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Background: Microbes have dense linkages with human diseases. Balanced

microorganisms protect human body against physiological disorders while

unbalanced onesmay cause diseases. Thus, identification of potential associations

between microbes and diseases can contribute to the diagnosis and therapy of

various complex diseases. Biological experiments formicrobe–disease association

(MDA) prediction are expensive, time-consuming, and labor-intensive.

Methods: We developed a computational MDA prediction method called

GPUDMDA by combining graph attention autoencoder, positive-unlabeled

learning, and deep neural network. First, GPUDMDA computes disease similarity

and microbe similarity matrices by integrating their functional similarity and

Gaussian association profile kernel similarity, respectively. Next, it learns the

feature representation of each microbe–disease pair using graph attention

autoencoder based on the obtained disease similarity and microbe similarity

matrices. Third, it selects a few reliable negativeMDAs based on positive-unlabeled

learning. Finally, it takes the learned MDA features and the selected negative MDAs

as inputs and designed a deep neural network to predict potential MDAs.

Results: GPUDMDA was compared with four state-of-the-art MDA identification

models (i.e., MNNMDA, GATMDA, LRLSHMDA, and NTSHMDA) on the

HMDAD and Disbiome databases under five-fold cross validations on

microbes, diseases, and microbe-disease pairs. Under the three five-fold

cross validations, GPUDMDA computed the best AUCs of 0.7121, 0.9454,

and 0.9501 on the HMDAD database and 0.8372, 0.8908, and 0.8948 on

the Disbiome database, respectively, outperforming the other four MDA

prediction methods. Asthma is the most common chronic respiratory condition

and a�ects ∼339 million people worldwide. Inflammatory bowel disease

is a class of globally chronic intestinal disease widely existed in the gut

and gastrointestinal tract and extraintestinal organs of patients. Particularly,

inflammatory bowel disease severely a�ects the growth and development

of children. We used the proposed GPUDMDA method and found that

Enterobacter hormaechei had potential associations with both asthma and

inflammatory bowel disease and need further biological experimental validation.

Frontiers inMicrobiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1244527
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1244527&domain=pdf&date_stamp=2023-09-18
mailto:lzjfox@hnit.edu.cn
mailto:duanlian301@163.com
https://doi.org/10.3389/fmicb.2023.1244527
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1244527/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Peng et al. 10.3389/fmicb.2023.1244527

Conclusion: The proposed GPUDMDA demonstrated the powerful MDA

prediction ability. We anticipate that GPUDMDA helps screen the therapeutic clues

for microbe-related diseases.
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1. Introduction

Microorganisms or microbes exist in the form of single cell

or a group of cells. Microbes mainly contain bacteria, archaea,

fungi, viruses, and protozoa (Wen et al., 2021). They widely

distribute on the human skin, oral cavity, respiratory tract, and

gastrointestinal tract (Holmes et al., 2015). Most of human

microbes are beneficial to human health. They can promote

nutrient absorption, protect human body against pathogens, and

strengthen metabolic capability. In addition, they have the similar

metabolic ability to the liver and are even taken as “forgotten organ”

of human body (Gill et al., 2006). However, their imbalance or

dysbiosis could cause human diseases (Peng et al., 2022c; Tian et al.,

2022), such as inflammatory bowel disease (IBD) (El Mouzan et al.,

2018), diabetes (Wen et al., 2008), asthma (Demirci et al., 2019),

liver diseases (Henao-Mejia et al., 2013), and cancer (Schwabe and

Jobin, 2013). Although many evidence demonstrated that microbes

have close relationships with human diseases, a comprehensive

understanding about how microbes influence human healths and

produce diseases remains unknown.

Microbe–disease association (MDA) identification not only

help us to capture the mechanisms of complex diseases but

also provide multiple possible biomarkers for their diagnosis and

therapy. However, traditional wet lab remains costly, laborious,

and time-consuming (Chen et al., 2019, 2020; Shen et al.,

2022; Chen and Huang, 2023). With the advance of single

cell sequencing (Peng et al., 2022d, 2023a,b; Wu et al., 2022;

Hu et al., 2023a,b; Xu et al., 2023) and wide application of

artificial intelligence (Chen et al., 2021; Lihong et al., 2022; Peng

et al., 2022a; Wang et al., 2022, 2023; Zhang et al., 2022a,b;

Zhang and Wu, 2023), many computational methods have been

developed to discover potential MDAs. These methods mainly

contain network-based algorithms and machine learning-based

algorithms.

