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Failure to achieve efficacy is among the top, if not the most common reason for
clinical trial failures. While there may be many underlying contributors to these
failures, selecting the right mechanistic hypothesis, the right dose, or the right
patient population are the main culprits. Systems biology is an inter-disciplinary
field at the intersection of biology andmathematics that has the growing potential
to increase probability of success in clinical trials, delivering a data-driven
matching of the right mechanism to the right patient, at the right dose.
Moreover, as part of successful selection of targets for a therapeutic area,
systems biology is a prime approach to development of combination therapies
to combating complex diseases, where single targets have failed to achieve
sufficient efficacy in the clinic. Systems biology approaches have become
increasingly powerful with the progress in molecular and computational
methods and represent a novel innovative tool to tackle the complex
mechanisms of human disease biology, linking it to clinical phenotypes and
optimizing multiple steps of drug discovery and development. With increasing
ability of probing biology at a cellular and organ level with omics technologies,
systems biology is here to stay and is positioned to be one of the key pillars of drug
discovery and development, predicting and advancing the best therapies that can
be combined together for an optimal pharmacological effect in the clinic. Here we
describe a systems biology platform with a stepwise approach that starts with
characterization of the key pathways contributing to the Mechanism of Disease
(MOD) and is followed by identification, design, optimization, and translation into
the clinic of the best therapies that are able to reverse disease-related pathological
mechanisms through one or multiple Mechanisms of Action (MOA).
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1 Background

Impressive advancements have been made in our ability to probe and investigate the
genetic and molecular causes of diseases within the last few decades. High-throughput
measurements such as epigenomics, proteomics, metabolomics, transcriptomics, and
genomics have expanded our knowledge of living organisms and their internal structural
components, including cells, tissues, and organ systems. The vision for fully characterizing
the integrated cellular networks and in silico whole cell systems predictions is unfolding and
has made enormous strides over the last two decades (Wierling et al., 2015a; Benson, 2015;
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Imam et al., 2015; Chen and Li, 2016; Malod-Dognin et al., 2019;
Helwer and Chen, 2022; Zareifi et al., 2022). There is much work
ahead, while today’s advancements have paved the way for
important applications in drug and vaccine discovery and
development.

While “single target” drugs could work efficiently to affect a
critical molecular component contributing to a specific disease
mechanism, especially at early stages of disease onset, the same
treatment approach for complex diseases remains unsatisfactory
(Yan, 2010). The complexity of human biology makes it challenging
to develop safe and effective drugs (Berg et al., 2005), often
embodied by the complexity of the mechanism of disease (MOD)
and in parallel mechanism of action (MOA) of a drug that makes the
current drug discovery and development approach challenging
(Kovatchev et al., 2009; Iyengar, 2013). Drug approvals for
treating complex and multifactorial diseases have dwindled
despite increased insights into disease mechanism and the
availability of a large volume of data generated over past decades
that is ready to be assembled, analyzed, and interpreted by various
technological methodologies (Figure 1). System-wide regulation of
the biological systems for both complex and rare genetic diseases is
at play as evidenced by incomplete penetrance and disease
heterogeneity even in genetic diseases with defined causal genetic
mutations including cancers, Amyotrophic Lateral Sclerosis (ALS),
Huntington’s, Parkinson, Phenylketonuria (PKU), Alpha-1
Antitrypsin Deficiency (AATD) where inheritance of causal
disease mutations is not sufficient for developing a disease
(Cooper et al., 2013; Turner et al., 2013; Shawky, 2014; Taeubner
et al., 2018). It puts into question the concept of a single gene, single
target hypothesis. With an increased understanding of pleiotropic
mechanisms simultaneously contributing to pathological changes
and disease progression across a wide spectrum of diseases, we are
now seeing an evolution in drug development to consider
combination therapy, as evidenced in areas like cancer, asthma,
and others (Saleh, 2008; Iyengar, 2013; Obenauf, 2022; Plana et al.,
2022). A novel patient- and resource-centric paradigm within the
drug discovery and development approach are to minimize and
reduce the costly “trial-and-error”methodology for novel drugs and
drug combinations. Moreover, increased focus is afforded to
molecular mechanism-based, targeted strategies that could

