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Multi-parent populations contain valuable genetic material for dissecting
complex, quantitative traits and provide a unique opportunity to capture multi-
allelic variation compared to the biparental populations. A multi-parent advanced
generation inter-cross (MAGIC) B-line (MBL) population composed of 708 F6
recombinant inbred lines (RILs), was recently developed from four diverse
founders. These selected founders strategically represented the four most
prevalent botanical races (kafir, guinea, durra, and caudatum) to capture a
significant source of genetic variation to study the quantitative traits in grain
sorghum [Sorghum bicolor (L.) Moench]. MBL was phenotyped at two field
locations for seven yield-influencing traits: panicle type (PT), days to anthesis
(DTA), plant height (PH), grain yield (GY), 1000-grain weight (TGW), tiller number
permeter (TN) and yield per panicle (YPP). High phenotypic variationwas observed
for all the quantitative traits, with broad-sense heritabilities ranging from 0.34 (TN)
to 0.84 (PH). The entire population was genotyped using Diversity Arrays
Technology (DArTseq), and 8,800 single nucleotide polymorphisms (SNPs)
were generated. A set of polymorphic, quality-filtered markers (3,751 SNPs) and
phenotypic data were used for genome-wide association studies (GWAS). We
identified 52 marker-trait associations (MTAs) for the seven traits using BLUPs
generated from replicated plots in two locations. We also identified desirable
allelic combinations based on the plant height loci (Dw1, Dw2, and Dw3), which
influences yield related traits. Additionally, two novel MTAswere identified each on
Chr1 and Chr7 for yield traits independent of dwarfing genes. We further
performed a multi-variate adaptive shrinkage analysis and 15 MTAs with
pleiotropic effect were identified. The five best performing MBL progenies
were selected carrying desirable allelic combinations. Since the MBL
population was designed to capture significant diversity for maintainer line
(B-line) accessions, these progenies can serve as valuable resources to develop
superior sorghum hybrids after validation of their general combining abilities via
crossing with elite pollinators. Further, newly identified desirable allelic
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combinations can be used to enrich the maintainer germplasm lines through
marker-assisted backcross breeding.
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DArT markers, genome-wide association studies (GWAS), multi-parent advanced
generation inter-cross (MAGIC), grain sorghum, yield components

Introduction

Sorghum was domesticated in Africa circa 3000 B.C.E., most
likely in the Sahel area, where it is one of the most important cereal
crops due to its drought tolerance (Kebede, 1991; Ayana and Bekele,
1998). Secondary centers of domestication include India, Sudan, and
Nigeria (Ayana and Bekele, 1998). Cultivated sorghum is commonly
classified into five main botanical races: bicolor, caudatum, durra,
guinea, and kafir (Harlan and de Wet, 1972; Barnaud et al., 2008).
These classifications are mostly based on panicle morphology and
grain characteristics with additional consideration for the regions of
Africa and India where the races are predominantly found (Murray
et al., 2009). As with other crops, grain yield in sorghum is a complex
trait that is mediated by many genes (Holland, 2007; Boyles et al.,
2017b).

Sorghum, like its close relative maize, is primarily grown as a
hybrid crop in developed countries. Commercial F1 hybrid seed
production is dependent on the cytoplasmic male sterility (CMS)
system for cross-fertilization. In the CMS system, three distinct line
types (A-, B-, and R-lines) are required, and crossing is performed
using specific parental pairs (A/B, and R) to produce a hybrid seed
(Xin et al., 2021). A1 CMS is the predominant sterility source for
commercial hybrid seed production in sorghum although other
sources do exist in sorghum (A2–6 and 9E) (Schertz et al., 1997).
The A/B parental group represents the female parent, and crossing
proceeds with the A-line (female), which is crossed with a restorer
parent (R-line) to produce a hybrid seed (Rooney, 2004). The B-line
is a non-restorer, or maintainer, line that perpetuates the male-
sterile (A-line) line via backcrossing. This is a time-intensive process
that serves to transfer donor cytoplasm and recover the recipient
parent genome (Jordan et al., 2010; Mindaye et al., 2015). To date,
germplasm development has largely focused on R-lines with publicly
available A/B line germplasm being underrepresented in the
National Plant Germplasm System (NPGS) (Menz et al., 2004;
Xin et al., 2021), which is a function of most sorghum genotypes
being partial or full fertility restorers based on one or more nuclear
restoration genes.

In the last two decades, the accessibility of relatively inexpensive
genotyping costs makes it more effective to study complex traits
through association studies (Unterseer et al., 2014; Boatwright et al.,
2022). Development of genetic mapping populations represents the
most resource-intensive step as a selection of the founder lines and
subsequent crossing dictates the number and resolution at which
QTL can be identified. The most popular genetic mapping
populations are biparental recombinant inbred lines (RILs), F2s,
doubled haploid (DH), and backcrosses. Among these populations,
RILs and DHs have the distinct advantage that they are “immortal”
and can be used in multiple experiments. Conversely, RILs and DHs
that are derived from biparental crosses exhibit relatively low genetic
recombination and diversity with a high probability for parents to

carry the same alleles at a locus. To overcome these limitations,
multi-parent genetic populations like MAGIC and nested
association mapping (NAM) have been established in various crops.

The concept of a MAGIC population has been discussed earlier
by Mackay and Powell (2007) and a MAGIC population for the first
time was developed in a model crop like Arabidopsis (Cavanagh
et al., 2008). In the design of the MAGIC population, multiple
founders can be intercrossed in a well-defined order in multiple
generations to recombine genetic material from founders to develop
recombinant lines (Cavanagh et al., 2008). Later, several MAGIC
panels were developed in several non-model crops and used for QTL
discoveries including wheat (Huang et al., 2012; Mackay et al., 2014),
rice (Bandillo et al., 2013), tomato (Pascual et al., 2015), fava bean
(Sallam and Martsch, 2015), maize (Dell’Acqua et al., 2015), barley
(Sannemann et al., 2015), cowpea (Huynh et al., 2018), sorghum
(Ongom and Ejeta, 2018), soybean (Hashemi et al., 2022) and
eggplant (Mangino et al., 2022). As a result, MAGIC populations
represent an ideal genetic construct to identify favorable alleles from
diverse parental lines that can dissect the genetic variation
underlying complex, quantitative traits (Mackay and Powell,
2007; Cavanagh et al., 2008; Ongom and Ejeta, 2018). Compared
to traditional biparental crosses, MAGIC populations can be used to
perform high-resolution genetic mapping because higher
recombination rates resulted in faster LD decay (Cavanagh et al.,
2008). Multi-parent populations also reduce the effects of
confounding due to population structure based on sampling
effects (Flint-Garcia et al., 2005; Vilhjálmsson and Nordborg,
2013), which is preferable as population structure can enhance
the risk of detecting false positives (Ewens and Spielman, 2001;
Dickson et al., 2010; Korte and Farlow, 2013). Using MAGIC
populations, a greater number of traits can be targeted depending
on the selection of contrasting parental lines involved in the
construction of the population.

