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family neuroblastoma
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Chongqing, China
Neuroblastoma(NB) is the most common extracranial solid tumor in childhood,

and it is now believed that some patients with NB have an underlying genetic

susceptibility, which may be one of the reasons for the multiplicity of NB patients

within a family line. Even within the same family, the samples show great variation

and can present as ganglioneuroblastoma or even benign ganglioneuroma. The

genomics of NB is still unclear andmore in-depth studies are needed to reveal its

key components. We first performed single-cell RNA sequencing(sc-RNAseq)

analysis on clinical specimens of two family neuroblastoma(FNB) and four

sporadic NB cases. A complete transcriptional profile of FNB was constructed

from 18,394 cells from FNB, and we found that SDHD may be genetically

associated with FNB and identified a prognostic related CAF subtype in FNB:

Fib-4. Single-cell flux estimation analysis (scFEA) results showed that malignant

cells were associated with arginine spermine, oxaloacetate and hypoxanthine,

and that malignant cells metabolize lactate at lower levels than T cells. Our study

provides new resources and ideas for the development of the genomics of family

NB, and the mechanisms of cell-to-cell interactions and communication and the

metabolic landscape will provide new therapeutic targets.

KEYWORDS

family neuroblastoma (FNB), single-cell RNA sequencing (scRNA-seq), single-cell flux
estimation analysis (scFEA), SDHD, cancer-associated fibroblasts (CAF),
tumor microenvironment
1 Introduction

Neuroblastoma (NB) is a heterogeneous solid tumor that arises in the sympathetic

nervous system (1). The main clinical feature of NB is the heterogeneity of its tumor, and

the possibility of cure varies greatly depending on the age at diagnosis, the extent of the

disease, and the biology of the tumor (2). The vast majority of NB occurs sporadically, and
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approximately 1-2% of neuroblastoma cases are inherited within

families (3). It is currently believed that the genetic susceptibility to

NB will follow an autosomal dominant pattern of inheritance with

an epistasis of approximately 63% (4). The two-hit hypothesis is

considered the most consistent model of inherited predisposition to

NB (5).In addition, even FNB occurring in the same family line can

show considerable heterogeneity, including ganglioneuroblastoma

and even benign ganglioneuroma (6, 7). In most cases of FNB, there

are no specific associated clinical features in these cases. However, a

small proportion of patients with NB have clinically identifiable

genetic syndromes associated with NB, including congenital central

hypoventilation syndrome (CCHS), aganglionosis of the colon

(Hirschsprung disease), ROHHAD syndrome (rapid-onset

obesity, hypothalamic dysfunction, hypoventilation, and

autonomic dysfunction), and neurofibromatosis type 1, all of

which are characterized by neural crest developmental disorders.

The gene ALK (8–10), paired-like homeobox 2B (PHOX2B) (11,

12), has been found to be strongly associated with FNB by

techniques such as Genome-wide linkage analysis, and there are

also case reports that GALNT14 may be associated with genetic

susceptibility to NB (13). A previous study suggested that the 2p

(D2S162-2S2259) and 12p (D12S1725-D12S1596) regions are novel

locations for FNB susceptibility genes (14). However, there are still

some FNB that do not exhibit the specific genomic alterations

described above. The genetics of FNB is still only partially

understood and continued research is expected to reveal new

insights into FNB susceptibility, including gene-gene and gene-

tumor microenvironment (TME) interactions. In recent years,

single-cell RNA sequencing (scRNA-seq) analysis has made rapid

progress in the study of NB by using individual cells as resolution

such as NB has a predominant chromaffin-cell-like phenotype (15),

malignant tumor cells can differentiate into fibroblasts (16) and so

on. This also gives us a new tool to study FNB. Here, we analyzed

two cases of FNB from two separate families by scRNA-seq analysis

in an attempt to investigate potential genetically related sites, detect
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the genetic pattern of the tumor, and further reveal the genomic

features of FNB, while providing a solid foundation for studying the

development of NB.
2 Case description

These two FNB were from two different family lines. At the time

of F1’s diagnosis, her brother had already died from multiple

metastases of NB throughout his body.F2 was the younger one of

a pair of twins. F2’s sister was found to have a tumor in the adrenal

region, while no obvious tumor was found during the regular

follow-up in pregnancy (including prenatal B ultrasound and

MRI) before they were born. At the age of seven months after

birth, F2 went to our hospital for abdominal pain, and no primary

tumor site was found in all examinations. Neuroblastoma was only

found in the liver and was confirmed by biopsy pathology.

