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The gut microbiota as a potential
biomarker for methamphetamine
use disorder: evidence from two
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Yifang Zhou1, Enhui Wang1 and Yanqing Tang3*

1Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning, China,
2Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,
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Background:Methamphetamine use disorder (MUD) poses a considerable public

health threat, and its identification remains challenging due to the subjective

nature of the current diagnostic system that relies on self-reported symptoms.

Recent studies have suggested that MUD patients may have gut dysbiosis and

that gut microbes may be involved in the pathological process of MUD. We

aimed to examine gut dysbiosis among MUD patients and generate a machine-

learning model utilizing gut microbiota features to facilitate the identification of

MUD patients.

Method: Fecal samples from 78 MUD patients and 50 sex- and age-matched

healthy controls (HCs) were analyzed by 16S rDNA sequencing to identify gut

microbial characteristics that could help differentiate MUD patients from HCs.

Based on these microbial features, we developed a machine learning model to

help identify MUD patients. We also used public data to verify the model; these

data were downloaded from a published study conducted in Wuhan, China (with

16 MUD patients and 14 HCs). Furthermore, we explored the gut microbial

features of MUD patients within the first three months of withdrawal to identify

the withdrawal period of MUD patients based on microbial features.

Results: MUD patients exhibited significant gut dysbiosis, including decreased

richness and evenness and changes in the abundance of certain microbes, such

as Proteobacteria and Firmicutes. Based on the gut microbiota features of MUD

patients, we developed a machine learning model that demonstrated

exceptional performance with an AUROC of 0.906 for identifying MUD

patients. Additionally, when tested using an external and cross-regional

dataset, the model achieved an AUROC of 0.830. Moreover, MUD patients

within the first three months of withdrawal exhibited specific gut microbiota

features, such as the significant enrichment of Actinobacteria. The machine

learning model had an AUROC of 0.930 for identifying the withdrawal period of

MUD patients.
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Conclusion: In conclusion, the gut microbiota is a promising biomarker for

identifying MUD and thus represents a potential approach to improving the

identification of MUD patients. Future longitudinal studies are needed to validate

these findings.
KEYWORDS

methamphetamine use disorder, gut microbes, machine learning, microbiota-gut-brain
axis, addiction
1 Introduction

Amphetamine-type stimulants (ATSs) are a highly prevalent

group of illicit drugs with an estimated 27 million global users

(Unooda, 2022). Methamphetamine is the most commonly used

ATS (Unooda, 2022), and methamphetamine use disorder (MUD)

has emerged as a considerable global public health concern (Kohno

et al., 2020). MUD is a chronic, relapsing brain disease (Leshner,

1997) that influences the physiology of various systems in patients,

such as the central neural system and the gastrointestinal system

(Prakash et al., 2017). However, current diagnostic criteria for MUD

are based on subjective and qualitative symptoms and feelings

reported by patients (Fuchs, 2010; Segata et al., 2011). Although

urine and blood tests are commonly used to detect the use of

methamphetamine (Cruickshank and Dyer, 2009), the results do

not necessarily provide a clear indication of MUD (Segata et al.,

2011; Prakash et al., 2017). It is possible for individuals who casually

use methamphetamine to test positive, despite not exhibiting MUD.

Moreover, some MUD patients may not test positive if they have

not used the drug during the test window (Oyler et al., 2002). As

such, it is critical to explore alternative objective biomarkers and

diagnostic models to more accurately assess the presence of MUD,

rather than relying solely on measures of recent drug exposure

(Segata et al., 2011).

The withdrawal period plays a pivotal role in MUD, as it is

critical for determining a patient’s prognosis regarding whether

they will achieve sustained recovery or experience a relapse (Zorick

et al., 2010). Specifically, the initial three months after withdrawal

are of utmost importance, as MUD patients tend to experience

worse outcomes, including elevated levels of anxiety, depression,

impulsivity, and cravings for methamphetamine, during this period

(Wang et al., 2013). In addition, in MUD patients who were

undergoing a withdrawal period of within three months, relative

glucose metabolism was observed to be higher in the parietal cortex

and lower in the striatum and thalamus (Nora D. Volkow et al.,

2001). Furthermore, the first 3 months after withdrawal is a crucial

period for intervention (McKetin et al., 2012). Moreover, the

duration of withdrawal reflects the time of the most recent

methamphetamine use by MUD patients, which may not only

provide clues for clinical intervention but also for judicial

purposes. However, current detection methods are still inadequate

for determining the duration of withdrawal and the time of the most

recent drug use by MUD patients.
02
As research on the microbiota-gut-brain axis continues to

expand, the role of the gut microbiota in psychiatric diseases has

become increasingly evident (Cryan et al., 2019; Qin et al., 2021).

Indeed, the gut microbiota has emerged as a promising new

biomarker for a range of central nervous system diseases and

mental illnesses, including Parkinson’s disease (Nair et al., 2018),

schizophrenia (Zhu et al., 2020), and depression (Hu et al., 2019).

Recent research has indicated that compared to healthy controls

(HCs), MUD patients exhibit significant differences in some gut

microbes (Deng et al., 2021; Yang et al., 2021). The gut microbiota

may participate in the development of MUD through its release of

inflammatory mediators, such as bacterial lipopolysaccharide (Deng

et al., 2021; Yu et al., 2023). Moreover, a previous study conducted on

rats showed that gut dysbiosis after methamphetamine cessation

changed in relation to the duration of withdrawal (Forouzan et al.,

2021). Based on the above evidence, we hypothesized that MUD

patients exhibit gut dysbiosis, and this dysbiosis may vary depending

on the duration of withdrawal. In addition, these gut microbiota

dysbiosis features can help identify MUD patients and the amount of

time they have been in withdrawal.

