and pathogenic/likely pathogenic

variants in 510 candidate genes (Figure 7A). Again, at the gene

network level, we observed fragmentation into sub-networks

(Figure 7B, Supplementary Table S9). The MCL clustering

found 30 sub-networks, and 13 of them contained more than 10

genes. Each sub-network involved distinct pathways: neuronal

system, L1 and ankyrin interaction, axon guidance, synaptic

transmission (sub-network 1); transcription regulation, cell cycle,

and DNA repair (subcluster 2); and sensory function, cilium,

vision, and RNA polymerase (subcluster 3) (see Supplementary

Table S9 for all sub-networks).
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FIGURE 6

Gene network for individuals with DSLD or AS identified from k-means clustering. (A) k-means clustering of individuals without speech disorder, delayed
speech, or absent speech. (B) Overall gene network for individuals with delayed speech. (C) Overall gene network for AS. Each color corresponds to a
representative sub-network of more closely related genes.
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The optimal number of k-means clustering for individuals with

GDD with or without seizure was set at two so that only one gene

cluster was identified as being related to seizures (Figure 8A). The

gene network can also be divided into subgroups, and MCL

clustering has highlighted 14 subclusters with only two

subclusters having more than 10 genes (Figure 8B). The

molecular functions for each cluster were as follows: subcluster 1:

organic and hetero-cyclic compound binding and transcription

regulator activity; subcluster 2: synaptic function and ion channel

and transporter activity; and subcluster 3: extracellular matrix

and glycoprotein (see Supplementary Table S10 for all sub-

networks).

We then compared the overlap between the two clustering

approaches. We found that 62 genes (11%) overlapped between

HAC and k-means (Supplementary Figure S5). Importantly, this

degree of overlap was similar to the overlap identified between

the two clustering approaches when assessing DSLD and AS

phenotypes.
4. Discussion

Global developmental delay is a clinical entity encountered

commonly in both general and specialized medical practice,

affecting the lives of approximately 3% of the pediatric

population or almost 60 million children worldwide (59). While

some individuals with syndromes such as Down, Fragile X, Rett,

and Angelman have been diagnosed via targeted gene testing,

most individuals remained undiagnosed until the development of

genome-wide tools such as chromosomal microarray (CMA) and

whole exome sequencing (WES) (15). Together, these genome-
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wide tools have raised the diagnostic yield in GDD to

approximately 60% (15), and have identified approximately 2,000

genes replicated in at least three studies (Supplementary

Table S1). This genetic complexity has led to challenging

targeted interventions. Novel approaches such as basket trials,

where one drug is used to treat distinct but related conditions,

have shown the promises of precision medicine (15–17) for those

with GDD, but the best approach to clustering individuals

remains unknown.

We leveraged the largest dataset of individuals with GDD,

which is the DDD (29, 30), and tested various clustering

approaches. By including 6,588 individuals with GDD, we were

able to identify clear clusters based on phenotypic proximity. We

considered the possibility of combining similar or closely related

categories into a single main category. However, we decided to

maintain the specificity of each HPO term in order to avoid bias

in the analyses. Individuals were annotated by their clinician, and

we wanted to take advantage of the opportunity to accurately

capture the various manifestations of GDD. This accurate

phenotypic characterization has enhanced the robustness of our

clustering analysis and has facilitated the identification of

relevant gene clusters. In our study, we also wanted to use a

pragmatic approach, reproducing what would be done when

planning a pharmacological intervention in individuals with

GDD, so that individuals would be included based on their GDD

genetic diagnosis, and not based on a phenotype-specific

genotype; hence, the focus on their GDD gene diagnosis.

Since there is an interest (and need due to their high number of

genes and low individual prevalence) in combining individuals

with GDD into a “basket” targeted by the same drug (one drug-

multiple targets), we wanted to assess how this could be
frontiersin.org
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FIGURE 7

Genetic makeup and clustering for individuals with GDD and seizure (Cluster #2). (A) (a) Top five phenotypes among the individuals. (b) Silhouette score
for all the individuals and the average. (c) Distribution of number of phenotypes per individual. (d) Distribution of shared number of phenotypes among all
individual pairs. For instance, for Cluster 2 in row 2, the first plot shows that seizure is the most dominant phenotype; the second plot shows the silhouette
index of all individuals, which is positive for the majority of the individuals, indicating that the individuals are grouped in the right cluster. The third plot in
row 2 shows that the majority of the individuals in Cluster 2 has two phenotypes but also ranges up to 10 phenotypes for some of the individuals. The
fourth plot shows that most of the individuals share two phenotypes in this cluster. (B) Overall gene network for all individuals included in the
agglomerative cluster.
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achieved. We clustered based on phenotype, following two of the