In the beginning, the author suspected that the liver lesions of

F2 were metastasis tumors because of transplacental transmission,

which was also consistent with the anatomical basis of single

chorionic double amniotic sac placenta (17), but we lacked the

results of the biopsy of placental tissue. To further prove the source

of the tumor, immunohistochemistry was used. There were

significant differences in the results of Ki-67 (Supplementary

Figure 1A, C) and S-100 (Supplementary Figures 1B, D)

expression levels between F2 and F2’s sister (Supplementary

Figures 1A, B belong to F2; Supplementary Figures 1C, D belong

to F2’s sister).Immunohistochemistry showed that the F2 tumor

was more indolent, and the tumor cell density, mitosis-karyorrhexis

index(MKI), and mitotic index of F2 were all lower than her sister’s

tumors. Therefore, we thought that the tumor of F2 is not

metastatic, because the metastatic focus should usually be more

invasive. Moreover, these two tumors have completely different

Shimada histology (Table 1), and the diagnosis age of F2 and her

sister was less than 12 months (18). As reported, genetic factors
TABLE 1 Clinical information of six samples including two FNB.

Characteristics F1 F2 A8 A53 A5 A24

Age of diagnosis 3-y-old girl 27-d-old girl 3-y-old girl 20-m-old girl 2-m-old girl 4-m-old boy

clinical diagnosis ganglionneuroblastoma Hepatic metastasis of
neuroblastoma

neuroblastoma neuroblastoma neuroblastoma neuroblastoma

Family history / / / /

Primary site Left retroperitoneum No primary site Right
retroperitoneum

Right
retroperitoneum

Left
retroperitoneum

Left
retroperitoneum

Shimada histology uFH FH uFH uFH FH FH

N-MYC no amplification no amplification no amplification no amplification no amplification no amplification

MKI / low medium / medium medium

INRG L1 MS L2 L1 MS MS

Status at last follow-
up

Alive Alive Alive Alive Alive Alive
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predominate in neuroblastoma diagnosed in newborns and infants

(19), so we believed that F2 was a familial neuroblastoma without a

primary site.
3 Results

3.1 Cellular diversity in
family neuroblastoma

To investigate the tumor heterogeneity of FNB, we sequenced a

total of six samples (Figure 1A) including two cases of FNB(F1, F2).

The six samples were divided into two groups. The P1 group
Frontiers in Immunology 03
included F1 and two cases of stage I/II sporadic neuroblastoma

(A8 and A53), while the P2 group included F2 and two cases of

stage IVs sporadic neuroblastoma (A5 and A24) (Figure 1C). All six

samples were examined histopathologically, including one case of

ganglioneuroblastoma and five cases of neuroblastoma, andN-MYC

was not amplified in all cases. After stringent quality filtering, we

obtained a total of 35,369 cells from the six samples, and two cases

of familial neuroblastoma were identified with 9482 and 8912 cells.

A total of ten cell types were identified in the six samples, including

neuroendocrine cells(NEs), Schwann cells, T cells, B cells,

mononuclear phagocytes(MPs), fibroblasts, endothelial cells(ECs),

mural cells, plasmacytoid dendritic cells(pDCs), and hepatocytes

(Figure 1B). The cell types shared by the six samples included
B

C D

E

A

FIGURE 1

The TME of family neuroblastoma and sporadic neuroblastoma tissues. (A) The UMAP plot of 6 samples. (B) The UMAP plot of each cell type in 6
samples. (C) Histogram of the relative proportions of each cell type for the 2 groups. (D) Histogram of the relative proportions of each cell type for
the 6 samples. (E) Violin plots of the expression of marker genes in each cell type.
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neuroendocrine cells (NEs), T cells, ECs, and MPs. Uniform