The gut microbiota is a multifaceted and ever-changing

community of diverse microbes (Cryan et al., 2019). Given its

intricacy, machine learning, a valuable technique for analyzing

heterogeneous biological data with inherent noise, has been

commonly employed in the development of microbiota-based

diagnostic models (Namkung, 2020). In this research, our objective

was to examine gut dysbiosis among MUD patients and generate a

machine-learning model utilizing gut microbiota features to facilitate

the identification of MUD patients. Furthermore, in patients with

MUD, we attempted to explore the variability in the gut microbiota in

MUD patients who underwent varying durations of abstinence and

assess the potential of the microbiota as an indicator for identifying

the amount of time spent in withdrawal by MUD patients.
2 Methods

2.1 Participants

Participants with MUD were recruited from the First

Compulsory Rehabilitation Center of Shenyang. To ensure the

accuracy of MUD diagnosis, MUD participants were required to

be 18-60 years of age, meet the Diagnostic and Statistical Manual of
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Mental Disorders (DSM) 5 criteria for MUD, and have medical

records showing at least two positive urine tests with an interval of

more than one month. In addition, to clarify the disease and

minimize the impact of the drug on the gut microbiota, all MUD

participants had a negative urine test for methamphetamine at the

time of sampling. HCs were recruited through advertising and had

to meet the following inclusion criteria: age of 18-60 years, no

history of psychoactive substance use or meeting any DSM-5

diagnosis criteria, and no family history of mental illness.

Exclusion criteria were set for all participants to control for

factors that could influence the gut microbiota, including

infections by specific pathogens, such as HIV, syphilis, hepatitis B

or C virus; any use of antibiotics, probiotics, corticosteroids, or

immunomodulators within one month prior to sample collection;

gastrointestinal diseases such as irritable bowel syndrome; and

specific dietary habits such as a preference for high-fat diets or

completely vegetable-based diets. This study received approval (No.

[2021]361) from the Ethics Committee of the First Hospital of

China Medical University and adhered to the principles of the

Declaration of Helsinki. All participants provided written informed

consent after being fully informed about the study.
2.2 Collection and analysis of demographic
and clinical information

After signing the informed consent form, participants

completed a self-report questionnaire to provide their

demographic information, including age, sex, and height. MUD

participants also provided information on their history of

methamphetamine use, as well as their level of methamphetamine

craving using a visual analog scale (VAS). Finally, all participants

had their weight measured to determine their body mass index

(BMI) accurately. SPSS v24.0 (Corp., 2016) was used to analyze the

demographic and clinical information. We used the chi-square test

to analyze differences in sex distribution between groups. For

continuous variables, we compared differences between groups

using statistical analyses, including independent t tests and

Mann-Whitney U tests, depending on the distribution properties

of the data. As the first three months of withdrawal is a critical

period for MUD patients (Guo et al., 2022), they were further

grouped according to their withdrawal time. The short-term

withdrawal subgroup (withdrawal time < 3 months) and the long-

term withdrawal subgroup (withdrawal time >= 3 months) were

compared to analyze the gut microbiota features of MUD patients

with different withdrawal times.
2.3 Sample collection and 16S
rDNA sequencing

Fecal samples were collected using fecal DNA storage tubes

(CW2654, CwBiotech, Beijing, China) and sent to the laboratory

within 72 hours. The samples were stored at -80°C in the laboratory

until 16S rDNA sequencing analysis was performed. Sample DNA

was extracted using the MN® NucleoSpin 96 Soil Kit following the
Frontiers in Cellular and Infection Microbiology 03
manufacturer’s instructions. Prior to the polymerase chain reaction,

Qubit fluorometric quantitation was used to measure both the

quantity and quality of isolated DNA. The bacterial 16S rDNA

gene V3-V4 region was amplified by a specific primer pair (338F: 5’-

ACTCCTACGGGAGGCAGCA-3 ’ , 806R: 5 ’-GACTACH

VGGGTATCTAATCC-3’). Amplicons were purified by gel

electrophoresis, quantified and sequenced on an IIumina HiSeq

2500 sequencing platform using paired-end sequencing with a read

length of 2*250 bp. The sequencing data were deposited in the

National Center for Biotechnology Information (NCBI) BioProject

database under project number PRJNA970410.
2.4 Sequence data processing and
bioinformatic analysis

We followed a rigorous pipeline for processing 16S rDNA gene

sequencing data (Figure 1). FASTP (Chen et al., 2018) was applied

to perform adapter and low-quality read filtering using the raw data.

Cutadapt v2.7.8 (Martin, 2011) was used to identify and remove

primer sequences, resulting in high-quality reads without primer

sequences. Then, Trimmomatic v0.33 (Bolger et al., 2014) was

utilized to filter the raw reads, resulting in high-quality reads.