Network-based algorithms take MDA prediction as a random

walk or label propagation problem. For example, to decode

underlying MDAs, BRWMDA fused similarity networks and bi-

random walk (Yan et al., 2019), NBLPIHMDA developed a

bidirectional label propagation algorithm (Wang et al., 2019),

MHEN constructed a multiplex heterogeneous network (Ma and

Jiang, 2020),WMGHMDA implemented iteratively weightedmeta-

graph search model (Long and Luo, 2019), RWHMDA was a

hypergraph-based random walk method (Niu et al., 2019), BDHNS

formulated a bi-directional heterogeneous MDA network (Guan

et al., 2022), andMNNMDA used low-rank matrix completion (Liu

et al., 2023).

Machine learning-based algorithms take MDA prediction as a

classification problem. For example, to discover potential MDAs,

BPNNHMDA (Li et al., 2020) adopted a neural network structure,

GATMDA (Long et al., 2021) exploited a graph attention network

with inductive matrix completion, DMFMDA (Liu et al., 2020)

utilized a deep neural network-based deep matrix factorization

model, NinimHMDA (Ma and Jiang, 2020) explored an end-to-end

graph convolutional neural network structure, KGNMDA (Jiang

et al., 2022) used a graph neural network model, MGATMDA

(Liu et al., 2021) comprised decomposer, combiner, and predictor

where the decomposer captured the latent components using

node-level attention mechanism, the combiner obtained unified

embedding using component-level attention mechanism, and

unknownmicrobe–disease pairs were classified by a fully connected

network. HNGFL (Wang et al., 2022) designed an embedding

algorithm for feature learning and used support vector machine for

MDA classification.

Although computational methods significantly improvedMDA

prediction and uncovered many potential MDAs, there are

some limitations presented in this study. For example, network-

based MDA inference methods cannot find associated entities

for a new microbe or disease. Machine learning-based inference

methods need reliable negative MDAs for implementing the MDA

classification task. Here, we developed an MDA prediction method

called GPUDMDA by combining feature extraction based on graph

attention autoencoder (GATE), reliable negative MDA selection

based on positive-unlabeled (PU) learning, and MDA classification

based on deep neural network (DNN).

2. Materials and methods

2.1. Data preparation

We used two MDA databases to implement MDA prediction.

One database is from the Human microbe–disease Association

Database (HMDAD; http://www.cuilab.cn/hmdad) and contain

450 MDAs between 292 microbes and 39 diseases (Ma et al., 2017).

The other comes fromDisbiome (https://disbiome.ugent.be/home)

(Janssens et al., 2018) and contains 4,351 MDAs between 218

diseases and 1,052 microbes. Moreover, an MDA network Y ∈

ℜn×m is constructed by Eq. (1) as follows:

yij =

{

1, if microbe mi associates with disease dj
0, otherwise

(1)
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2.2. Pipeline for MDA prediction

In this manuscript, we developed an MDA prediction method

called GPUDMDA by combining graph attention autoencoder,

positive-unlabeled learning, and deep neural network. First,

GPUDMDA computes disease similarity and microbe similarity

matrices by integrating their functional similarity and Gaussian

association profile kernel (GAPK) similarity, respectively. Next, it

learns features of each microbe–disease pair using GATE. Third,

it selects several reliable negative MDAs based on PU learning.

Finally, it takes the extracted MDA features and the selected

negative MDAs as inputs and proposes a DNN for discovering

potential MDAs. Figure 1 shows the pipeline of GPUDMDA.

2.3. Similarity computation

2.3.1. Functional similarity of microbes
In the GATMDA, Long et al. (2021) computed microbe

functional similarity according to their co-occurrences (Kamneva,

2017). Similarly, we use the microbe function similarity method

in GATMDA and then compute a functional similarity matrix

S
fun
m betweenmmicrobes, where S

fun
m (mi,mj) denotes the similarity

between two microbesmi andmj.

2.3.2. Functional similarity of diseases
We use the disease functional similarity assessment method

proposed by Long et al. (2021) and compute functional similarity

matrix S
fun

d
between n diseases, where S

fun

d
(di, dj) denotes the

similarity between two diseases di and dj.

2.3.3. Gaussian association profile kernel similarity
GAPK function is a symmetric function along the radial

direction. It can better cluster similar examples with linearly

separable form (Wang et al., 2020). Let Vdi (the ith row of Y) and

Vdj (the jth row of Y) denote two diseases di and dj, respectively,

their similarity can be computed by Eq. (2) as follows:

Gd(di, dj) = exp

(

−θd

∥

∥

∥
Vdi − Vdj

∥

∥

∥

2
)

(2)

where

θd =
1

n

n
∑

i=1

‖Vdi‖
2 (3)

Similarly, microbe GAPK similarity Gm is computed.