manifold approximation and projection (UMAP) was used to

visualize cell clusters and violin plots were used to show the

canonical markers in each cell type (Figure 1E). Consistent with

the literature, the T cells were distinguished by high expression of

CD2,CD3D,TRAC, and TRBC2 (20, 21), while the B cells were

characterized by high expression of MS4A1,CD79A, and CD79B

(20, 22). The pDCs specifically expressed IL3RA, CLEC4C, and

GZMB (23, 24); the MPs had high expression of CD14, VCAN,

CD1C, and C1QA (20, 25, 26); and the mural cells had high

expression of RGS5,ACTA2,PDGFRB, and NOTCH3 (27, 28).We

also identified fibroblasts by high expression of DCN,COL1A2, and

COL1A1 (29, 30), ECs by high expression of CDH5,PECAM1,

VWF, and CLDN5 (31), and NEs by high expression of CHGB,

CHGA,NPY, and SCG2 (32, 33).The schwann cells were

characterized by the expression of S100B,CRYAB,and MPZ (34,

35), the hepatocytes were characterized by the expression of ALB,

APOA1,HP (26, 36).

We further compared the proportion of cell types in FNB versus

sporadic neuroblastoma, and among the six shared cell types, we

found that FNB had fewer NE cells and more immune cells in terms

of number share (Figure 1D), which also represented a more

complex tumor immune microenvironment and closer immune

cell-to-cell communication in FNB compared to sporadic

neuroblastoma. In addition, we identified partial hepatocytes in

F2, associated with tissue samples that could carry partial

liver tissue.
3.2 Identification of malignant cells in FNB

To classify the cells into malignant and non-malignant cells, we

used the inferred CNV algorithm (Figure 2A) to demonstrate the

clonal structure of the cells. The results showed that NEs have more

CNVs than other cell types. By comparison, we observed significant

chromosome 17p gain in two cases of FNB and only chromosome

19p gain in F1 (Figure 2B). Similarly, we also focused on

mesenchymal cells including fibroblasts and endothelial cells, and

the results showed that they have few CNVs, so we considered NEs

to be malignant cells.
3.3 SDHD probably associated with genetic
susceptibility to FNB

To study the genomic features of NEs in FNB, we performed a

Hotspot analysis (Figure 2C) of NEs (37). We obtained a total of 15

modules, and by Jaccard similarity analysis (Figure 2D), we

performed one-to-one correspondence between gene modules and

tumor samples. We found that A8 and A53, A5 and A24 had a

similar module expression, but no more consistent module

expression was observed between F1 and F2, where F1 mainly

expressed module1 (including RPS2, RPL18A, RPS29, RPL39),

module2 (including RPL34, RPS27, MTND1P23, RACK1),

module6 (including MT-CO2, MTATP6P1, RPL35, MT-CO3), F2

mainly expressed in module5 (including MEG3, JUN, HSPA1A,
Frontiers in Immunology 04
FOS), and module13 (including CALM2, TMSB10, TUBA1A,

TMSB4X). Then, we performed survival analysis of the 15

modules (Figure 2E) and we found that the module 13 in highly

expressed F2 was associated with better survival. The module13

included genes currently known to be associated with poor

prognosis (Figure 2F) including MIF (38), DDX5 (39), and also

genes associated with good prognosis including UCHL1 (40), and

STMN4 (41).

Next, we performed Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis of the module 13, which showed that the genes of

module 13 were mainly enriched in the regulation of protein

polymerization and amyotrophic lateral sclerosis (Figure 3A).

By differential expression gene analysis, we compared the DEGs

between FNB and sporadic NB, and we focused on SDHD, FGFR2,

and NR4A1 (Figure 3C). Among them, SDHD may be associated

with the development of family paraganglioma (42), which is also

thought to originate from neural crest cells and has the same origin

as NB. Therefore, the difference in SDHD protein expression

between FNB and sporadic NB was further verified by

immunohistochemistry (Figure 3D). In FNB, two cases (2/4, 50%)

were positive for SDHD protein expression, whereas in sporadic

neuroblastoma, all were negative for SDHD protein, and the

immunohistochemical results further confirmed the difference in

SDHD expression between FNB and sporadic neuroblastoma

(Supplementary Figure 2). In addition, as genetic determinants of

familial disease, FGFR2 and NR4A1 were associated with familial

breast cancer and familial Crohn’s disease, respectively, and we

similarly identified significant differences between groups, but

FGFR2 was expressed at lower levels in FNB and none in

sporadic NB. Finally, we also identified the pseudogene RPL41P5

(Figure 3B), but the pseudogene is currently considered

non-functional.
3.4 Endothelial cells in familial
neuroblastoma as a possible source of NEs