In the present study, a recently developed MBL population was
leveraged to mine the B-line (female) parent gene pool for novel and
favorable genetic variation (Kumar et al., 2023). A set of
polymorphic, quality-filtered markers (3,751 SNPs) were
generated using Diversity Arrays Technology sequencing
(DArTseq). GWAS were employed to identify MTAs using
genomic data (3,751 SNPs) and phenotypic data for seven traits:
PT, DTA, PH, GY, TGW, TN, and YPP. The MBL population
consisted of F6 RILs derived from an intercross among the four
diverse grain sorghum founders. Several significant MTAs
associated with the above phenotypic traits were identified, which
represent both novel and previously identified genetic loci. In
addition, we identified desirable allelic combinations and
pleiotropic MTAs (shared associations) between plant height and
yield component traits. In this study, we selected best-performing
lines based on the new allelic combinations as the unique genetic
resources for future breeding efforts to facilitate the pyramiding of
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desirable alleles using marker-assisted selection. These selected
B-lines can be used directly in a hybrid breeding program after
validation of general combining abilities.

Materials and methods

MBL development and phenotyping

MBL population was developed from crosses between four
founder lines SC630 (PI533937), SC605 (PI534096), BTx642
(PI656029), and BTxARG-1 (PI561072). These founders were
selected to capture genetic diversity across multiple botanical
races (SC630 = kafir, SC605 = guinea, BTx642 = durra, and
BTxARG-1 = caudatum) as well as broad phenotypic variation
across various qualitative, agronomic and yield related traits
(Kumar et al., 2023). In addition, the MBL was genetically
characterized for some well-known, heritable traits such as seed
color, plant color, and awns using QTL mapping and GWAS. Full
details on the development and initial characterization of the MBL
panel are described by Kumar et al. (2023).

As previously mentioned, a set of 708 F6 RILs and the four
founder lines were phenotyped for PT, DTA, PH, GY, TGW, TN,
and YPP. The first and last plants in each row were not phenotyped
since they served to eliminate confounding results caused by border
effects. Panicle type (PT) was visually assessed (C = compact, SC =
semi-compact, SO = semi-open, and O = open) at physiological
maturity at a single field location (Simpson Research Farm,
Pendleton, SC) and used in the analysis as numerical values in
1–4 scales, (1 = compact, 2 = semi-compact, 3 = semi-open, and 4 =
open). DTA was measured as days after planting to when 50% of the
plants in the plot were at mid-bloom. PH was measured at
physiological maturity in centimeters from the ground to the
apex of the primary panicle. The tiller number per plot (TN) was
estimated by counting the total number of plants from a
representative 1-m row. All panicles were harvested from this 1-
m section and subsequently threshed to process grain yield (GY) and
individual yield component traits. Harvested panicles were dried for
3–4 days in an electric dryer to a constant moisture content (~12%
moisture) and threshed individually with a BT-14E belt thresher
(Almaco, Nevada, IA, United States). GY was estimated as a total
grain weight of 1-m harvested plot, which was also used for
estimating TGW by counting 1,000 grains of every individual
using Model U electric seed counters (International Marketing
and Design Co., San Antonio, TX, United States). To estimate
the grain yield per panicle (YPP), GY was divided by number of
panicles. All seven traits were divided into three major categories: 1)
panicle morphology (PT), 2) agronomic (DTA and PH) and 3) yield
related traits (GY, TGW, TN, and YPP).

Field trial and maintenance

MBL (708 F6) RILs along with their four founders were grown at
two field locations including Simpson Research Farm, Pendleton, SC
near to Clemson University (designated as CU) and Pee Dee
Research and Education Center, Florence, SC (designated as FL)
during summer 2021. The first location was planted on 2 June

2021 at Simpson Research Farm (34.624954, −82.726496) in
Pendleton, SC included 701 RILs, while the second location was
planted on 7 June 2021 at the Pee Dee Research and Education
Center (34.287834, −79.744063) in Florence, SC, which included
708 RILs. An alpha lattice field design was used across locations to
evaluate the MBL RILs and founder lines, with two replications in
each location and four incomplete blocks per replicate. Each
incomplete block contained 182 RILs, four founders, and a F1
hybrid check. Each genotype was grown as a single-row plot at
3 m in length and a row spacing of 0.76 m. A plant density of
~130,000 plants ha−1 was calculated based on a plant establishment
of 75% using a seeding rate (El Naim et al., 2012).

Before planting the field trials, the seeds were treated with a
blend of fluxofenim (Concep, herbicide antidote), clothianidin
(Nipsit, insecticide), mefenoxam (Apron XL, fungicide), and
fludioxonil (Maxim XL, fungicide). Pre-plant N-P-K was applied
at a variable rate based on point soil samples and worked into the soil
using conventional tillage. To prevent the germination of weeds,
fields were sprayed just after planting with a pre-emergent herbicide
containing atrazine and S-metolachlor. A post-emergent application
of atrazine was administered approximately 40 days after planting.
Sugarcane aphids (Melanaphis sacchari) were controlled with one or
more applications of flupyradifurone (Sivanto Prime), and
chlorantraniliprole (Prevathon) was administered in a single
application to prevent corn earworm (Helicoverpa zea) and fall
armyworm (Spodoptera frugiperda) infestation. The field trials were
irrigated as required to prevent puzzling effects on genotypic
performance due to maturity and varying degrees of drought
tolerance.