USEARCH v10.0.240 (Edgar, 2010) and VSEARCH v2.15.2

(Rognes et al., 2016) were used to create amplicon sequence

variant (ASV) abundance tables and align sequences against the

SILVA database (silva_16S_v123.fa) (Quast et al., 2012) for taxa

annotation at different taxonomic levels. Next, we calculated the

diversity of the gut microbiota using the vegan package v2.6-4

(Oksanen et al., 2007) in R v4.1.3 (Team, 2022). For alpha diversity

analysis, we used the Chao1 index to represent richness and the

Shannon index to represent evenness. The Welch t test was used to

compare the alpha diversity between the groups. We quantified beta

diversity using the Bray-Curtis distance and visualized the results by

principal coordinates analysis (PCoA). Permutational multivariate

analysis of variance (PERMANOVA) was used to compare the beta

diversity between the groups. Enterotypes are a classification system

for grouping individuals based on the composition of their gut

microbiome. Three main enterotypes, labeled ET_F, ET_B, and

ET_P, have been identified (Arumugam et al., 2011). According to

the genus-level taxonomic distribution, we analyzed the enterotypes

of samples by the enterotype classification model generated by

Arumugam, M. et al. (Arumugam et al., 2014) and compared the

enterotypes in different groups by the chi-square test. We utilized

the Welch t test to compare the abundance of the top 10 phyla and

genera between groups with R v4.1.3 and identified potential

biomarkers by the linear discriminant analysis (LDA) effect size

(LEfSe, LDA score >2.0, p < 0.05) with Galaxy (Segata et al., 2011).
2.5 Public data downloading
and processing

To create the external dataset, we downloaded 16S rDNA

sequencing data from a total of 30 raw fecal samples. These

samples were acquired from a published study conducted in
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Wuhan, China (Yang et al., 2021) (with 16 MUD patients and 14

HCs) from the SRA database (PRJNA679237). After downloading,

the taxonomic profiling pipeline was performed according to the

process described above.
2.6 Machine learning

To develop a machine learning model for MUD diagnosis based

on gut microbiota features, we implemented a support vector

machine (SVM) using e1071 package v1.7-13 (Dimitriadou et al.,

2006) in R v4.1.3 (Team, 2022). Given the superior performance of

LEfSe over other feature selection methods, such as stepwise

selection, in the field of microbiology (Yang et al., 2020), we

chose the relative abundances of the taxa identified as potential

biomarkers by LEfSe as our featured variables. The training dataset

consisted of samples collected in this study, and the oversampling

measurement was used to balance the class distribution. Model

tuning was performed using 10-fold cross-validation. To test the

generalizability of the classifier, we tested the model in the external

dataset obtained from another region.

Moreover, we developed an SVM classifier model for the short-

term withdrawal subgroup and long-term withdrawal subgroup.

The model features included the relative abundances of taxa

identified as potential biomarkers of the short-term and long-

term withdrawal groups in LEfSe analysis. The training dataset

(90%) was randomly divided from the samples gathered during this

study, and oversampling measurements were used to achieve class

distribution balance. Model tuning was also carried out via 10-fold

cross-validation, and the model was then validated using the

remaining 10% of samples in the dataset.

To evaluate the models, we calculated the area under the

receiver operating characteristic curve (AUROC), Youden’s index,

accuracy, sensitivity, and specificity. The code for the machine
Frontiers in Cellular and Infection Microbiology 04
learning analysis performed in this study is available at https://

osf.io/m5s23/. We considered results to be statistically significant if

P < 0.05 in this study.
3 Results

3.1 Demographic and clinical data

A total of 128 participants were enrolled in the study, including

78 MUD patients and 50 HCs. The average age of the participants

was 41.36 ± 9.52 years old, with women comprising 32.8% (n = 42)

of the participants. The mean BMI was 25.28 ± 3.24. Table 1

provides a summary of the characteristics of all study participants.

No significant differences were found in age, sex, or BMI between

the MUD patients and HCs. Moreover, the median duration of

withdrawal among the MUD patients was 48.5 days, while their

average course of MUD was 9.24 ± 5.44 years.
3.2 The gut microbiota of MUD
patients and HCs

We read 10,045,147 valid tags from samples collected from the

128 participants. After filtering, denoising, merging, and removing

the chimeras and singletons, each sample had an average of 77,709

sequence reads for further analysis. After clustering and aligning

with the SILVA database, we identified 22,757 ASVs belonging to

195 genera across 12 phyla. The analysis of alpha diversity showed

that MUD patients had a significantly lower Shannon index (T =

2.338, p = 0.021) and a trend of a lower Chao1 index (T = 1.919, p =

0.058) than the HCs (Figures 2A, B). Beta diversity performed

according to the Bray-Curtis distance also significantly differed (F =

2.254, p = 0.001) between MUD patients and HCs (Figure 2C).
FIGURE 1

Flow diagram of the development and validation of the MUD patient identification model.
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Upon conducting the enterotype analysis, it was observed that half

of the HC group exhibited the ET_F enterotype, while the

remaining half possessed the ET_B enterotype. In contrast, MUD

patients displayed a higher occurrence rate of the ET_F enterotype,

although this finding was statistically nonsignificant, as depicted in

Figure 2D (c² = 3.450, p = 0.178).

The taxonomic distribution of gut microbial communities

differed between MUD patients and HCs (Figures 2E, F). Among

the top 10 phyla, the relative abundances of Firmicutes (T = -2.700,

p = 0.008), Proteobacteria (T = -2.247, p = 0.027), and

Actinobacteria (T = 2.498, p = 0.010) were significantly different

between MUD patients and HCs (Figure 2G). In addition, MUD

patients showed a significantly higher Firmicutes/Bacteroidetes ratio

than HCs (T = -2.384, p = 0.020, Figure 2G). Among the top 10

genera, the relative abundances of Lachnoclostridium (T = -4.695, p

< 0.001), Bifidobacterium (T = 3.101, p = 0.003), and Lachnospira (T

= -2.521, p = 0.010) were significantly different between MUD

patients and HCs (Figure 2G). Moreover, the MUD patients did not

show any significant differences from HCs in the levels of either

Bacteroides or Prevotella (p > 0.05).
3.3 Training and testing the MUD
identification model