2.3.4. Similarity integration
Functional similarity is used to measure microbe/disease

similarity from the aspect of biological properties. GAPK similarity

is used to evaluate microbe/disease similarity from the topological

structure of MDA network. As compared with two individual

similarity measurements, the combination of functional similarity

and GAPK similarity can more accurately assess microbe/disease

similarity and further improve MDA identification performance.

Thus, we use the two types of information for microbe/disease

similarity evaluation. Moreover, the final disease similarity matrix

Sd is computed by integrating their functional similarity and GAPK

similarity by Eq. (4) as follows:

Sd
(

di, dj
)

=











S
fun

d (di ,dj)+Gd(di ,dj)
2 if S

fun

d

(

di, dj
)

6= 0

Gd

(

di, dj
)

otherwise.

(4)

Similarly, microbe similarity matrix Sm is computed by Eq. (5) as

follows:

Sm
(

mi,mj

)

=











S
fun
m (mi ,mj)+Gm(mi ,mj)

2 if S
fun
m

(

mi,mj

)

6= 0

Gm

(

mi,mj

)

otherwise.

(5)

2.4. Feature extraction

GATE can efficiently learn features from structured graph

data by stacking encoders and decoders (Deng et al., 2022). In

this study, we use GATE to extract features for each microbe–

disease pair. The GATE structure contain multiple encoders and

decoders. In the encoders, each encoder uses a self-attention

mechanism to generate new representations for nodes based on

their neighborhood information (Veličković et al., 2017). In the kth

layer of encoder, relationship between node i and its neighbor node

j is computed by Eq. (6) as follows:

c
(k)
ij = Sigmoid

(

V(k)T

s σ

(

W(k)h
(k−1)
i

)

+ V(k)T

r σ

(

W(k)h
(k−1)
j

))

(6)

where W(k), V
(k)
s , and V

(k)
r denote the trainable parameters in the

kth layer of encoder with the sigmoid activation function. h
(k−1)
i

and h
(k−1)
j denote the feature representations of nodes i and j in

the (k − 1)th layer, respectively. For the ith node, its associations

with the other nodes are taken as its initial representation, that is,

h
(0)
i = xi, and its representation in the kth layer is generated by Eq.

(7) as follows:

h
(0)
i = xih

k
i =

∑

j∈Ni

α
(k)
ij σ

(

W(k)h
(k−1)
j

)

(7)

We use the softmax function to normalize coefficients of node

i’s neighbors and solve the comparability problem by Eq. (8) as

follows:

α
(k)
ij =

exp
(

c
(k)
ij

)

∑

l∈Ni
exp

(

c
(k)
il

) (8)

where Ni represents node i and its all neighbors. Moreover,

the output in the final layer of encoder is considered the node

representations.

In the decoder, the initial attributes of each node are

reconstructed. Its input comes from the output in the final layer of

encoder. Each neighbor of the current node is assigned to different
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FIGURE 1

The pipeline of the MDA framework GPUDMDA.

weights by the attention mechanism. The normalized relevance

between node i and its neighbor j in the kth layer of decoder is

computed by Eqs (9) and (10) as follows:

α̂
(k)
ij =

exp
(

ĉ
(k)
ij

)

∑

l∈Ni
exp

(

ĉ
(k)
il

) (9)

ĉkij = Sigmoid
(

V̂(k)T

s σ

(

Ŵ(k)ĥ
(k)
i

)

+ V̂(k)T

r σ

(

Ŵ(k)ĥ
(k)
j

))

(10)

where Ŵ(k), V̂
(k)T

s , and V̂
(k)T

r denote the trainable parameters in the

kth layer of decoder. The kth layer in decoder reconstructs the node

representations in the (k− 1)th layer by Eq. (11) as follows:

ĥk−1
i =

∑

j∈Ni

α̂
(k)
ij σ

(

Ŵ(k)ĥ
(k)
j

)

(11)

The loss function is defined by Eq. (12) as follows:

Loss =

N
∑

i=1

∥

∥xi − x̂i
∥

∥

2
− λ

∑

j∈Ni

log

(

1

1+ exp
(

−hTi hj
)

)

(12)

where the first and second terms denote the reconstruction loss

of node features and one of graph structure, respectively. λ

is a hyperparameter used to balance the contribution of two

reconstruction loss terms. xi and x̂i represent the initial features

and the reconstructed features of node i, respectively. hj is the

representation of a neighboring node j of node i.