DArT genotyping

The MBL population was previously sequenced as described in
Kumar et al. (2023). Briefly, DNA was extracted by Intertek (Alnarp,
Sweden) from desiccated leaf punches collected from individual
RILs and four parents at Florence, SC field site, with most plants at
the grain filling stage. DNA samples were sent to Diversity Arrays
Technology Pty Ltd. (Canberra, Australia (https://www.
diversityarrays.com/); for Diversity Arrays Technology
sequencing at low density (DArTseqLD). For DArTseqLD
analysis, DNA wasdouble digested using PstI and MseI (Kilian
et al., 2012), and amplified fragments were bulked and sequenced
by the Hiseq2500 (Illumina® Inc., San Diego, CA, United States).
Resulting FASTQ data were processed using fastp (Chen et al., 2018)
to remove barcodes and low-quality sequences before aligning reads
with BWA (Li and Durbin, 2009). Variants were called using
Genome Analysis Toolkit (GATK) (McKenna et al., 2010) best
practices (DePristo et al., 2011; Van der Auwera et al., 2013). In
brief, due to the nature of restriction digest, duplicates were not
marked, but instead aligned reads went straight to base-quality
recalibration. For recalibration, whole-genome sequencing data
(Boatwright et al., 2022) with high quality (30x coverage) were
used from the Sorghum Association Panel (Casa et al., 2008). The
recalibrated BAM were then subjected to individual-sample variant
calling to generate gVCFs before consolidating all gVCFs into a
database for joint variant calling (Poplin et al., 2018). SNPs were
hard filtered for quality (QD < 2.0, InbreedingCoeff < 0.0, QUAL <
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30.0, SOR > 3.0, FS > 60.0, MQ < 40.0, MQRankSum < −12.5, and
ReadPosRankSum < −8.0), missing data (50%), and minor allele
frequency (>0.05) using both GATK and BCFtools, prior to GWAS.
Beagle was used to impute missing genotype data in the VCF file
assembled from GATK.

Phenotypic data analysis

Pearson’s correlation coefficient matrix was generated using
metan package and the corr_plot and plot.corr_coef functions
were used for the visualization of correlation matrices for each
trait in R software (R Foundation, 2020). Best linear unbiased
predictions (BLUPs) values for each trait were calculated using
random effect of the genotypes following lme4 package in R
(Bates et al., 2015). BLUPs values of each trait were used as
response variables in GWAS analyses. The variance components
for genotypes (i.e., RILs) were estimated using the lme4 package in R
(Bates et al., 2015). All effects were treated as random. The lme4()
function within this package optimized the linear mixed model
using restricted maximum likelihood and was implemented to
determine variance components for each random effect. Because
there were two locations and 1 year, replicates and locations were
used in the broad-sense heritability calculation in place of year along
with interaction between genotype and location to estimate the
variance caused by genotype x environment interaction as shown
below.

H2 � σ2G

σ2G + σ2G × R
R + σ2G × L

L + σ2E
RL

where G is genotype, R is replicate, L is location, and E is error.

Genome-wide association studies (GWAS)

GWAS were performed using a Memory-efficient,
Visualization-enhanced, and Parallel-accelerated (rMVP) GWAS
program (Yin et al., 2021) installed in the R programming
language (R Foundation, 2020). The rMVP package was designed
to process more efficiently the large GWAS datasets, quickly
evaluate population structure, and implement parallel-accelerated
association tests to dramatically improve computation time. Further,
rMVP provides access to several of the most popular models
including the mixed linear model (MLM; Zhang et al., 2010), and
fixed and random model circulating probability unification
(FarmCPU; Liu et al., 2016) model, which were both used for
this study. The use of MLM permits a single-locus analysis,
where individuals are included as random effects and the degree
of correlation among individuals is determined using a kinship (K)
matrix. The use of the MLM further provides shrinkage to the model
such that potential false positives due to shared ancestry are no
longer significant. An MLM can be described using Henderson’s
matrix notation as follows:

Y � Xβ + Zu + e, (1)
where Y is the vector of observed phenotypes; β is an unknown
vector containing fixed effects, including the genetic marker,

population structure (Q), and the intercept; u is an unknown
vector of random additive genetic effects for individuals/lines; X
and Z are the known design matrices for fixed and random effects,
respectively; and e is the unobserved vector of residuals. The u and e
vectors are assumed to be normally distributed with zero mean and
unit variance.

FarmCPU represents a multi-locus model that iteratively uses fixed
and random effect models to generate sets of pseudo-quantitative trait
nucleotides (QTNs) to use as covariates and control for false positives
during analysis (Liu et al., 2016). FarmCPU provides benefits over
traditionalMLMas it performs amulti-locus analysis, may be efficiently
computed, and removes confounding between kinship and the testing
marker. By iterating a fixed effect model to identify significant pseudo-
QTNs to use as covariates in a random effect model using a restricted
kinshipmatrix like the SUPER algorithm (Wang et al., 2014a) to further
refine the set of included covariates by maximizing the likelihood of the
random effects model. Iterations cease when no change occurs in the
estimated set of pseudo-QTNs. The significantmarker trait associations,
corresponding to putative SNPs for each trait were determined using
Bonferroni-corrected p-value threshold 1.3e−5. This threshold was
calculated using 0.05/m, withm being the number of markers at 3,751.

The linkage disequilibrium (LD) decay was estimated using
PopLDdecay (Zhang et al., 2019) program within a 10 Mb
window. LD decay was plotted for individual chromosomes as
well as genome-wide using the custom R scripts (Boatwright
et al., 2021), where the coefficient of determination (r2) between
markers located on each chromosome was measured to estimate the
LD relationship between loci. The r2 was plotted on the y-axis and
physical distances (Mb) on the x-axis.

Identification of allelic combinations
independent of major dwarfing genes

GWAS were also performed for yield and yield component traits
(GY, TGW, TN, and YPP) within a subset of RILs with genetic
backgrounds fixed for the three dwarfing genes (Dw1, Dw2, and
Dw3). For performing this analysis, we used two haplotypes
(alternative alleles of each gene) based on the closest associated
SNP with each gene (Dw1, Dw2, and Dw3) and performed GWAS
analysis.

Functional annotation of genes and QTL

Functional annotation was performed using reference genome
BTx623 V3.1.1 to identify candidate genes associated with
significant SNPs, which were identified through GWAS.
Similarly, all the significant SNPs identified were used for
validating the locations of MTAs based on the sorghum QTL
atlas (Mace et al., 2019; aussorgm.org.au).

Pleiotropic effects

Pleiotropic effects were assessed for all seven traits (PT, DTA,
PH, GY, TGW, TN, and YPP) using the R package mashr, which
uses a multivariate adaptive shrinkage approach to identify
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significant pleiotropic effects across the traits (Urbut et al., 2019).
The estimated effect sizes and standard errors for every
significant SNP marker in the MLM and FarmCPU for the
above traits were filtered using a local false sign rate (LFSR) <
0.1 based on a condition-by-condition analysis using mashr in R
(Stephens, 2017). The LFSR represents the probability of
incorrectly assigning the direction of an effect. The LFSR
provides a superior measure of significance over traditional
multiple-testing corrections such as Bonferroni or False
Discovery Rate (Benjamini and Hochberg, 1995) due to its
robust estimation process (Stephens, 2017). A control set of
estimated effects and standard errors were also randomly
selected from the 3,751 markers to estimate the covariance
between SNPs for each phenotype. Using this control set, a
correlation matrix was estimated using mashr (Urbut et al.,
2019) to control for any confounding effects arising from
correlated traits. For testing pleiotropy across traits, canonical
and data-driven covariance matrices were used. Posterior
probabilities were calculated for each SNP by fitting a mash
model on all tests. Bayes factors were extracted and plotted
from mash results using the CDBN genomics R package
(MacQueen et al., 2020). Variants exhibiting Bayes Factors
greater than 10 were considered as demonstrating significant
pleiotropic effects.