To identify potential biomarkers of MUD, we conducted a

LEfSe analysis comparing microbial abundance between MUD

patients and HCs (Figure 3A; Supplementary 1). The results

revealed 90 potential biomarkers from five phyla: Actinobacteria,

Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria. The

abundances of the microbes were used as features in SVM model

training. After oversampling, the balanced training dataset included

155 samples (78 MUD patients and 77 HCs, Figure 3B). Through

10-fold cross-validation, the model achieved an AUROC of 0.906

(Figure 3C), a Youden index of 0.789, an accuracy rate of 0.894, a

sensitivity of 0.852, and a specificity of 0.937. Then, we tested the

classifier model on the external dataset (samples from Wuhan,

China) downloaded from the SRA public database (Figure 3B). The

classifier showed an AUROC of 0.830 (Figure 3C), a Youden index
Frontiers in Cellular and Infection Microbiology 05
of 0.670, an accuracy rate of 0.833, a sensitivity of 0.813, and a

specificity of 0.857.
3.4 The gut microbiota of MUD patients
with different withdrawal times

Based on the withdrawal time, the 78 MUD patients were

divided into a short-term withdrawal group (n = 45) and a long-

term withdrawal group (n = 33). Other than the withdrawal time,

no significant differences were found in demographic and clinical

information between the groups (Supplementary 2). Microbiota

diversity analysis showed that the MUD patients with different

withdrawal times were significantly different in beta diversity but

not in alpha diversity (Figures 4A–C). The enterotype analysis

showed that there was no significant difference in the distribution of

enterotypes between MUD patients with different withdrawal times

(Figure 4D, c² = 2.121, p = 0.346).

Among the top 10 phyla (Figure 4E), only the relative abundance

of Actinobacteria (T = 2.554, p = 0.013) significantly differed between

MUD patients with different withdrawal times (Figure 4G).

Moreover, there was no significant difference in the Firmicutes/

Bacteroidetes ratio between the two groups (p > 0.05). Among the

top 10 genera (Figure 4F), only the relative abundance of Collinsella

(T = 2.386, p = 0.020) significantly differed between groups

(Figure 4H). LEfSe showed 18 potential biomarkers from four

phyla: Actinobacteria, Firmicutes, Fusobacteria, and Proteobacteria

(Figure 5A; Supplementary 3). The 18 potential biomarkers were used

as features in the withdrawal time classifier training. After random

splitting and oversampling, the balanced training dataset included 82

samples (42 short-term withdrawal MUD patients and 40 long-term

withdrawal MUD patients). Through 10-fold cross-validation, the

model achieved an AUROC of 0.982 (Figure 5B), a Youden index of

0.826, an accuracy rate of 0.915, a sensitivity of 0.850, and a specificity

of 0.976. Then, we test the model on the test dataset (5 short-term

withdrawal MUD patients and 3 long-term withdrawal MUD

patients). The classifier showed an AUROC of 0.933 (Figure 5B), a

Youden index of 0.667, an accuracy rate of 0.875, a sensitivity of

0.667, and a specificity of 1.
TABLE 1 Demographic and clinical information of participants.

Demographic information HC MUD T/c2 P

n = 50 n = 78

Female (%) 40 28.2 1.923 0.166

Age (yrs, mean ± SD) 43.40 ± 9.70 40.05 ± 9.23 -1.963 0.052

BMI (kg/m2, mean ± SD) 24.59 ± 3.00 25.71 ± 3.34 1.931 0.056

Withdrawal time (days) NA 48.5 (19.5, 281.5) NA NA

Course of MUD (yrs, mean ± SD) NA 9.24 ± 5.44 NA NA

Times of treatment (times) NA 1 (1, 2) NA NA

Craving (VAS scores) NA 0 (0, 2) NA NA
frontier
VAS: Visual Analog Scale for craving.
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4 Discussion

Since previous studies have mainly focused on male MUD

patients and involved small sample sizes (Deng et al., 2021; Yang

et al., 2021), we conducted the largest data-available study to date to

compare the gut microbiota composition in 78 MUD male and

female patients and 50 sex- and age-matched HCs. We identified 90

taxa from five phyla as potential biomarkers to help identify MUD

patients. Based on these taxa, we developed a machine learning

model that was highly effective in distinguishing MUD patients. The

model also showed generalizability across regions. To further

explore the potential role of the gut microbiota in distinguishing
Frontiers in Cellular and Infection Microbiology 06
MUD patients with different withdrawal stages, we identified 18

taxa as potential biomarkers, and the model based on the taxa also

performed well. To our knowledge, this study is the first to provide

evidence for the role of the microbiota in MUD identification and to

illustrate the differences in the gut microbiota between MUD

patients with varying withdrawal times.

In this study, the gut microbiota of MUD patients showed a

significant decrease in evenness and a downward trend in richness

compared with that of HCs. Additionally, there was a significant

difference in beta diversity between the two groups. These findings

indicate that individuals with MUD may have an imbalanced gut

microbiota. This is consistent with previous studies (Yang et al.,
A B

D E F

G

C

FIGURE 2

Gut microbiota differences between MUD patients and HCs. (A) Comparison of alpha diversity (Chao1) between MUD patients and HCs. (B)
Comparison of alpha diversity (Shannon) between MUD patients and HCs. (C) Comparison of beta diversity (Bray-Curtis distance) between MUD
patients and HCs. (D) Comparison and distribution of enterotypes in MUD patients and HCs. (E) Composition of gut microbiota at the phylum level
in the MUD patients and HCs. (F) Composition of gut microbiota at the genus level in the MUD patients and HCs. (G) Taxa significantly different
between MUD patients and HCs in the top 10 abundant phyla/genera. * indicates p < 0.05; ** indicates p < 0.01; **** indicates p < 0.0001;
'ns' indicates p > 0.05.
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2021; Wang et al., 2023). In addition to diversity, enterotype is an

important indicator of the human gut microbiota (Arumugam et al.,

2011). This study is the first to compare the enterotype distribution

between MUD patients and HCs, and the results showed that MUD

patients have a higher percentage of individuals with the ET_F

enterotype. Another study found that MUD patients also have a

higher percentage of people with the ET_F enterotype than casual

methamphetamine users (He et al., 2023). This suggests that the

prevalence of the ET_F enterotype may be associated with MUD.