Finally, we compute microbe feature vectors and disease

feature vectors using GATE, and then, a microbe-disease pair is

characterized as a a-dimensional vector by concatenating features

of both the microbe and the disease.
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2.5. Reliable negative MDA selection

In the area of machine learning, negative samples are equally

important to final classification performance. However, there are

lack of reliable negative MDAs on existing MDA databases due to

the limitations of biological experiments. Thus, we design a reliable

negative MDA selection method based on PU learning.

PU learning can efficiently identify high-quality negative

samples from unlabeled samples and has been widely used

in various practical situations (Li et al., 2022). The K-means

clustering approach is one of the most popular unsupervised

learning algorithms (Peng et al., 2022b). In the HMDAD and

Disbiome databases, there are a few positive MDAs and multiple

unknown microbe–disease pairs; that is, the two MDA databases

are imbalanced. XGBoost has extremely fast parallel computation

speed and demonstrates better performance in both balanced and

imbalanced databases (Abdu-Aljabar and Awad, 2021).

In this manuscript, we propose a PU learning algorithm to

select reliable negative MDAs by combining K-means clustering

and XGBoost. Let that positive sample set P and unlabeled example

set U denote known MDAs and unknown microbe–disease pairs,

respectively. To select reliable negative MDAs from U, as shown in

Algorithm 1, we design a PU learning algorithm.

1: Clustering each MDA sample with the K-means

clustering algorithm based on the extracted MDA

features using GATE.

2: Selecting the first t samples in P which have

the smallest distance with cluster centroid as S

and adding S into U.

2: Taking P − S as positive samples, and U + S

as negative samples.

3: Calculating association score matrix A for all

microbe-disease pairs based on XGBoost.

4: Ranking microbe-disease pairs in S based on

association scores in A and obtaining the

minimum score Amin in S.

5: For every sample x in U

6: If Ax satisfies Ax < Amin

7: then RN = RN ∪ x

8: Endfor

9: Obtaining reliable negative MDA samples RN.

Algorithm 1. A PU learning algorithm for selecting reliable negativeMDAs.

Particularly, during PU learning, if spy samples are randomly

selected from positive sample set P and placed into U, the

obtained spy samples could be located at the boundary of the

class cluster composed of samples in the entire P and belong

to outliers. These spy samples have low spatial similarity with

unknown positive examples in U. If a large number of noise

or outliers are selected as spy samples, it will greatly affect the

evaluation of the classifier on unlabeled samples, which could

directly cause decreasing classification performance. Thus, we use

K-means clustering algorithm for spy sample selection.

2.6. MDA prediction

We build a DNN to classify unknown microbe–disease pairs

based on the extracted MDA features, the selected reliable negative

MDAs, and known MDAs. The DNN contains an input layer,

multiple hidden layers, and an output layer. In the input layer with

a neurons, each MDA sample x with a-dimensional features is fed

into the model by Eq. (13) as follows:

x = [x1, x2, . . . , xa] (13)

where xi denotes the ith feature in x.

The jth hidden layer outputs the results by Eq. (14) as follows:

hj =

a
∑

i=1

wixi + bj

f
(

hj
)

= ReLU
(

hj
)

(14)

where f denotes the ReLU activation function. Finally, the

output layer with the sigmoid activation function outputs MDA

classification results by Eq. (15) as follows:

σ (h) =
1

1+ e−h
′ (15)

where h
′
denotes the output in the final hidden layer.

3. Result

3.1. Experimental settings

To evaluate the MDA prediction performance of our

proposed GPUDMDA method, we compared it with other

MDA identification methods (LRLSHMDA, NTSHMDA,

GATMDA, and MNMDA) under five-fold cross validation

(CV) on diseases, microbes, and microbe–disease pairs for

20 times. LRLSHMDA (Wang et al., 2017) is Laplacian

regularized least square-based MDA identification algorithm,

NTSHMDA (Luo and Long, 2018) is integrated random walk

and network topology similarity, GATMDA (Long et al., 2021)

combined inductive matrix completion and graph attention

networks to complete missing MDAs, and MNNMDA (Liu

et al., 2023) used a low-rank matrix completion model for

identifying possible MDAs. During MDA prediction, it is

not enough to reflect the MDA identification performance

of a computational model only through cross-validation on

microbe–disease pairs. Thus, in the study, we implemented

cross-validations on microbes, diseases, and microbe–disease

pairs to comprehensively assess the model’s performance. The

detailed definitions about the above three cross-validations

have been proposed by Peng et al. (2020). AUC and AUPR

were applied to measure the performance of MDA prediction

methods.