Results

Descriptive statistics, trait distribution, and
heritability

The contrasting features among founders foreshadowed the
wide range of phenotypic diversity of the MBL as summarized in
Table 1. SC605 was an early flowering parent and reached
anthesis at 57 days after planting, (DAP) while BTxARG-1
flowered significantly (16 days) later at 73 DAP. The RILs of
MBL population showed a wide range of variation for flowering
time. Early flowering line reached anthesis at 49 DAP at CU
location compared to 50 DAP at FL location. Similarly, the late
flowering line reached anthesis at 91 DAP at CU location
compared to 89 DAP at FL location. The mean anthesis of the
MBL RILs was 62 DAP at CU instead of 65 DAP at FL location

(Supplementary S1). The range of PH among the founders was
relatively narrow from 101 cm (BTx642) to 119 cm (SC630).
BTxARG-1 had the highest grain yield followed by SC630
(kafir). Conversely, SC605 (guinea) was a poor yielder and
displayed a high tillering capacity.

In addition, the MBL population showed transgressive
segregation for the majority of the traits (Table 1). The range
of PH was wide in the RILs (69–201 cm) and an average of the
RILs was significantly higher at 130.7 cm compared to parental
lines. The results of variance component analysis demonstrated
that variances due to genotype (line), genotype x location, and
blocks within replication and location had significant
contributions to total phenotypic variance for each trait (DTA,
PH, GY, TGW, TN, and YPP) of the genotype (Supplementary
Table S1). Environmental effects on phenotypic trait values were
largely from blocks within replication and variance due to
location for all the traits except GY, however, it showed a
highly significant effect due to genotype x location. The MBL
population showed wide and continuous distribution for the six
quantitative traits (DTA, PH, GY, TGW, TN, and YPP) as
expected (Figure 1). Estimates of broad sense heritability were
lowest for TN (0.34) and highest for PH (0.84) (Table 1).
Heritability was on the higher side for TGW (0.77) while
moderate for GY (0.63) and YPP (0.60). Since, PT was an
ordinal trait thus excluded from this analysis.

Relationships among phenotypic traits

Panicle type (PT) did not show any relationship with DTA,
TGW, and TN, while it showed poor positive correlations with
PH (r = 23), GY (r = 0.12), and YPP (r = 0.11) (Table 2). DTA was
negatively correlated with TN (r = −0.40) and TGW (r = −0.17),
but no significant relationship was found with PH or GY. PH
showed a significant and positive correlation with GY (r = 0.50)
and yield component traits (TGW, TN, and YPP). GY had a
strong positive correlation with TGW (r = 0.44) and YPP (r =
0.78) while moderate with TN (r = 0.31). TGW was positively
correlated with TN and YPP. TN displayed a negative
relationship with YPP. Overall, strong and positive
correlations were observed among PH, GY, TGW, and YPP
across the locations (Supplementary Figure S1).

TABLE 1 Descriptive statistics and trait heritabilities of the MBL population.

Traita MBL parents MBL population H2b

Founder SC630 SC605 BTx642 BTxARG-1 Mean Range

DTA 63 (5.0) 57 (4.2) 69.9 (4.3) 73.1 (8.0) 63.9 53.8–80.9 0.73

PH 119 (13) 115 (10.9) 101.3 (3.4) 113.4 (7.0) 130.7 69.4–201 0.84

GY 226 (48) 156 (37.7) 90 (27.5) 331 (59) 155.1 70.4–353 0.63

TGW 21.8 (2.4) 17.7 (0.9) 15.8 (3.9) 18.1 (1.4) 16.8 10.1–22.7 0.77

TN 16.3 (5.2) 24.8 (11) 7.1 (1.7) 16.8 (6.3) 18.3 13.3–26.5 0.34

YPP 15.5 (6.8) 7.0 (2.4) 12.9 (4.9) 22 (8.3) 9.4 5.3–20.4 0.60

aDTA, days to anthesis; PH, plant height; GY, grain yield; TGW, 1000-grain weight, TN, tiller number per meter and YPP, yield per panicle.
bBroad-sense heritability.
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GWAS for quantitative traits

GWAS were performed using MLM as a single-locus and the
FarmCPU as a multi-locus model to predict genotype-by-phenotype
associations. BLUPs of phenotypes were used to minimize errors across
the multi-environment data more efficiently to identify QTL or MTAs

in GWAS or QTL mapping studies. The MTAs were defined based on
the rate of average LD decay observed in our population. In MBL,
genome-wide LD fell around 2.5 Mb, therefore any two or more loci
detected apart from 2.5 Mb distances were considered different MTA.
Altogether, GWAS identified 70 significant associations (52 MTAs) for
seven targeted traits. These 52 MTAs were distributed on 32 genomic

FIGURE 1
Frequency distribution of each phenotypic trait of the MBL population including DTA (days to anthesis), PH (plant height), GY (grain yield), TGW
(1000-grain weight), TN (tiller number per meter), and YPP (yield per panicle).

TABLE 2 Estimates of Pearson’s correlation coefficients among phenotypic traits of the MBL population.