One possible explanation is that the gut environment of MUD

patients might be more conducive for bacteria associated with the

ET_F enterotype to thrive. However, considering the two-way

communication between the gut and the brain, there is also a

possibility that individuals with the ET_F enterotype have a higher

susceptibility to MUD. The taxonomic distribution results revealed

additional details regarding the taxa associated with the ET_F

enterotype. Among the top 10 genera, Lachnoclostridium

and Lachnospira were significantly enriched in MUD patients,

and both were associated with the ET_F enterotype.

Lachnoclostridium and Lachnospira are from the family

Lachnospiraceae, and their abundance has been found to be

positively related to psychotic symptoms in MUD patients, such
Frontiers in Cellular and Infection Microbiology 07
as difficulty in abstract thinking (Yang et al., 2021). Additionally, it

was observed that MUD patients had a significantly higher

abundance of Firmicutes and a higher Firmicutes/Bacteroidetes

ratio than HCs, which are also features of the ET_F enterotype

(Arumugam et al., 2011). An unbalanced Firmicutes/Bacteroidetes

ratio is indicative of gut dysbiosis and is associated with various

chronic diseases, such as obesity (Magne et al., 2020), inflammation

(Stojanov et al., 2020), and hypertension (Yang et al., 2015).

Interestingly, MUD patients are also a high-risk population for

these diseases (Kaye et al., 2007; J Edge and Gold, 2011; Davidson

et al., 2022). Even though it is challenging to determine a causal

relationship, future studies should consider the potential role of the

gut microbiota in the increased susceptibility to chronic illnesses

among MUD patients. In addition, some taxa, including Bacteroides

and Prevotella, did not differ between the HCs and MUD patients.

These two taxa were interpreted as biomarkers of diet and lifestyle

(Gorvitovskaia et al., 2016). This suggests that diet and lifestyle

factors may have been similar between the HCs and MUD patients

in this study. Although our findings demonstrate a significant

association between certain gut bacteria and MUD, we have to

acknowledge that the study’s design does not allow us to establish

causal relationships between changes in the gut microbiota and the
A

B C

FIGURE 3

Microbial features and the performance of the MUD patient identification model. (A) Cladograms generated by LEfSe (LDA > 2, p < 0.05) indicating
differences in the bacterial taxa between MUD patients and HCs, which were used as the microbial features for model training. (B) Distribution of the
training and test dataset for the MUD patient identification model. (C) The AUROC of the MUD identification model using the training and test
datasets.
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development of MUD. To more effectively explore causality, future

longitudinal studies would enable us to track changes in both the

gut microbiota and MUD development over time, providing more

insight into potential causal relationships. Additionally, future

interventional trials could involve manipulating the gut

microbiota composition and assessing subsequent changes in

MUD incidence, offering a more direct way to investigate causality.

In summary, MUD patients showed a notable imbalance in the

gut microbiota. To develop a microbiota-based identification model

for MUD, we utilized LEfSe to identify potential biomarkers. LEfSe

is a commonly utilized method, based on the machine learning

model of LDA, to identify biomarkers in the gut microbiome
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(Segata et al., 2011). Some of the taxa identified by LEfSe have

already been shown to potentially contribute to the pathological

processes of MUD. For example, Klebsiella has been found to

influence the lipopolysaccharide level of the host and further

mediate the craving for methamphetamine after withdrawal in

rats (Yu et al., 2023). Parasutterella has been found to be related

to the impairment of bile acid homeostasis and host weight gain

after methamphetamine use in mice (Zhang et al., 2022). The results

related to the gut microbiota features of MUD might provide new

perspectives for developing future personalized treatment

approaches to reduce drug craving or metabolism imbalance.

Based on these potential biomarkers, we developed a machine
A B

D E F
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FIGURE 4

Gut microbiota differences between short- and long-term withdrawal MUD patients. (A) Comparison of alpha diversity (Chao1) between short- and
long-term-withdrawal MUD patients. (B) Comparison of alpha diversity (Shannon) between short- and long-term withdrawal MUD patients. (C)
Comparison of beta diversity (Bray-Curtis distance) between short- and long-term-withdrawal MUD patients. (D) Comparison of the distribution of
enterotypes between short- and long-term-withdrawal MUD patients. (E) Composition of the gut microbiota at the phylum level in short- and long-
term-withdrawal MUD patients. (F) Composition of gut microbiota at the genus level in short- and long-term-withdrawal MUD patients. (H) Taxa
significantly different between short- and long-term withdrawal MUD patients among the top 10 abundant phyla. (G) Taxa significantly different
between short- and long-term withdrawal MUD patients among the top 10 abundant genera. * indicates p < 0.05; 'ns' indicates p > 0.05. STW
indicates short-term withdrawal MUD patients; LTW indicates long-term withdrawal MUD patients.
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learning model that performed well (accuracy = 0.894) to help

identify MUD patients. There has been no previous study on a

microbiota-based model to help identify MUD. What we known

about ability of microbiota as the potential biomarker upon

previous study is largely based on other diseases. Based on gut

microbial biomarkers, Addolorato et al. developed a random forest

classifier with an accuracy of 0.934 for identifying patients with

alcohol use disorder compared to HCs (Addolorato et al., 2020).