In this study, we used GATE to extract features of microbes

and diseases from their similarity networks, both of which are

64 dimensional vectors. We selected t samples from positive

sample set P to place unlabeled example set U. When t was set

to 15% of P on the HMDAD database and 20% of P on the

Frontiers inMicrobiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1244527
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Peng et al. 10.3389/fmicb.2023.1244527

FIGURE 2

Performance comparison of five MDA prediction methods under five-fold CV on diseases. (A, B) The ROC and PR curves of the five methods on

HMDAD. (C, D) The ROC and PR curves of the five methods on Disbiome.

Disbiome database, GPUDMDA obtained the best performance.

Thus, we set t to 15 and 20% of P on the two databases,

respectively. For DNN with four layers, the input layer, the

following three hidden layer, and the output layer have 128,

100, 100, 50, and one nodes, respectively. Learning rate and

“dropout” were set to 0.001 and 0.2. The parameter “epoch_num,”

denoting the number of training, was set to 300 and 1,500 on

the two databases, respectively. Disbiome is a larger dataset,

and the proposed computational model needs to be trained

for enough times to obtain better classification performance;

thus, the “epoch_num” value was much larger on the Disbiome

database.

Additionally, the number of positive samples is the same

as one of the known MDAs.The number of selected credible

negative MDAs is related to the computed smallest association

probability score Amin. Since the credible negative MDAs

were selected from unknown microbe–disease pairs, unknown

microbe–disease pairs were decreased but accounted for most of all

microbe–disease pairs.

3.2. Performance comparison under CV on
diseases

Under CV on diseases, 80% diseases were taken as the

training set and the remaining was test set. Figure 2 elucidates the

receiver operating characteristic (ROC) and precision-recall (PR)

curves of the five MDA prediction methods on the HMDAD and

Disbiome databases under CV on diseases. Under CV on diseases,

GPUDMDA obtained the best AUCs of 0.7121 and 0.8372, and the

best AUPRs of 0.2022 and better AUPR of 0.2030 on the HMDAD

and Disbiome databases, respectively, significantly outperforming

LRLSHMDA, NTSHMDA, GATMDA, and MNMDA.
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FIGURE 3

Performance comparison of five MDA prediction methods under five-fold CV on microbes. (A, B) The ROC and PR curves of the five methods on

HMDAD. (C, D) The ROC and PR curves of the five methods on Disbiome.

3.3. Performance comparison under CV on
microbes

Under CV on microbes, 80% microbes were taken as the

training set and the remaining was test set. Figure 3 shows the ROC

and PR curves of the five methods under CV on microbes. Under

CV on microbes, GPUDMDA obtained better AUCs of 0.9454

and 0.8908 and AUPRs of 0.8529 and 0.4367 than LRLSHMDA,

NTSHMDA, GATMDA, and MNMDA.

3.4. Performance comparison under CV on
microbe–disease pairs

Under CV on microbe–disease pairs, 80% microbe–disease

pairs were taken as the training set and the remaining was test

set. Figure 4 illustrates the ROC and PR curves of the five MDA

predictionmethods under CV onmicrobe–disease pairs. Under the

CV, GPUDMDA computed better AUCs of 0.9501 and 0.8948, and

the best AUPRs of 0.8545 and 0.4464 among the five methods.

3.5. The a�ect of PU learning on
performance

Reliable negative samples can improve the classification

performance of a model. To evaluate the reliability of the identified

negative MDAs by GPUDMDA, we compared its performance

under negative sample selection. Figure 5 demonstrates the affect

of negative samples selected by PU learning on performance. The

results elucidated that GPUDMDAwith PU learning outperformed

one without PU learning. Particularly, the performance of

GPUDMDA with PU learning obtained significant improvement

on Disbiome. The results suggested that reliable negative MDAs

selected by PU learning can boost the MDA prediction ability.
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FIGURE 4

Performance comparison of the five MDA prediction methods under five-fold CV on microbe–disease pairs. (A, B) The ROC and PR curves of the five

methods on HMDAD. (C, D) The ROC and PR curves of the five methods on Disbiome.

3.6. Case study

In the above sections, we have confirmed the MDA

identification accuracy of GPUDMDA. Next, we intend to

find new microbes for asthma and IBD.

3.6.1. Identifying new microbes for asthma
Asthma is a heterogeneous disease with respect to respiratory

symptoms including chest tightness, shortness of breath, wheeze,

and cough. It is the most common chronic respiratory condition

and affects ∼339 million people worldwide. Approximately 5%–

10% of these patients have severe asthma. More than 10% of adults

and 2.5% of children suffered from asthma have severe asthma

(Brusselle and Koppelman, 2022; Reddel et al., 2022; Rattu et al.,

2023).