Traita PT DTA PH GY TGW TN YPP

PT 1

DTA 0.01 1

PH 0.23*** 0.03 1

GY 0.12** 0.07 0.50*** 1

TGW 0.01 −0.17** 0.42*** 0.44*** 1

TN −0.01 −0.40*** 0.24*** 0.31*** 0.31*** 1

YPP 0.11** 0.26*** 0.41*** 0.78*** 0.26*** −0.22*** 1

a, PT, panicle type; DTA, days to anthesis; PH, plant height; GY, grain yield; TGW, 1000-grain weight, TN, tiller number per meter; and YPP, yield per panicle. * Significance at the

0.05 probability level. **Significance at the 0.01 probability level; ***Significance at the 0.001 probability level.
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FIGURE 2
Manhattan plots based on rMVP-GWAS program usingMBL population with highlighted genes or loci identified for various traits. Vertical dotted bars
show genes and loci related to (A) days to anthesis (DTA: Chr3, Chr4 & Chr5); (B) Plant height or dwarfing genes (Dw1: Chr9, Dw2: Chr6, andDw3: Chr7);
(C) Grain yield and Dw3 (Chr7); (D) 1000-grain weight and Dw1 (Chr9); (E) Yield per plant and Dw3 (Chr3 and Chr7). The -log10 (p) values (y-axis) are
plotted against the position on each chromosome (x-axis). Each solid circle represents a SNP, and the red dashed line represents the Bonferroni-
corrected threshold (p ≤ 0.05).
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regions (i.e., linkage blocks) across the 10 chromosomes of sorghum,
except chromosome 8 (Figure 2, Supplementary Table S2, and
Supplementary Figure S2). Of these 70 associations, 46 significant
SNPs were identified by FarmCPU alone, only 10 were identified by
MLM and 14 associations were commonly identified by both models.
Several significant MTAs across the traits were corroborated with
previous studies conducted for the corresponding traits while some
of them were novel associations.

Panicle type

The FarmCPU model identified three significant MTAs for PT,
which were located on Chr1 (~24 Mb), Chr2 (~58 Mb), and Chr6
(~43 Mb). No significant association was identified by MLM. Of
these three associations, a sole SNP (Chr6:43,244,873) overlapped
with PH and GY. This genomic region at ~43 Mb was within
0.50 Mb of the dwarfing gene Dw2 (Sobic.006G067700).

Agronomic traits

In total, 12 MTAs were significantly associated with DTA, which
were located on seven different chromosomes (Chr1, Chr2, Chr3, Chr4,
Chr5, Chr6, and Chr10). Among these, nine MTAs were uniquely
detected by FarmCPU, whereas two MTAs were detected using MLM,
and a single SNP was commonly detected by both models. Two
significant MTAs between DTA and PH overlapped, which were
located on Chr3 (Chr3:62,831,536) and on Chr5 (Chr5:2,588,266)
(Figure 2; Supplementary Table S2, and Supplementary Figure S2).

In total, 10 significant MTAs (21 SNPs) were identified for PH,
whichwere located on seven different chromosomes (Chr2, Chr3, Chr4,
Chr6, Chr7, Chr9, and Chr10). A single MTA carrying 10 significant
SNPs was associated with Chr9, which spanned a ~1.3 Mb region
(~57Mb) within a LD block. Out of 10 significant SNPs, one SNP was
positioned on Chr9 (Chr9:57,030,394) near Dw1 (Sobic.009G229800).
Another MTA was detected on Chr6 (Chr6:43,244,873; Chr6:
44,567,620) in the same LD block being ~0.43 Mb to Dw2
(Sobic.006G067700). For PH, a significant MTA was identified on
Chr7 (Chr7:59,606,838), in proximity (0.21Mb) to Dw3
(Sobic.007G163800). In addition to these PH loci, seven additional
MTAs that passed the significant threshold were identified including
three on Chr3, two on Chr2, and one each on Chr4 and Chr10.
Interestingly, a commonMTAwas detected on Chr3 (Chr3:62,831,536)
around ~62Mb for both the agronomic (DTA and PH) traits
(Supplementary Table S2, and Supplementary Figure S2).

Yield component traits

Altogether, GWAS identified 27 significant MTAs for grain yield
and its components (GY, TGW, TN, and YPP) including several shared
associations among the traits (Figure 2 and Supplementary Table S2,
and Supplementary Figure S2). FourMTAs (five SNPs) were associated
with GY, which were located on Chr6 (~43Mb), Chr7 (~59Mb), and
Chr9 (~57Mb). All three significant loci overlapped with three major
dwarfing genes (Dw1, Dw2, and Dw3). Of these five SNPs, three were
independently detected by FarmCPU and a sole SNP (Chr7:59,591,981)

was detected by MLM, whereas only one SNP (Chr7:59,606,838)
detected by both models (FarmCPU and MLM) within the same
LD block. All four MTAs showed shared associations with all traits
(PT, PH, GY, TGW, TN, and YPP) except DTA.

Five MTAs (eight SNPs) were identified for TGW in total, which
were located on five different chromosomes (Chr1, Chr2, Chr3, Chr9,
and Chr10). Of these five associations, one MTA (four SNPs) was
significantly associated with a locus on Chr9 at ~57Mb that spanned a
genomic region (0.75Mb). This genomic region showed significant
association with multiple traits including TGW (PH, GY, and TN). In
total, GWAS identified 12 SNPs (10 MTAs) significantly associated
with TN, which were located on seven different chromosomes (Chr1,
Chr3, Chr4, Chr5, Chr7, Chr9, and Chr10). All the significant
associations were detected by FarmCPU. Three genomic regions,
each located on Chr5 (~25Mb), Chr7 (~59Mb), and Chr9
(~57Mb) showed common associations with multiple traits (TN,
DTA, PH, GY, and TGW).

Application of FarmCPU to YPP resulted in the identification of
eight MTAs, which were located on six chromosomes (Chr2, Chr3,
Chr4, Chr5, Chr7, and Chr9). Of these eight MTAs, a locus on Chr2
(~59 Mb) showed a significant association with PH. Similarly,
another significant MTA on Chr7 (~57 Mb) showed association
with multiple traits including YPP, PH, and GY (Figure 2 and
Supplementary Table S2, and Supplementary Figure S2).

Pleiotropic QTL and high-resolution power
of MBL

All the significant SNPs identified through GWAS following two
models (FarmCPU andMLM)were used to assess pleiotropic effects for
all the seven traits using the mashr program. A total of 15 significant
MTAs (29 SNPs) were detected with pleiotropic effects on multiple
traits (Table 3; Supplementary Table S3, and Supplementary Figure S3).
These MTAs were distributed on all the chromosomes of sorghum
except Chr2 and Chr8. In this analysis, PH showed nine shared
associations with six additional traits (PT, DTA, GY, TGW, TN,
and YPP) involving five genomic regions located on five different
chromosomes (Chr2, Chr3, Chr6, Chr7, and Chr9). GY showed four
shared associations with five yield components (PT, PH, TGW, TN, and
YPP) that involved three genomic regions located on Chr6, Chr7, and
Chr9. Similarly, TGW also showed four shared associations with three
traits (PH, GY, and TN) involving a repeatedly detected locus on Chr9
(~57Mb). TN showed three shared associations with four traits (DTA,
PH, GY, and TGW) involving three chromosomes (Chr5, Chr7, and
Chr9). YPP showed two shared associations with two traits (PH, and
GY) involving two genomic regions located on Chr2 (~59Mb) and
Chr7 (~59Mb) (Table 3; Supplementary Table S3). Overall, the most
common genomic regions located on Chr7 (~59Mb) and Chr9
(~57Mb) were significantly associated with multiple traits (PH, GY,
TGW, and YPP).