Based on oral microbial biomarkers, Kosciolek et al. developed a

machine learning model with an accuracy of 0.83 for identifying

patients with substance use disorder (including both stimulants and

opioids) compared to HCs (Kosciolek et al., 2021). The high-

performance metrics of the models were consistent with previous

studies on microbial biomarkers for addiction diseases. Considering

addiction is a chronic brain disease, another popular potential

biomarker is neuroimaging (Yang et al., 2023). In contrast to

previous neuroimaging-based models for identifying MUD

patients, which had an accuracy range of 0.732-0.880 (Yu et al.,

2020; Yan et al., 2021), microbial-feature-based models

demonstrate more satisfactory efficacy. Additionally, the

generalizability across regions of the model adds another layer of

significance. To validate the efficacy and generalizability of our

MUD identification model, we introduced an external dataset.

Nonetheless, it is crucial to recognize that discrepancies in

population demographics, sample collection methods, or

laboratory protocols across datasets can collectively influence the

model’s performance when extrapolated to an external dataset. For

instance, in the external dataset, all samples consisted of male

individuals, potentially accounting for the observed decrease in

accuracy when the model was applied to this external dataset.

However, although the model’s performance when applied to an

external dataset declined, it continued to demonstrate promising

classification capabilities. The shared effective microbial biomarkers
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between cohorts from Northwest China (Shenyang) and Central

China (Wuhan) in this study suggest that while distinct regional

populations might exhibit varying microbial community structures,

potential biomarkers for microbial dysbiosis associated with MUD

could possess universal attributes. These potential biomarkers

manifest a consistent trend in distribution and characteristics of

the gut microbiota in MUD patients (Yang et al., 2021; Wang et al.,

2023). The results indicate that the microbial changes in MUD

patients might be stable across different regions, and the

combination of microbiota features and the machine learning

model could be an innovative strategy for exploring noninvasive

biomarkers for MUD. This approach might help address the issue of

subjectivity in current diagnosis techniques based on symptoms

(Fuchs, 2010) as well as the limited time window for urine tests

(Cruickshank and Dyer, 2009).

While the model’s metrics showcased satisfactory performance,

it is necessary to deliberate on the practical significance of its

predictive capacity with caution. The inherent limitations of

employing machine learning models for clinical outcome

prediction cannot be overlooked. First, machine learning models

are inherently constrained by the training dataset. Considering that

the gut microbiota is notably impacted by ethnicity and

environment, even if the model demonstrates strong performance

on an external dataset, the applicability of the model to broader

contexts is subject to scrutiny. Moreover, machine learning models

are frequently regarded as ‘black boxes’ due to the lack of

transparency and interpretability. In the realm of clinical practice,

it is imperative for the benefit of patients that psychiatrists grasp the

underlying rationale for every clinical decision. The models should

be regarded as complementary tools, designed to supplement rather

than supplant the judgment and expertise of psychiatrists.

To further analyze whether the gut microbiota of MUD patients

with different withdrawal times exhibit distinct features, we
A B

FIGURE 5

Microbial features and the performance of the MUD withdrawal period identification model. (A) Cladograms generated by LEfSe (LDA > 2, p < 0.05)
indicating differences in the bacterial taxa between the short-term and long-term withdrawal MUD patients, which were used as the microbial
features for model training. (B) The AUROC of the MUD withdrawal period identification model on the dataset. STW indicates short-term withdrawal
MUD patients; LTW indicates long-term withdrawal MUD patients.
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compared the gut microbiota between long-/short-term-withdrawal

MUD patients. Our findings revealed a significant difference in beta

diversity and the levels of some taxa, such as Collinsella, between

long- and short-term withdrawal MUD patients, suggesting that the

gut microbiota of MUD patients may change during withdrawal. A

previous study conducted on rats a l so showed that

methamphetamine cessation significantly changed the

composition of the gut microbiota, and these changes fluctuated

depending on the amount of time after cessation (Forouzan et al.,

2021). A human research study (Deng et al., 2021) including MUD

patients with a longer withdrawal time (an average of 8 months)

reported different results in both gut microbiota diversity and

composition from studies that included MUD patients with a

withdrawal time ranging from 1 week to 6 months (Cook et al.,

2019; Yang et al., 2021). Discerning differences among MUD

patients who have undergone different withdrawal periods may

prove instrumental in identifying the time of the most recent

methamphetamine use and recent methamphetamine usage. This

is crucial for accurately assessing and further helping provide better

MUD management strategies. Our model confirmed that the

microbiota differed in MUD patients with different withdrawal

periods and indicated that microbiota features may be potential

biomarkers to help identify the time of the most recent

methamphetamine use by MUD patients, which may further help

prompt drug use information in the clinic. However, considering

that the sample size of the training dataset was not satisfactory, the

model had a risk of overfitting. The result of the MUD withdrawal

period identification model should be interpreted with caution.

We acknowledge that there were several limitations to this

study. First, the differences in the gut microbiota between long- and

short-term-withdrawal MUD patients were based on cross-

sectional data, and host factors might have confounded the

results. Second, the results of the methamphetamine withdrawal

period identification model are exploratory due to the limited

sample size for training and lack of an external test dataset.