We used the proposed GPUDMDA method to find new

microbes associated with asthma. Tables 1, 2 show the predicted

top 30 microbes that may associate with asthma on the HMDAD

and Disbiome databases. The predicted 30 asthma-associated

microbes included microbes with known association information

with asthma and microbes without association information with

asthma on the two databases. As shown in Table 1, 23 and 29

microbes can be validated by each or both of two databases

or existing literatures among the identified top 30 potential

asthma-associated microbes on the two databases, respectively.

Furthermore, we found that Enterobacter hormaechei could

associate with asthma with the ranking of 15 on the HMDAD

database. On the Disbiome database, GPUDMDA predicted that

Enterobacter may be a sole and unknown asthma-associated

microbe among the predicted top 30 microbes associated with

asthma.

Enterobacter hormaechei (Yeh et al., 2022) is a member and the

most common nosocomial pathogen of the Enterobacter cloacae

complex. It plays a key role in infectious diseases including, urinary

tract infections, pneumonia, biliary tract infections, bacteremia,

colitis and cellulitis. It is commonly found to be a high-

pathogenicity island on its chromosome and is more virulent
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FIGURE 5

The impact of PU learning on performance in two databases.

compared with other E. cloacae complex. In this study, GPUDMDA

identified that E. hormaechei could associate with asthma.

Figure 6 shows the association network between the predicted

top 53 asthma-associated microbes and asthma, after removing

the repeated associations on the two databases. In Figure 6, the

gray solid lines and blue dashed lines denote known associations

between microbes and asthma and the predicted associations

between microbes and asthma, respectively.

3.6.2. Identifying new microbes for inflammatory
bowel disease

IBD is a class of globally chronic intestinal disease (Chang,

2020; Kaplan and Windsor, 2021). It widely exists in the gut

and gastrointestinal tract and extraintestinal organs in many

patients (Rogler et al., 2021). Up to 2 million Europeans and

1.5 million North Americans suffer from this disease (Jairath and

Feagan, 2020). It mainly comprises Crohn’s disease, ulcerative

colitis, and indeterminate colitis (Flynn and Eisenstein, 2019).

Many studies thought that it is the result of interactions

between microbial, environmental, and immune-mediated factors.

In particular, microbiome has been reported to have potential roles

in the development, progression, and treatment of IBD. The gut

microbiome is different in the IBD patients from one in healthy

bodies (Glassner et al., 2020).

In particular, IBD is very common in children. Many

pediatricians and the other pediatric clinicians meet children

suffered from IBD. The IBD pediatric populations demonstrate the

classic features of abdominal pain, bloody diarrhea, and weight loss

as well as non-classic features of anemia, isolated poor growth,

or the other extraintestinal symptoms. Recently, the IBD children

patients show a rising incidence (Rosen et al., 2015; Oliveira and
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TABLE 1 The predicted top 30 microbes associated with Asthma on

HMDAD.