To understand the potential origin of NEs in FNB, we used

pseudo-time trajectory analysis based on the Monocle 2 algorithm

to distinguish whether there was a malignant transformation

relationship between ECs, fibroblasts, Schwann cells, and NEs in

FNB. The results showed that ECs have the potential to

simultaneously evolve into NEs, fibroblasts, and Schwann cells

(Figures 4A, B, Supplementary Figure 3). However, the number of

Schwann cells was too small for subsequent analysis. Heatmap

hierarchical clustering analysis demonstrated the changes of DEGs

with the progression of the pseudo-time, and with the increase of

the pseudo-time, CHGB, CNTNAP2, ALCAM, BASP1, CALM2,

CCND1, CD24, CADM1, CHGA, and other genes increased in

expression with increasing pseudo-time (Figures 4C–E). We next

applied partition-based graph abstraction (PAGA) trajectory

analysis to further clarify the differentiation direction of NEs,

fibroblasts, and ECs, and the results (Figure 4F) were consistent

with the previous trajectory analysis, in addition, the differentiation

potential of endothelial cells to NEs was stronger than that of
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endothelial cells to fibroblasts, and finally, we used the branched

expression analysis modeling (Beam) algorithm to investigate the

gene expression changes during differentiation(Figure 4G). With

the Beam algorithm, we clustered genes with similar expression

patterns during differentiation into four clusters, from top to

bottom, 4, 3, 1, and 2, respectively, from Pre-branch to cell fate1

representing the direction of differentiation of ECs to NEs, and from

Pre-branch to cell fate2 representing the direction of differentiation

of ECs to fibroblasts. We then performed GO and KEGG

enrichment analyses on each cluster. We noticed that the DEGs

expressed in the cluster 2 (ECs to NEs differentiation) were mainly
Frontiers in Immunology 05
enriched in collagen-containing extracellular matrix as well as

PI3K-Akt signaling pathway (Figures 4H, I). The PI3K-AKT

signaling pathway promotes the proliferation and growth of

neuroblastoma (43).
3.5 FNB has a complex
tumor microenvironment

To assess the metabolic heterogeneity of the various cell types in

the FNB, we performed single-cell flux estimation analysis (scFEA)
B

C D

E F

A

FIGURE 2

(A, B) CNV analysis of NEs in 6 samples. (C) Hotspot analysis of NEs in 6 samples. (D) Jaccard similarity analysis of NEs in 6 samples based on the
hotspot analysis. (E) Survival analysis of 15 modules. (F) Kaplan–Meier(KM) survival curve of the module 13.
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(44) on all cell subpopulations of the six samples, which showed that

compared to all other cell subpopulations, NEs were highly

correlated with the metabolism of spermine, oxaloacetate, and

hypoxanthine. The results showed that NEs were highly

correlated with the metabolism of spermine, oxaloacetate, and

hypoxanthine, while the metabolism of IMP, tyrosine, choline,

malate, and dUMP was at a lower level compared to all other cell

subpopulations (Figure 5A). In addition, we did not observe high

levels of lactate metabolism at the level of overall NEs, and the level

of lactate metabolism in NEs was lower than that in T cells. In
Frontiers in Immunology 06
addition, it has been previously described that FNB has a higher

proportion of immune cells, which also predicts a more active TME.