Third, we need to consider the limitations of the study design

and specific study populations. Although the results regarding

Bacteroides and Prevotella suggested that diet and lifestyle factors

may be similar between HCs and MUD patients, specific

information on diet and lifestyle was not collected in this study

design. Moreover, the samples included in this study were limited to

MUD patients. The results cannot be generalized to other substance

use disorders. Fourth, although we analyzed the enterotypes of

samples with the enterotype classifier based on the reference dataset

of the European Metagenomics of the Human Intestinal Tract

project to ensure consistency with previous studies of enterotypes

based on large samples, this classification system for gut

microbiome enterotypes is still debatable. Additional study on the

enterotypes of MUD is needed with the further development of

human enterotype research.

In summary, the gut microbiota of MUD patients and HCs differ

significantly, and the gut microbiota of MUD patients may change

during methamphetamine withdrawal. We developed machine

learning models that effectively distinguish MUD patients and
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determine their withdrawal period, which demonstrated the potential

of using gut microbiota as biomarkers in identifying MUD patients.

Overall, our results suggest that the fecal microbiome-based model for

identifying MUD patients is feasible, which has important implications

for the development of noninvasive diagnostics and the establishment

of a comprehensive MUD disease management strategy. Future

longitudinal studies with larger sample sizes are needed to validate

these findings, and multiomics solutions are needed to explore the

underlying mechanisms.
Data availability statement

The data presented in the study are deposited in the Sequence

Read Archive, accession number PRJNA970410 (https://www.ncbi.

nlm.nih.gov/bioproject/PRJNA970410).
Ethics statement

The studies involving humans were approved by the Ethics

Committee of the First Hospital of China Medical University. The

studies were conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study.
Author contributions

LL: Conceptualization, Data curation, Formal Analysis,

Investigation, Methodology, Project administration, Visualization,

Writing – original draft. ZD: Conceptualization, Data curation,

Investigation, Project administration, Writing – review & editing.

WL: Investigation, Project administration, Writing – review &

editing. RL: Methodology, Supervision, Writing – review &

editing. TM: Investigation, Writing – review & editing. YZ:

Conceptualization, Supervision, Writing – review & editing. EW:

Investigation, Writing – review & editing. YT: Conceptualization,

Funding acquisition, Project administration, Resources,

Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by National Key R&D Program of China (Grant

#2018YFC1311600 and 2016YFC1306900 to YT), Liaoning

Revitalization Talents Program (Grant #XLYC1808036 to YT),

and Science and Technology Innovation 2030 -Major Project on

Brain Science and Brain-like Research (Grant #2021ZD0200600

and 2021ZD0200700 to YT).
frontiersin.org

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA970410
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA970410
https://doi.org/10.3389/fcimb.2023.1257073
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2023.1257073
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Cellular and Infection Microbiology 11
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fcimb.2023.1257073/

full#supplementary-material
References
Addolorato, G., Ponziani, F. R., Dionisi, T., Mosoni, C., Vassallo, G. A., Sestito, L.,
et al. (2020). Gut microbiota compositional and functional fingerprint in patients with
alcohol use disorder and alcohol-associated liver disease. Liver Int. 40 (4), 878–888.
doi: 10.1111/liv.14383

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., et al.
(2011). Enterotypes of the human gut microbiome. nature 473 (7346), 174–180.
doi: 10.1038/nature09944

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., et al.
(2014). Addendum: Enterotypes of the human gut microbiome. Nature 506 (7489),
516–516. doi: 10.1038/nature13075

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30 (15), 2114–2120. doi: 10.1093/
bioinformatics/btu170

Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ
preprocessor. Bioinformatics 34 (17), i884–i890. doi: 10.1093/bioinformatics/bty560

Cook, R. R., Fulcher, J. A., Tobin, N. H., Li, F., Lee, D. J., Woodward, C., et al. (2019).
Alterations to the Gastrointestinal Microbiome Associated with Methamphetamine
Use among Young Men who have Sex with Men. Sci. Rep. 9. doi: 10.1038/s41598-019-
51142-8

Corp., I. (2016). “IBM SPSS statistics for windows, version 24.0 (Armonk, NY: IBM
Corp).

Cruickshank, C. C., and Dyer, K. R. (2009). A review of the clinical pharmacology of
methamphetamine. Addict. (Abingdon England) 104 (7), 1085–1099. doi: 10.1111/
j.1360-0443.2009.02564.x

Cryan, J. F., O’Riordan, K. J., Cowan, C. S., Sandhu, K. V., Bastiaanssen, T. F.,
Boehme, M., et al. (2019). The microbiota-gut-brain axis. Physiol. Rev 99 (4), 1877–
2013. doi: 10.1152/physrev.00018.2018

Davidson, M., Mayer, M., Habib, A., Rashidi, N., Filippone, R. T., Fraser, S., et al.
(2022). Methamphetamine induces systemic inflammation and anxiety: the role of the
gut–immune–brain axis. Int. J. Mol. Sci. 23 (19), 11224. doi: 10.3390/ijms231911224

Deng, D., Su, H., Song, Y., Chen, T., Sun, Q., Jiang, H., et al. (2021). Altered fecal
microbiota correlated with systemic inflammation in male subjects with
methamphetamine use disorder. Front. Cell. Infect. Microbiol. 11. doi: 10.3389/
fcimb.2021.783917

Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A., and Leisch, M. F.
(2006). The e1071 package. Misc Functions of Department of Statistics (e1071), TU
Wien, 297-304.