Identification of allelic combinations
independent of major dwarfing genes

GWAS were also performed for yield related traits within a
subset of RILs with genetic background fixed for the three
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dwarfing genes (Dw1, Dw2, and Dw3) that were segregating in the
MBL population. Using this approach, two additional MTAs
were identified on two different chromosomes (Chr1 and
Chr7) that were all independent from Dw1, Dw2, and Dw3
(Supplementary Table S4). Both these MTAs were novel
genomic loci, each was located on Chr1 (~11 Mb) and Chr7
(~7.5 Mb). A total of eight haplotypes were formed based on the
three major dwarfing genes (Dw1, Dw2, and Dw3) identified in
the four founders of this population (Table 4; Supplementary
Table S4).

Discussion

Sorghum is predominantly grown as a hybrid crop in the
United States. Currently, cytoplasmic male sterility (CMS) is a
popular method of hybrid seed production. The CMS system

requires three lines (A-, B-, and R) for cross-fertilization (Xin
et al., 2021). As indicated by the name MBL (MAGIC B-line),
this population comprises a unique source of B- or maintainer
progeny lines, which are used to develop new female (i.e., seed)
parents (Rooney, 2004). This population was created to increase
genetic diversity in the narrower female sorghum gene pool and
facilitates the identification of new genetic variants for future female
parent development. Founders of the MBL population were
purposely chosen for their ability to maintain sterility to A1

cytoplasm while capturing genetic diversity across the primary
botanical races (kafir, guinea, durra, and caudatum). As a result,
the high phenotypic variance was observed for all the phenotypic
traits (PT, DTA, PH, GY, TGW, TN, and YPP) in the MBL
population. In this population, our major focus was to identify
desirable allelic combinations and genetic loci associated with yield
influencing traits that can be used for sorghum yield improvement
in the future.

TABLE 3 A summary of pleiotropic QTL identified for various traits using MBL population.

Traita Chromosome Position (bp) Effect SE Probability Pleiotropy

PT Chr06 43,244,873 −0.20 0.04 2.00E-06 PT + PH + GY

DTA Chr03 62,831,536 −1.16 0.17 4.27E-13 DTA + PH

Chr05 2,588,266 −0.74 0.18 4.23E-07 DTA + TN

PH Chr02 59,202,168 4.26 1.02 1.10E-06 PH + YPP

Chr03 62,831,536 −4.20 0.79 6.03E-10 DTA + PH

Chr06 43,244,873 −4.46 1.01 1.24E-05 PT + PH + GY

Chr07 59,591,981 9.06 0.67 4.79E-42 PH + GY + TN

Chr07 59,606,838 8.72 0.66 8.58E-42 PH + GY + YPP

Chr09 57,030,394 7.42 0.96 4.37E-14 PH + TGW + TN

Chr09 57,074,147 9.88 1.48 5.6E-11 PH + TGW

Chr09 57,074,148 9.90 1.49 5.6E-11 PH + TGW

Chr09 57,106,095 8.07 0.97 5.25E-16 PH + GY + TGW

GY Chr06 43,244,873 −8.95 1.90 7.30E-07 PT + PH + GY

Chr07 59,591,981 12.72 2.19 1.0E-08 PH + GY + TN

Chr07 59,606,838 12.39 2.10 5.5E-09 PH + GY + YPP

Chr09 57,106,095 8.11 1.64 1.97E-07 PH + GY + TGW

TGW Chr09 57,030,394 0.73 0.06 3.98E-30 PH + TGW + TN

Chr09 57,074,147 0.51 0.11 2.9E-06 PH + TGW

Chr09 57,074,148 0.52 0.11 2.4E-06 PH + TGW

Chr09 57,106,095 0.58 0.11 1.8E-07 PH + GY + TGW

TN Chr05 2,588,266 0.29 0.09 9.52E-06 DTA + TN

Chr07 59,591,981 0.35 0.07 8.44E-07 PH + GY + TN

Chr09 57,030,394 0.34 0.07 1.29E-06 PH + TGW + TN

YPP Chr02 59,202,168 0.43 0.10 7.91E-06 PH + YPP

Chr07 59,606,838 0.50 0.09 2.49E-08 PH + GY + YPP

aPT, panicle type; DTA, days to anthesis; PH, plant height; GY, grain yield; TGW, 1000-grain weight.

TN, tiller number per meter; and YPP, yield per panicle.
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Relationship among traits and pleiotropic
effects

Interestingly, we observed several colocalized or overlapped
significant MTAs between four yield influencing traits (PH, GY,
TGW, and YPP), which was reflected by the relationship among
these traits (Table 2; Supplementary Figure S3A,B). The overall
phenotypic pair-wise correlations among the four traits (PH, GY,
TGW, and YPP) were significantly positive, except TN and YPP,
which showed a poor and negative correlation. We identified
15 MTAs commonly associated (shared associations) with
multiple traits through pleiotropic analysis particularly between
positively correlated traits (PH, GY, TGW, and YPP). These
correlated traits can be simultaneously improved by selecting a
single trait via indirect phenotypic selection. Conversely, TN did
not show any correlation with YPP and resulted in no colocalization
of QTL. Similarly, PT, DTA, and PH exhibited no significant
correlation between them or with the above traits. Therefore,
colocalization was rarely observed between these traits (PT, DTA,
and PH), which suggests that they are largely under independent
genetic control in this population. QTL mapping studies made
similar observations in context of the colocalization of QTL
between multiple traits in sorghum (Mackay et al., 2009; Boyles
et al., 2017b; Olatoye et al., 2020).

Panicle type

Panicle type (i.e., morphology) is an important trait that
facilitated racial classification in sorghum. Panicle morphology
also influences traits related to crop adaptation such as grain
maturity, grain yield, and grain size (Brown et al., 2006; Hmon
et al., 2013). However, the genetic architecture of panicle
morphology is not completely understood in sorghum, only a
few genes have been characterized so far (Morris et al., 2013;
Hmon et al., 2014; Wang et al., 2021). The four founders of the
MBL belong to four different races and each founder has different
panicle morphology. SC630 (kafir) has a compact panicle in contrast
to the open panicle type founder (SC605; guinea), whereas BTx642
(durra) and BTxARG-1 (caudatum) are semi-open and semi-
compact types, respectively. We identified three significant MTAs
for PT, located on three different chromosomes (Chr1, Chr2, and
Chr6). A candidate gene (Sobic.006G067700) was detected within
the 0.50 Mb region of the dwarfing gene (Dw2), which has been
mapped earlier in sorghum (Klein et al., 2008; Hilley et al., 2017).
The same locus overlapped with panicle length (Zhang et al., 2015).
Other genetic loci associated with panicle length have been
previously reported in sorghum on Chr2 (Shehzad and Okuno,
2015), and Chr6 (Zhou et al., 2019) in the overlapping regions. The
association found on Chr1 is novel.