most common approach: divisive based on presence or absence

of a phenotype or agglomerative, which does not assume a given

number of clusters and therefore can lead to a combination of

phenotypes. When comparing clustering approaches, we found

that hierarchical agglomerative clustering, an approach where

individuals sharing features are grouped together, could identify

bigger clusters of genes, but was less precise in segregating genes

between related conditions (for instance, delayed speech and

language development compared with absent speech). On the

other hand, k-means clustering provided more distinct groups of

genes but identified fewer genes per phenotype. Importantly, the

two methods showed overlap in approximately 10% of the genes

they identified. There is a limited overlap in the clusters

identified between the two methods. We postulate that this

relates to the difference in approach (divisive vs. agglomerative).
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In the divisive approach, the groups are divided based on the

presence or absence of a specific phenotype. We think that this

approach leads to a smaller but more stringent set of causative

genes. The agglomerative approach identifies phenotypic clusters

with a predominant phenotype (but with the inclusion of other

phenotypes as well. This may lead to the identification of a

different genetic makeup (genes with pleiotropic effect for

instance). We believe that our work will point out that the

method used to identify individuals in a future treatment trial

using a basket trial approach should consider how participants

are grouped. Also, for both approaches of clustering, our results

have shown consistently that the genetic makeup of a relatively

homogenous phenotypic cluster is constituted of multiple

subclusters. So for a given basket, it may be possible to

understand the response based on that molecular information.

This also shows the importance of performing such genetic
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FIGURE 8

Identification of individuals with/without seizure based on probabilistic genotype–phenotype clustering. (A) Clustering of genes based on the association
with seizure (on the left are genes not encountered in individuals with GDD and seizure, while on the right are genes associated with GDD and seizure.
Higher probability is marked in red). (B) Genetic network showing clustering of genes found in individuals with seizures, revealing the presence of sub-
networks.
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characterization. It is interesting to observe that while the pathways

found in each approach are overall similar, the number of

individuals and their individual genes in each cluster are

somehow different, which is probably due to the “phenotypic

purity” of the cluster.

An important observation in considering future basket trials

was that individuals with GDD harboring the same phenotypes

could be further subdivided based on genomic information into

gene network clusters. This is important due to the reason that

individuals within a given basket for a trial may need to be

guided by genetic information and assigned to different

treatment regimen.

These findings also extended to other common comorbidities

such as seizure. Seizures were found to be present in 12.08% of

the individuals with GDD. This finding is similar to what has

been reported in autism spectrum disorder (ASD) (60), but lower

than the 56% prevalence rate of epilepsy in a GDD cohort that

was reported recently (61). Importantly, we observed a similar

behavior of both clustering approaches: HAC identified more

genes than the k-means, and that only approximately 12% of

genes overlapped between methods.

It is also important to note that we have made two major filters in

this study: first, filter on a list of candidate genes for cognitive neuro

difference (GDD and ID), and second to select only the variants in

these genes annotated as pathogenic/likely pathogenic in ClinVar.

Therefore, it was expected that the enrichment found for each

cluster, especially for those found with the HAC method (which

shows more genes than the k-means method), would be related to

the properties of the selected set and not necessarily cluster
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specific. In contrast, the number of genes enriched in particular

molecular functions changes between clusters; for example, in

Cluster 4 (DSLD), DNA binding and transcription stand out in the

first subclusters of the 1,417 ID+GDD gene set, but the channel

activity stands out far in the subclusters of the 1,417 gene set. This

may suggest that ion channels are more related to DSLD.

Overall, our study provides a rationale for the possibility of

having success with basket trials in the future for drug

development in GDD by showing how large groups of

individuals with GDD could be separated into closely related

subgroups. It also shows how different clustering approaches will

influence the size and nature of the cluster. Furthermore, despite

showing shared genetic function, each sub-network (as opposed

to the phenotypic cluster) may need to be considered in terms of

druggability and potential side effects (for DNA or RNA

binding). This highlights the potential importance of genomic

sequencing in pharmaceutical trials. Our findings point to the

fact that it is important to correlate phenotype with not only a

single gene but also take into account the polygenic nature of

each individual. It will be important to understand that

phenotypes may not be explainable by considering a single gene

correlation but rather a polygenic approach and that future work

(probably with large sample size) will be required to assess the

correlation between combination of pathogenic variants and

phenotypic presentation. Also, analysis of each mutation present

against the proposed treatment would be important in future

clinical trials.

It should be noted that the progress in clustering includes the

application of deep learning-based methods, which could
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potentially complement our research into the genetic basis of GDD.

Furthermore, our future research will be based on the assessment of

persons with ASD, given the features that they share with GDD. By

extending our clustering methods to ASD, we could not only

highlight common genetic factors but also refine targeted

interventions, broadening the impact of our study beyond GDD.

Aware of the role of intronic variants, it will be necessary to

integrate whole genome sequencing (WGS) to take into account

the whole genetic background of GDD.

Future in vivo study will be needed to validate which method is

most useful at finding successfully treated clusters. Indeed, it will be

important to use animal models this time and patient-derived cell

lines to validate the response to candidate treatment for genes

belonging to a given cluster. Together, this clustering has the

potential to accelerate access to targeted treatment for individuals

with GDD.
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