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26 (19), 2460–2461. doi: 10.1093/bioinformatics/btq461

Forouzan, S., Hoffman, K. L., and Kosten, T. A. (2021). Methamphetamine exposure
and its cessation alter gut microbiota and induce depressive-like behavioral effects on
rats. PSYCHOPHARMACOLOGY 238 (1), 281–292. doi: 10.1007/s00213-020-05681-y

Fuchs, T. (2010). Subjectivity and intersubjectivity in psychiatric diagnosis.
Psychopathology 43 (4), 268–274. doi: 10.1159/000315126

Gorvitovskaia, A., Holmes, S. P., and Huse, S. M. (2016). Interpreting Prevotella and
Bacteroides as biomarkers of diet and lifestyle. Microbiome 4 (1), 15. doi: 10.1186/
s40168-016-0160-7

Guo, L., Hu, A., Zhao, X., and Xiang, X. (2022). Reduction of orexin-A is associated
with anxiety and the level of depression of male methamphetamine users during the
initial withdrawal period. Front. Psychiatry 13. doi: 10.3389/fpsyt.2022.900135

He, L., Yang, B.-Z., Ma, Y.-J., Wen, L., Liu, F., Zhang, X.-J., et al. (2023). Differences
in clinical features and gut microbiota between individuals with methamphetamine
casual use and methamphetamine use disorder. Front. Cell. Infect. Microbiol. 13.
doi: 10.3389/fcimb.2023.1103919
Hu, S., Li, A., Huang, T., Lai, J., Li, J., Sublette, M. E., et al. (2019). Gut microbiota
changes in patients with bipolar depression. Adv. Sci. 6 (14), 1900752. doi: 10.1002/
advs.201900752

J Edge, P., and Gold, S. (2011). Drug withdrawal and hyperphagia: lessons from
tobacco and other drugs. Curr. Pharm. Des. 17 (12), 1173–1179. doi: 10.2174/
138161211795656738

Kaye, S., McKetin, R., Duflou, J., and Darke, S. (2007). Methamphetamine and
cardiovascular pathology: a review of the evidence. Addiction 102 (8), 1204–1211. doi:
10.1111/j.1360-0443.2007.01874.x

Kohno, M., Beste, C., and Pilhatsch, M. (2020). The global methamphetamine
problem: approaches to elucidate the neurobiology, epidemiology, and therapeutic
effectiveness. Front. Psychiatry 11, 850. doi: 10.3389/fpsyt.2020.00850

Kosciolek, T., Victor, T. A., Kuplicki, R., Rossi, M., Estaki, M., Ackermann, G., et al.
(2021). Individuals with substance use disorders have a distinct oral microbiome
pattern. Brain Behavior Immun. - Health 15, 100271. doi: 10.1016/j.bbih.2021.100271

Leshner, A. I. (1997). Addiction is a brain disease, and it matters. Science 278 (5335),
45–47. doi: 10.1126/science.278.5335.45

Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., et al.
(2020). The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese
patients? Nutrients 12 (5)1474. doi: 10.3390/nu12051474

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet. J. 17 (1), 10–12. doi: 10.14806/ej.17.1.200

McKetin, R., Najman, J. M., Baker, A. L., Lubman, D. I., Dawe, S., Ali, R., et al. (2012).
Evaluating the impact of community-based treatment options on methamphetamine
use: findings from the Methamphetamine Treatment Evaluation Study (MATES).
Addiction 107 (11), 1998–2008. doi: 10.1111/j.1360-0443.2012.03933.x

Nair, A. T., Ramachandran, V., Joghee, N. M., Antony, S., and RaMalingam, G.
(2018). Gut microbiota dysfunction as reliable non-invasive early diagnostic
biomarkers in the pathophysiology of parkinson’s disease: A critical review. J.
Neurogastroenterol Motil. 24 (1), 30–42. doi: 10.5056/jnm17105

Namkung, J. (2020). Machine learning methods for microbiome studies. J. Microbiol.
58, 206–216. doi: 10.1007/s12275-020-0066-8

Nora D. Volkow, M. D., Linda Chang, M. D., Gene-Jack Wang, M. D., Joanna, S.,
Fowler, P., Dinko Franceschi, M. D., et al. (2001). Higher cortical and lower subcortical
metabolism in detoxified methamphetamine abusers. Am. J. Psychiatry 158 (3), 383–
389. doi: 10.1176/appi.ajp.158.3.383

Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M. H. H., Oksanen, M. J.,
et al (2007). The vegan package. Community ecology package 10 (631–637), 719.

Oyler, J. M., Cone, E. J., Joseph, R. E., Moolchan, E. T., and Huestis, M. A. (2002).
Duration of detectable methamphetamine and amphetamine excretion in urine after
controlled oral administration of methamphetamine to humans. Clin. Chem. 48 (10),
1703–1714. doi: 10.1093/clinchem/48.10.1703

Prakash, M. D., Tangalakis, K., Antonipillai, J., Stojanovska, L., Nurgali, K., and
Apostolopoulos, V. (2017). Methamphetamine: effects on the brain, gut and immune
system. Pharmacol. Res. 120, 60–67. doi: 10.1016/j.phrs.2017.03.009

Qin, C., Hu, J., Wan, Y., Cai, M., Wang, Z., Peng, Z., et al. (2021). Narrative review on
potential role of gut microbiota in certain substance addiction. Prog.
Neuropsychopharmacol . Bio l . Psychiatry 106, 110093. doi : 10.1016/
j.pnpbp.2020.110093

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2012. The
SILVA ribosomal RNA gene database project: improved data processing and web-based
tools. Nucleic Acids Res.,41(D1) D590–D596. doi: 10.1093/nar/gks1219

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: a
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