TABLE 4 Average phenotypic trait values of all possible SNP haplotypes based on three major dwarfing genes in sorghum (Dw1, Dw2, and Dw3) along with four
founders of the MBL and the top selected lines.

Line ID Gene-haplotype SNP haplotype PH GY TGW TN YPP

SC630 Dw1dw2dw3 GAG 117 179 21 15 13

BTxARG-1 dw1Dw2dw3 C-G 108 169 16 16 12

SC605 dw1dw2Dw3 CAA 118 126 17 19 7

BTx642 dw1dw2dw3 CAG 99 71 14 13 8

n = 82 Dw1dw2dw3 GAG 122 124 17 19 7

n = 68 dw1Dw2dw3 C-G 113 139 16 16 9

n = 93 dw1dw2Dw3 CAA 113 135 16 18 8

n = 43 dw1dw2dw3 CAG 96 94 14 17 6

n = 36 Dw1Dw2Dw3 G-A 145 160 18 20 9

n = 13 Dw1Dw2dw3 G-G 121 111 17 17 7

n = 167 dw1Dw2Dw3 C-A 147 196 17 18 12

n = 120 Dw1dw2Dw3 GAA 145 165 18 22 9

MBL0911 dw1Dw2Dw3 C-A 154 377 19 25 18

MBL0963 dw1Dw2Dw3 C-A 128 362 15 19 20

MBL0918 dw1Dw2dw3 C-G 151 331 18 18 21

MBL0987 dw1dw2Dw3 CAA 136 324 15 19 18

MBL0088 Dw1dw2Dw3 GAA 156 313 18 19 17

PH, plant height; GY, grain yield; TGW, 1000-grain weight, TN, tiller number per meter; and YPP, yield per panicle. The meaning of italic values are Dw1, Dw2, and Dw3 denoted as dwarfing1,

dwarfing2, and dwarfing3, respectively.
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Agronomic traits

The MBL population demonstrated wide continuous
distributions for DTA and PH, which indicates the quantitative
nature of these traits (Figure 1). GWAS identified the most
significant associations (12 MTAs) for DTA, which were located
on seven different chromosomes. This is not surprising, because the
genetic loci associated with DTA have been reported earlier on all
the ten chromosomes of sorghum (Boatwright et al., 2022). Of the
12 significant associations of DTA, a locus (QDTFL1.53) on Chr1
(~57 Mb) overlapped in previous studies (Mace et al., 2013; Burks
et al., 2015). Similarly, two additional loci, one on Chr4
(QDTFL4.18) and another on Chr6 (QDTFL6.56) overlapped in
earlier studies by Mace et al. (2013), and Sangma (2013),
respectively. The rest of the genetic loci identified for DTA were
novel.

As we know, three major dwarfing genes have been previously
reported in sorghum on different chromosomes, such as Dw1
(Sobic.009G229800) on Chr9 (Brown et al., 2008; Klein et al.,
2008), Dw2 (Sobic.006G067700) on Chr6 (Wang et al., 2014b;
Higgins et al., 2014; Burrell et al., 2015), and Dw3
(Sobic.007G163800) on Chr7 (Morris et al., 2013; Girma et al.,
2019; Boatwright et al., 2022). For PH, 10 MTAs were identified,
which were located on seven different chromosomes (Chr2, Chr3,
Chr4, Chr6, Chr7, Chr9, and Chr10). In this study, the most
significant SNPs were located on three chromosomes (Chr6,
Chr7, and Chr9), which overlapped with major dwarfing genes/
QTLs known in sorghum such as Chr6 (Dw2), Chr7 (Dw3), and
Chr9 (Dw1). In addition, three common genetic loci associated with
PH on the three chromosomes (Chr1, Chr7, and Chr9), have been
mapped earlier by Boyles et al. (2017b) using two biparental
populations sharing founders (BTx642 and BTxARG-1) of the
MBL population. Additional genetic loci identified in this study
were also reported earlier studies in the overlapping regions, each
located on the Chr3 (QHGHT3.3) (Hart et al., 2001; Feltus et al.,
2006; Wang et al., 2014b), Chr4 (Wang et al., 2014b), Chr9
(QHGHT9.30) (Felderhoff et al., 2012; Takai et al., 2012; Wang
et al., 2014b), and Chr10 (Parra-Londono et al., 2018) using
biparental population and diverse panel of sorghum.

Yield component traits

GY is a complex trait determined by many yield components
like grain weight, tiller number per unit area, and grain yield per
panicle (Boyles et al., 2016; Boyles et al., 2017b; reviewed in Baye
et al., 2022). Since GY and its component traits are polygenic in
nature, they exhibit continuous phenotypic distributions
(Figure 1). For GY, three of the four MTAs detected each on
Chr6 (~43 Mb), Chr7 (~59 Mb), and Chr9 (~57 Mb) were
overlapped with three major dwarfing genes namely Dw2,
Dw3, and Dw1, respectively. These observations indicated the
potential influence of dwarfing genes on other traits. Genetic loci
associated with GY have been overlapped on Chr6 (Leiser et al.,
2014), Chr7 (Guindo et al., 2019), and Chr9 in sorghum (Sabadin
et al., 2012; Reddy et al., 2013; Reddy et al., 2014; Boyles et al.,
2017b). A novel significant MTA was detected on Chr9 (~52 Mb).
Interestingly, these three genomic regions exhibited significant

shared associations with all the phenotypic traits attempted in
this study, except DTA.