Next, survival analysis (Figure 5B) was performed on selected

top100 genes for each subpopulation of non-malignant cells,

showing that a variety of immune effector cells, including natural

killer (NK) cells, were not associated with prognosis, focusing only

on Proliferating-MPs and Proliferating-T Cells, which were

associated with poor prognosis, unlike previously observed (45,

46). While further subdivision of immune cells showed that the

TME of FNB was mainly composed of M2-like macrophages, which
B

C

D

A

FIGURE 3

(A) GO and KEGG enrichment analysis of the genes in module 13. (B) The violin plot of the expression level of RPL41P5. (C) The dot plot of the
expression level of FGFR2, NR4A1 and SDHD. (D) The expression of SDHD at the protein level in tumor cells of family neuroblastoma and sporadic
neuroblastoma as evaluated by immunohistochemistry.
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is consistent with the results observed for sporadic neuroblastoma,

CellChat analysis then was used to identify the interaction between

ligand-receptor pairs and cells, and due to the low number of non-

NE cells within the P2 group, P1 was only analyzed. The results

showed that in FNB, NE cells communicate most closely with

Monocytes via MIF-(CD74+CXCR4) and MIF-(CD74+CD44)

(Figure 5C), and several ligand receptors including MDK-NCL

have important roles in intercellular interactions in TME, which

are potential therapeutic targets for NB (Figures 5D–F).
Frontiers in Immunology 07
3.6 Identification of a prognostic related
CAF subtype in FNB: Fib-4

Cancer-associated fibroblasts (CAF) are abundant in the tumor

microenvironment and are associated with a variety of tumor

biological behaviors including tumor invasion, drug resistance,

and immune regulation (47, 48). A previous study using markers

for CAF in breast cancer (48)defined CAF-S1 as well as CAF-S4 in

human NB (49), and to further investigate FNB-CAF, we
B C

D E

F G

H

I

A

FIGURE 4

(A, B) The Monocle 2 trajectory plot shows the dynamics of ECs, fibroblasts, Schwann cells, and NEs. (C) Heatmap hierarchical clustering shows changes
in the expression of genes in pseudo-time trajectories. (D) DEGs along the pseudo-time curve. (E) Distribution of cells in different states.
(F) PAGA trajectory analysis of NEs, fibroblasts, and ECs(the thickness of the line indicates the strength of the differentiation relationship). (G) Changes in
the expression level of DEGs during differentiation and clustering of similar genes. (H, I) GO and KEGG enrichment analyses of the cluster 2.
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mechanistically classified fibroblasts in F1 (Figure 1D) and obtained

a total of four subpopulations, namely Fib-1, Fib-2, Fib-3 and Fib- 4

(Figure 6A). In FNB, we did not identify the above two

subpopulations (in which aSMA, CD29, and PDGFRb were not

expressed in the matrix, while COL1A1 was expressed in all four

subpopulations) (Figures 6B-D). The violin plot shows the highly

expressed genes in each subpopulation (Figure 6E). Next, a survival

analysis of the four subpopulations was performed, and the results

showed that Fib-4 was associated with a good prognosis in NB
Frontiers in Immunology 08
(Figures 6F, G). Endothelial cells are also currently thought to be a

source of CAF (50–52), so we further performed pseudo-time

trajectory analysis of Fib-4 with endothelial cells in two FNB

cases, and the Monocle 2 trajectory plot showed that in FNB,

endothelial cells have the differentiation to Fib-4 potential

(Figures 6H-J). In conclusion, a kind of prognostic related CAF

subtype in FNB was identified by comprehensive bioinformatics,

differentiated from endothelial cells, with good prognostic guidance

in FNB.
B

C D

E F

A

FIGURE 5

(A) Average metabolic heatmap of different cell types in different metabolites. (B) Survival analysis of the top100 genes for immune cell
subpopulations, using NK cells as an example. (C) Point diagram of ligand-receptor analysis for different cell types. (D) The network of cell-to-cell
ligand-receptor pairs by CellChat analysis. (E, F) Heatmap of signaling pathways respectively as ligand cells and receptor cells.
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4 Discussion

To investigate the genetic properties of FNBs, we performed

scRNA-Seq on 35369 cells from six tumors including two FNB.

Here, a detailed transcriptional atlas of FNB was created,

demonstrating the unique network of cellular and molecular

interactions of FNB. Metabolomic analysis revealed that NEs are

highly correlated with the metabolism of spermine, oxaloacetate

and hypoxanthine. Previous studies from our group (16) identified

the potential for transformation between NEs and fibroblasts, while

the latest results show that endothelial cells in FNB have the
Frontiers in Immunology 09
potential to differentiate into NEs and fibroblasts. Based on this, a

prognostic related CAF phenotype was identified in FNB: Fib-4, a

subpopulation of cells that may differentiate from endothelial cells,

which is associated with a good prognosis and may be a potential

therapeutic target.