Rank Microbe Evidence

1 Proteobacteria Confirmed by HMDAD and Disbiome

2 Prevotella Confirmed by HMDAD and Disbiome

3 Staphylococcus Confirmed by HMDAD and Disbiome

4 Bacteroidetes Confirmed by HMDAD and Disbiome

5 Enterobacteriaceae Confirmed by Disbiome

6 Clostridium coccoides PMID: 1477358

7 Firmicutes PMID: 23265859

8 Comamonadaceae Confirmed by HMDAD and Disbiome

9 Oxalobacteraceae Confirmed by HMDAD and Disbiome

10 Sphingomonadaceae Confirmed by HMDAD and Disbiome

11 Haemophilus Confirmed by HMDAD and Disbiome

12 Helicobacter pylori Confirmed by HMDAD

13 Enterococcus PMID: 29788027

14 Enterobacter aerogenes PMID: 23842440

15 Enterobacter hormaechei Unconfirmed

16 Klebsiella pneumoniae PMID: 26953325

17 Shigella dysenteriae Unconfirmed

18 Lactobacillus Confirmed by Disbiome

19 Clostridia PMID: 21477358

20 Veillonella Confirmed by Disbiome

21 Klebsiella Confirmed by Disbiome

22 Prevotella copri Unconfirmed

23 Actinobacteria PMID: 28947029

24 Shuttleworthia Unconfirmed

25 Desulfovibrio PMID: 29198875

26 Clostridium difficile PMID: 21872915

27 Oxalobacter formigenes Unconfirmed

28 Fusobacteria Unconfirmed

29 Porphyromonadaceae Confirmed by Disbiome

30 Verrucomicrobiaceae Unconfirmed

Monteiro, 2017). In total, 25%–30% of patients with Crohn’s disease

and 20% of patients with ulcerative colitis have been diagnosed

in <20 years of age. Moreover, 4% of pediatric IBD patients have

been detected before 5 years (Kelsen and Baldassano, 2008). IBD

severely affects normal growth and development of children. When

treating children with newly diagnosed IBD, we need to consider

their affects on growth and development and bone health (Rosen

et al., 2015).

In this manuscript, we used the proposed GPUDMDA method

to find potential microbes associated with IBD. Tables 3, 4 show

the predicted top 30 IBD-associated microbes on the two MDA

databases. The predicted 30 IBD-associated microbes included

microbes with known association information with IBD and

TABLE 2 The predicted top 30 microbes associated with Asthma on

Disbiome.

Rank Microbe Evidence

1 Actinomyces Confirmed by Disbiome

2 Bacteroides stercoris Confirmed by Disbiome

3 Bifidobacterium Confirmed by Disbiome

4 Blautia Confirmed by Disbiome

5 Clostridiaceae Confirmed by Disbiome

6 Clostridium neonatale Confirmed by Disbiome

7 Comamonadaceae Confirmed by HMDAD and Disbiome

8 Corynebacterium Confirmed by Disbiome

9 Faecalibacterium Confirmed by Disbiome

10 Gallibacterium Confirmed by Disbiome

11 Gammaproteobacteria Confirmed by Disbiome

12 Gemella Confirmed by Disbiome

13 Klebsiella Confirmed by Disbiome

14 Leclercia Confirmed by Disbiome

15 Moraxella Confirmed by Disbiome

16 Neisseria Confirmed by Disbiome

17 Nitrosomonadaceae Confirmed by Disbiome

18 Oxalobacteraceae Confirmed by HMDAD and Disbiome

19 Planococcaceae Confirmed by Disbiome

20 Prevotella Confirmed by HMDAD and Disbiome

21 Pseudomonadaceae Confirmed by Disbiome

22 Sphingomonadaceae Confirmed by HMDAD and Disbiome

23 Staphylococcus Confirmed by HMDAD and Disbiome

24 Stenotrophomonas Confirmed by Disbiome

25 Streptococcus Confirmed by Disbiome

26 Sutterella wadsworthensis Confirmed by Disbiome

27 Veillonella Confirmed by Disbiome

28 Weeksella Confirmed by Disbiome

29 Propionibacterium PMID: 13268970

30 Enterobacter Unconfirmed

microbes without association information with IBD. In total,

20 and 28 predicted IBD-associated microbes can be validated

by databases or existing publications among all predicted top

30 microbes on the two databases, respectively. On HMDAD,

GPUDMDA predicted that E. hormaechei could associate with

IBD with the ranking of 7. On Disbiome, the former 28 microbes

have been confirmed to associate with IBD, and GPUDMDA also

identified that E. hormaechei could link with IBD with the ranking

of 29.

Figure 7 shows the association network between the predicted

top 54 IBD-associated microbes and IBD, after removing the

repeated associations on the two databases. In Figure 7, the gray

solid lines and blue dashed lines denote known associations
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FIGURE 6

The predicted top 53 microbes associated with asthma on the two databases.

between microbes and IBD and the predicted associations between

microbes and IBD, respectively.

4. Discussion and conclusion

Microbes manifest dense relationships with various human

complex diseases. Predicting underlying MDAs can contribute

to analyzing complex disease-causing mechanisms and screening

potential biomarkers for the diagnosis and therapy of these diseases.

Traditional wet lab methods are expensive, time-consuming, and

laborious. Consequently, in silico methods have been increasingly

developed as an efficient complementary to experimental methods.

In this study, we developed a deep learning model called

GPUDMDA to capture new linkages between microbes and

various human complex diseases. GPUDMDA first computed

disease similarity and microbe similarity matrices based on

their functional similarity and GIPK similarity, respectively.

Next, it extracted features for each microbe–disease pair with

GATE. Third, it selected a few reliable negative MDAs based

on PU learning with K-means clustering and XGBoost. Finally,

it took the extracted MDA features and the selected negative

MDAs as inputs and designed a DNN to predict potential

MDAs.