Grain weight is one of the major yield components and highly
heritable traits (Boyles et al., 2016; 2017b; reviewed in Baye et al.,
2022). In total, five significant MTAs were identified for TGW,
which were located on five different chromosomes (Chr1, Chr2,
Chr3, Chr9, and Chr10). Of these five, three MTAs overlapped on
Chr1 and Chr2 (Boyles et al., 2017b; Patil et al., 2019), and Chr3
(Sabadin et al., 2012). Another locus for TGW has been mapped
in the same region on Chr9 (~57 Mb) in previous studies (Reddy
et al., 2013; Boyles et al., 2016). The above locus also showed a
shared association with multiple traits (PH, GY, and TN).
However, a locus associated with TGW on Chr 10 (~35 Mb)
was identified for the first time in our study. In continuation of
grain yield components, TN is also an important trait, that
determines the grain yield by increasing the number of tillers
or panicles per unit area in sorghum. For TN, 10 significant
MTAs were identified, which were located on seven different
chromosomes (Supplementary Table S2). Of these
10 associations, three MTAs were previously mapped using
multiple populations in the overlapping regions on Chr1, and
Chr3 (Alam et al., 2014; Kong et al., 2014), and Chr4 (Alam et al.,
2014). A genomic region associated with multiple traits (TN, GY,
and YPP) was identified on Chr9 (~57 Mb), which was reported
earlier for tiller numbers (Feltus et al., 2006; Zhang et al., 2015).
However, another locus associated with the same set of multiple
traits (TN, GY, and YPP) on Chr7 (~59 Mb) was identified in this
study, which is a novel association for tiller numbers. YPP
directly influences the overall grain yield in sorghum by
several factors such as high grain weight and grain number
per panicle. Altogether, eight significant MTAs were identified
for YPP, which were located on six chromosomes (Chr2, Chr3,
Chr4, Chr5, Chr7, and Chr9). A locus was identified on Chr2
(~59 Mb) that was previously mapped in the overlapping region
(Shehzad and Okuno, 2015). Two genetic loci each on Chr7
(~59 Mb) and Chr9 (~57 Mb) were identified for YPP. Both the
common genomic regions associated with grain yield
components located on Chr7 and Chr9 have been previously
mapped in the same region (Boyles et al., 2017b) using two
biparental RIL populations sharing founders (BTx642 and
BTxARG-1) of the MBL population.

High resolution power of MBL

High resolution mapping is a critical step for the
identification of novel genes and narrows down the genetic
distance between the candidate genes associated with complex
traits in crop plants (Huang et al., 2015; Scott et al., 2020; Kumar
et al., 2023). As we reported earlier (Kumar et al., 2023), the
genome-wide LD decayed much more quickly in the MBL
compared to a biparental population (Supplementary Figure
S4), which is consistent with previous comparisons between
biparental and MBL populations (Boyles et al., 2017a). Based
on the previous mapping studies, the MAGIC populations are
more efficient to narrow down the genomic regions compared to
biparental populations (Huang et al., 2012; Kumar et al., 2023).
Here, we compared our results with an earlier QTL mapping
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study performed by Boyles et al. (2017b), where two different
biparental RIL mapping populations were used for QTL
discoveries sharing two of the four founders (BTxARG1 and
BTx642) of the MBL. Comparing the common genomic regions
identified on three chromosomes (Chr2, Chr7, and Chr9) in both
the studies for the same set of quantitative traits (PH, TGW, and
YPP), MBL placed all the common QTL in narrow genomic
regions as compared to biparental populations (Boyles et al.,
2017b). The potential of the MAGIC populations in facilitating
high resolution mapping have been reported earlier in crops with
even more complex genomes like wheat (Huang et al., 2012;
Stadlmeier et al., 2018) and cotton (Islam et al., 2016).

Significance of MBL in sorghum
improvement

Despite MBL parents all having short stature (Table 4), three
of the four founders displayed dominance at a unique locus
SC630 (Dw1), BTxARG1 (Dw2), and SC605 (Dw3). As a
result, all eight gene combinations were present across MBL
progeny, which led to significant height variation. Because
plant height confounds grain yield and related traits, these
dwarfing genes tended to dominate explained phenotypic
variance and thus masked the effects of other genetic variants
segregating in the population. To identify novel alleles associated
with yield related traits, GWAS were performed using a subset of
RILs that contained matching plant height gene combinations.
Using this approach, seven significant genomic loci were
identified on five different chromosomes (Chr1, Chr3, Chr4,
Chr6, and Chr7) for yield influencing traits. These genomic
regions overlapped with multiple yield component traits (GY,
TGW, TN, and YPP). Of these seven, the two significant loci
(Chr1 and Chr7) identified appear to be novel allelic
combinations. This MBL population was designed to identify
and recombine useful genetic variation present in diverse
maintainer (B-line) germplasm. Desirable allelic combinations
were indeed elucidated based on phenotypic comparisons of all
the MBL lines for yield related traits. Considering plant height
allelic combinations, five best-performing MBL progeny lines
were selected (Table 4). These favorable recombinants should be
hybridized with elite pollinator parents to test for general
combining abilities to help determine their value in sorghum
hybrid development. To reinforce favorable recombination,
various MBL progeny exhibited transgressive segregation for
all the phenotypic traits (DTA, PH, GY, TGW, TN, and YPP),
which indicates the distribution of positive and negative alleles in
the founders. Such segregation and allele shuffling provide
opportunities for trait improvement through pyramiding
desirable alleles from selected progeny lines.

Conclusion

The MBL is a structured multi-parent population that
encompasses a rich source of genetic variation for the seed
parent gene pool (also referred to as the female, A/B-line, or
maintainer pools). Seed parent genetic diversity within the A/B/R

CMS system is limited due to the majority of sorghum genotypes
being partial or full fertility restorers based on one or more
nuclear restoration genes. Here, allelic variants segregating
among four diverse founder lines were mined for association
with complex, quantitative traits using GWAS. Specific traits
included PT, agronomic (DTA and PH), grain yield (GY), and
yield components (TGW, TN, and YPP). GWAS identified
52 MTAs located on all the chromosomes of sorghum except
Chr8, representing both novel and previously identified genetic
loci for the above traits in narrow genetic regions. In addition,
15 significant MTAs were identified with pleiotropic effects
involving grain yield and yield influencing traits. Desirable
allelic combinations were identified based on plant height
haplotypes associated with plant height genes: Dw1 (Chr9),
Dw2 (Chr6), and Dw3 (Chr7). Additionally, two novel MTAs
each on Chr1, and Chr7, were identified for grain yield and yield
component traits when dwarfing genes (Dw1, Dw2, and Dw3)
were fixed in a subset of MBL progeny. Favorable alleles at these
loci can be leveraged for continued improvement of sorghum
seed parent productivity and performance. Direct selection on
these pleiotropic loci, in the absence of linkage between favorable
and deleterious alleles, can be used to simultaneously improve
correlated traits. Finally, at least five best-performing RILs were
selected for validation of grain yield and yield related traits
associated with dwarfing genes allelic combinations
segregating in the MBL population. The favorable progeny
lines can serve as valuable germplasm in sorghum hybrid
breeding programs.
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