By comparing gene expression levels between samples, we

identified DEGs that may be associated with FNB. First of all, it is

remarkable that we focused on a pseudogene: RPL41P5.

Pseudogenes are known to be non-functional genomes, which

cannot translate proteins (53, 54). Pseudogene-derived long

noncoding RNA(lncRNA) is currently thought to have an
B C

D E

F

G

H I J

A

FIGURE 6

(A) The mechanical classification of fibroblasts resulted in a total of four subgroups. (B-D) UMAP plot for FAP,PDPN,and COL1A1 in fibroblasts. (E)
Violin plot of the expression of top genes in four clusters of fibroblasts. (F, G) Survival analysis of four subpopulations of fibroblasts. (H, I) Analysis of
dynamic trajectory changes between endothelial cells and Fib-4 based on pseudo-time trajectories. (J) Changes in the expression level of COL1A1
with the proposed-time.
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important role in the development of human cancers (55), and a

previous experiment in nude mice, as well as NB cell lines,

confirmed that the pseudogene DUXAP8 is associated with the

progression and poor prognosis of NB (56). SDHD, identified by

differential expression between groups, is currently thought to be

associated with familial paraganglioma (57) as well as

pheochromocytoma (58, 59). And both diseases are similar in

origin to neuroblastoma, deriving from neural crest cells, so we

speculate that SDHD may be associated with the development of

familial neuroblastoma. Immunohistochemical analysis confirmed

the expression of SDHD in FNB. Therefore, we suggest that SDHD

may be related to FNB, which still needs further confirmation.

By Hotspot analysis and Jaccard similarity analysis of NEs, we

identified a total of 15 modules, of which the module 13 from FNB

was associated with better survival. Unfortunately, we did not

identify identically expressed modules in the two FNB, whereas

similarly expressed modules were found between sporadic

neuroblastoma of similar tumor stages. The author believes that

this phenomenon may be related to the small sample size of the

FNBs analyzed, and secondly, if multiple samples and analyses of

the same family line can be performed, there may be more

desirable results.

By scFEA of NEs in all six samples, we found that NEs are

associated with the metabolism of spermine, oxaloacetate, and

hypoxanthine. F14512, a topoisomerase II inhibitor containing

the spermine fraction, was found to have significant and long-

lasting antitumor effects on NB and to have synergistic effects with

cisplatin and carboplatin (60). The presence of pyruvate carboxylase

(PC), which converts pyruvate to oxaloacetate, has now been

demonstrated in NB (61). In addition, it is believed that cancer

cells can use Lactate dehydrogenase(LDH) to reduce pyruvate to

lactate in order to bypass oxidative phosphorylation (62), and the

increased lactate level can enhance tumor angiogenesis and

facilitate tumor growth (63, 64), but we found that the level of

lactate metabolism in NEs is lower than that in T cells. We have for

the first time mapped the metabolism of NB at the single cell level,

and the mechanisms related to these metabolites will provide new

instruments for the treatment of neuroblastoma.

Finally, we focused on the TME, and it is noteworthy that the

TME of FNB is composed mainly of M2-like macrophages, and

intercellular communication analysis likewise showed that

macrophages are the most active in FNB. Finally, since only one

of the six FNBs identified a certain number of fibroblasts, CAF was

later identified in this FNB by a marker that has been reported in the

literature, and four subpopulations were identified by mechanical

classification, and survival analysis showed that Fib-4 was

associated with a good survival prognosis. However, we did not

identify CAF-S1 and CAF-S4 in the FNB as previously reported in

the paper (49).

In summary, we depicted the transcriptional profile of FNB by

single-cell RNA sequencing and identified genes that may be

associated with FNB by differential expression analysis: SDHD.In

addition, we identified a prognostic related CAF: Fib-4 group in

FNB which was associated with good prognosis. Spermine,

oxaloacetate, and hypoxanthine metabolites were found to be
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highly expressed in NEs.The mechanisms depicted for the

differentiation direction of each cell subpopulation and intergroup

communication may provide new ideas for the treatment

of neuroblastoma.
5 Materials and methods

5.1 Patients and tumor tissues

Tumor tissues were obtained from children who were

diagnosed with NB in the department of pediatric surgical

oncology of children’s hospital of Chongqing medical university.