GPUDMDA was compared with four state-of-the-art MDA

identification models (i.e., MNNMDA, GATMDA, LRLSHMDA,
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TABLE 3 The predicted top 30 microbes associated with IBD on HMDAD.

Rank Microbe Evidence

1 Clostridium difficile PMID: 27499718

2 Helicobacter pylori PMID: 22221289

3 Staphylococcus PMID: 27239107

4 Clostridia PMID: 31142855

5 Clostridium coccoides PMID: 19235886

6 Enterobacter aerogenes PMID: 4061480

7 Enterobacter hormaechei Unconfirmed

8 Klebsiella pneumoniae PMID: 9930068

9 Shigella dysenteriae Unconfirmed

10 Prevotella copri Unconfirmed

11 Enterococcus PMID: 24629344

12 Klebsiella PMID: 29573336

13 Actinobacteria Confirmed by HMDAD

14 Bifidobacterium PMID: 24478468

15 Dietzia maris Unconfirmed

16 Staphylococcus epidermidis Unconfirmed

17 Oxalobacter formigenes Unconfirmed

18 Tropheryma whipplei Unconfirmed

19 Staphylococcus aureus PMID: 11424320

20 Bacteroides vulgatus PMID: 29454108

21 Actinomyces PMID: 30545401

22 Porphyromonas gingivalis PMID: 31652577

23 Selenomonas Unconfirmed

24 Treponema PMID: 31851086

25 Fusobacterium nucleatum PMID: 26718210

26 Bacteroides ovatus PMID: 30666959

27 Verrucomicrobiaceae PMID: 22572638

28 Desulfovibrio Confirmed by Disbiome

29 Clostridiales Unconfirmed

30 Escherichia coli PMID: 29573336

and NTSHMDA) on the HMDAD and Disbiome databases

under five-fold CVs on microbes, diseases, and microbe–

disease pairs. Under the three CVs, GPUDMDA computed

the best AUCs and AUPRs on the two databases, suggesting

that GPUDMDA could improve MDA prediction performance.

Finally, we implemented case studies for asthma and IBD.

The results showed that E. hormaechei could densely associate

with asthma and IBD and need further biological experimental

validation.

In future, we will combine biological features of microbe,

diseases, and MDA network to design more accurate negative

MDA selection method. In addition, we will also develop

TABLE 4 The predicted top 30 microbes associated with IBD on Disbiome.

Rank Microbe Evidence

1 Anaerostipes Confirmed by Disbiome

2 Bacillus licheniformis Confirmed by Disbiome

3 Blautia Confirmed by Disbiome

4 Bradyrhizobiaceae Confirmed by Disbiome

5 Butyricimonas Confirmed by Disbiome

6 Comamonadaceae Confirmed by Disbiome

7 Christensenellaceae Confirmed by Disbiome

8 Dehalobacter Confirmed by Disbiome

9 Desulfovibrio Confirmed by Disbiome

10 Dorea formicigenerans Confirmed by Disbiome

11 Eubacterium biforme Confirmed by Disbiome

12 Gemella Confirmed by Disbiome

13 Gluconobacter oxydans Confirmed by Disbiome

14 Lachnobacterium Confirmed by Disbiome

15 Methanobrevibacter smithii Confirmed by Disbiome

16 Mogibacterium Confirmed by Disbiome

17 Moraxellaceae Confirmed by Disbiome

18 Pseudomonas straminea Confirmed by Disbiome

19 Ruminococcus bromii Confirmed by Disbiome

20 Saccharomyces cerevisiae Confirmed by Disbiome

21 Streptococcus anginosus Confirmed by Disbiome

22 Bacteroides ovatus PMID: 30666959

23 Enterobacter aerogenes PMID: 4061480

24 Fusobacterium PMID: 25307765

25 Klebsiella pneumoniae PMID: 9930068

26 Paraprevotella PMID: 25307765

27 Propionibacterium acnes PMID: 28630242

28 Staphylococcus PMID: 27239107

29 Oxalobacteraceae Unconfirmed

30 Enterobacter hormaechei Unconfirmed

novel deep learning model to improve MDA classification

performance based on the selected reliable negative MDA

samples. Interestingly, we have conducted several computational

models including existing classical MDA prediction methods.

But the results elucidated that many models failed to compute

better AUPR on the Disbiome database. It may be caused by

different data structures of Disbiome. In future, we will further

design a better robust computational method to improve MDA

prediction on the Disbiome database. We hope that the proposed

GPUDMDA method helps to identify microbes associated with

related diseases and further contributes to mining the clues of

treatment.
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FIGURE 7

The predicted top 54 microbes associated with IBD on the two databases.
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