Approval was obtained from the institutional ethics committee at

our hospital. The fresh tumor tissues were rinsed with normal saline

after surgical resection to remove blood cells. Then, the non-

necrotic parts of tumor tissues (0.3 - 0.5 m3 per sample) were

moved out, stored in 1 ml GEXSCOPE® Tissue Preservation

Solution (Singleron, China) and transported to the Singleron

lab immediately.
5.2 Tissue dissociation and preparation

The tumor tissues were washed with Hanks balanced salt

solution (HBSS) for 3 times and cut into small pieces (1~2 mm),

and put into 2 ml GEXSCOPE ® In tissue dissociation solution

(Singleron), stirred gently and continuously at 37 °C for 15 min.

After digested, the samples were iltered with 40-micron sterile

strainers and centrifuged at 800×g for 5 min. Then, resuspended

the samples in 1 ml phosphate buffer (PBS) (HyClone) which added

2 ml GEXSCOPE® red blood cell lysis buffer (Singleron) at 25 °C for

5-8 min to remove red blood cells. The above mixture was

centrifuged at 500 × g for 5 minutes to precipitate cells. Then

resuspended cells with PBS. Finally, stained the samples with

Trypan Blue to evaluate the cell viability microscopically.
5.3 Single-cell RNA sequencing

The concentration of single cell suspensions was adjusted to 1 x

105 cells/mL. Then, the suspensions were loaded onto microfluidic

chip, and scRNA-seq libraries were constructed according to the

instructions of Singleron (GEXSCOPE® Single-Cell RNA Library

Kit, Singleron Biotechnologies). Individual libraries were diluted to

4 nM and pooled to sequence on an Illumina HiSeq X with 150-bp

paired-end reads.
5.4 Primary analysis of raw read data

Raw reads from scRNA-seq were processed to generate gene

expression matrixes using CeleScope (https://github.com/singleron-

RD/CeleScope) v1.9.0 pipeline. Briefly, raw reads were first

processed with CeleScope to remove low quality reads with
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Cutadapt v1.17 to trim poly-A tail and adapter sequences. Cell

barcode and UMI were extracted. After that, we used STAR v2.6.1a

(65) to map reads to the reference genome GRCh38 (ensembl

version 92 annotation). UMI counts and gene counts of each cell

were acquired with featureCounts v2.0.1 (66) software, and used to

generate expression matrix files for subsequent analysis.
5.5 Quality control, dimension-reduction
and clustering

Scanpy v1.8.1 was used for quality control, dimensionality

reduction and clustering under Python 3.7. For each sample

dataset, we filtered expression matrix by the following criteria: 1)

cells with gene count less than 200 or with top 2% gene count were

excluded; 2) cells with top 2% UMI count were excluded; 3) cells

with mitochondrial content 20% were excluded; 4) genes expressed

in less than 5 cells were excluded. The raw count matrix was

normalized by total counts per cell and logarithmically

transformed into normalized data matrix. Top 2000 variable

genes were selected by setting flavor = ‘seurat’. Principle

Component Analysis (PCA) was performed on the scaled variable

gene matrix, and top 20 principle components were used for

clustering and dimensional reduction Batch effect between

samples was removed by Harmony (67). Finally, UMAP

algorithm was applied to visualize cells in a two-dimensional space.

Scanpy v1.8.1 was used for further clustering analysis of

Fibroblast. Top 2000 variable genes were selected for PCA

analysis. The first 6 principle components and resolution

parameter 0.8 were used with louvain algorithm to generate 4

cell clusters.

Differentially expressed genes (DEGs) and pathway enrichment

analysis, and cell type annotation

DEGs were determined as genes expressed in more than 10% of

the cells in a cluster with an average log (Fold Change) of greater

than 0.25, and were selected by scanpy rank_genes_groups function

based on the Wilcox likelihood-ratio test with default parameters.

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis were used to investigate the potential

functions of DEGs with the “clusterProfiler” R package version

3.16.1. P-value < 0.05 was considered statistically significant. The

cell type identity of each cluster was determined with the expression

of canonical markers found in the DEGs using SynEcoSys database.

Violin plots displaying the expression of markers used to identify

each cell type were generated by Seurat v3.1.2 Vlnplot.
5.6 Trajectory analysis

Cell differentiation trajectory was reconstructed with Monocle2

(68). Next, highly-variable genes (HVGs) were used to sort cells in

order of spatial‐temporal differentiation. DDRTree was used to

perform dimension-reduction. Finally, the trajectory was visualized

by plot_cell_trajectory function. To run PAGA (69), a symmetrized

kNN-like graph based on PCA data was construct by scanpy.tl.paga,
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partitioning, a PAGA graph was generated using the connectivity.
5.7 scRNA-seq based CNA detection

The InferCNV package (70) were used to evaluate the CNVs in

NE cells Schwann cells, endothelial cells, and fibroblasts. T cells, B

cells and myeloid cells were regarded as baselines to estimate the

CNAs of malignant cells. Genes expressed in more than 20 cells

were classified based on their loci on each chromosome. The relative

expression values were centered to 1, using 1.5 standard deviations

from the residual-normalized expression values as the ceiling. A

slide window size of 101 genes was used to normalize the relative

expression on each chromosome in order to remove the effect of

gene-specific expression.

Each p- or q-arm level change can be simply converted to an

equivalent CNV according to its location by considering genomic

cytoband information. Each CNV was annotated as a gain or loss.

Then, subclones containing the same arm-level CNVs were folded,

and trees were reconstructed to represent the architecture of

subclonal CNV.
5.8 Functional gene module analysis

Hotspot (37) was used to identify functional gene modules

which illustrate heterogeneity within NEs subpopulations. Briefly,

we used the ‘danb’ model and selected the top 500 genes with

highest autocorrelation zscore for module identification. Modules

were then identified using the create_modules function, with

min_gene_threshold =15 and fdr_threshold = 0.05. Module

scores were calculated by using calculate_module_scores function.

The Jaccard similarity coefficient was calculated for comparing

transcriptional similarity between cell types with hotspot modules

genes (15).
5.9 Cell-cell interaction analysis (CellChat)

CellChat (version 0.0.2) (71) was used to analyze the

intercellular communication networks from scRNA-seq data. A

CellChat object was created using the R package process. Cell

information was added into the meta slot of the object. The

ligand-receptor interaction database was set, and the matching

receptor inference calculation was performed.
5.10 Immunohistochemistry (IHC)

IHC was used to analyze the protien expression of SDHD in

tumor tissue. Paraffin sections of 4 familial NB and 4 sporadic NB

were collected. The paraffin sections were processed with baking,

dewaxing, sodium citrate antigen repair, 3% H2O2 incubation and
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1197773
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1197773
0.5% BSA closure. Then sections were incubated with anti-SDHD

(Abcam, ab189945), and corresponding secondary antibodies

(ZSGB-Bio, PV-9001). DBA color development was carried out

according to the instructions of the immunohistochemistry kit

(ZSGB-Bio, ZLI 9019). Finally, the sections were stained with

hematoxylin, sealed with neutral gum, and observed under a

light microscope.
5.11 Metabolic fluxomes and abundances
analysis:scFEA

scFEA (v1.1.2) (45) is a computational method for inferring

cellular metabolic fluxomes and metabolite abundances from

scRNA-seq data using flux balance constraints based on novel

probabilistic models. All cell types were calcuated the metabolic

Fluxomes and Abundances by scFEA in python. After calculating

metabolic flux and metabolite abundances, the 70 metabolic

modules and all metabolites were selected for visualization

by heatmap.
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SUPPLEMENTARY FIGURE 1

The expression of Ki-67 (A, C) and S-100 (B, D) in tumor cells of F2 and F2’s
sister (A, B belong to F2; C, D belong to F2’s sister) by immunohistochemistry

SUPPLEMENTARY FIGURE 2

The expression of SDHD at the protein level in tumor cells of 4 family

neuroblastomas (A/a, F/f, G/g, H/h) and 4 sporadic neuroblastomas (B/b,
C/c, D/d, E/e) by immunohistochemistry.

SUPPLEMENTARY FIGURE 3

The Monocle 2 trajectory plot shows the dynamics of six samples (A) and four
cell types (B).
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