address underlying mechanisms of disease, and engineer
combinations with corresponding multi-targeted mechanisms of
action that restore homeostatic processes and improve efficacy
endpoints, when given at the right dose to the right patient.
Advanced computational methods applied to multi-scale data
including clinical and molecular patient profiles have a great
potential to identify signatures for patient stratification in
heterogeneous diseases and to identify patient subsets that are
more likely to respond to the treatment. With commensurate
advances in computational approaches, computer microchips and
cloud computing scalability, the opportunity to learn and identify
new and complex biological systems implicated in disease that can
be re-programmed with novel therapeutic modalities is at hand.

Here, we describe how the field of systems biology,
representative of a multidisciplinary approach to drug discovery
and development, integrates biological, computational, and
pharmacological sciences capabilities to innovatively identify,
design, and translate novel molecular entities into the clinic
against complex and difficult-to-treat diseases.

2 Systems biology evolution: role in
drug discovery and development

The inherent complexity of human biological systems and the
pathological perturbations leading to complex diseases holistically
require a systematic approach that combines genetic, molecular,
cellular, physiological, clinical, and technological methodologies to
characterize disease heterogeneity and individualize drug discovery,
development, and treatment paradigms (Silverman and Loscalzo,
2013). Biological systems are inherently a complex network of multi-
scale interactions, as exemplified by emergent properties, and
therefore inadequately represented or characterized by individual
molecular components (Zou et al., 2013). A “single-target-based”
drug development approach is notably less effective for complex
diseases (Wierling et al., 2015b), with lower probability of success,
and higher risk to address underlying disease biology, presenting a
fundamental challenge in the current practice for drug discovery and
development (Kovatchev et al., 2009). Close investigation of the
multi-scale multi-target interactions of a disease network (MOD)

FIGURE 1
Technological advancements enable generation of new types of data and multimodal datasets to study biological systems and support drug
discovery and development.
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and accurate mapping of the drug’s mechanism of action (MOA) are
both critical for building confidence in the therapeutic hypothesis
while potentially de-risking off-target effects and bracketing the
therapeutic window (Tatonetti et al., 2009; Silverman and Loscalzo,
2013).

Addressing these complexities involves the integration of
diverse, large-scale data types accessible from well-designed
clinical registries and trials, preclinical studies, biomarker
databases, gene and protein curated databases, and large, virtual
compound libraries (Walters et al., 1998; Hert et al., 2006; Li et al.,
2012; Wassermann et al., 2013), databases with documented
biological, chemical, and structural activities of chemical
compounds (Parsons et al., 2006; Wishart et al., 2006; Kuhn
et al., 2008), biological information available via the human
genome project (Lander et al., 2001) and understanding of
cellular and molecular factors driving disease states using high-
throughput screening techniques and network-based technologies
(Giaever et al., 1999; Hughes et al., 2000; Lum et al., 2004; Parsons
et al., 2004; Joyce and Palsson, 2006; Perlstein et al., 2007;
Hillenmeyer et al., 2008; Hoon et al., 2008). Notably, over the
past several decades, technological advances in biology research
have generated a vast quantity of omics-related molecular datasets
derived at the level of genomics (DNA sequencing, structure,
function, mapping, and evolution of genomes), transcriptomics
(RNA sequencing that allows to quantify gene expression
changes at the organ or single cell level), proteomics (mass
spectrometry and affinity based methods with significantly
increased protein coverage that allow to quantify thousands of
proteins in cells, tissues, or biofluids, and mapping of post-
translational modifications), and metabolomics (unbiased and
targeted panels for quantification of metabolites representing
substrates and products of metabolism in cells, tissues or
biofluids). Such an enormous amount of information at a
multiscale level of organization affords a unique opportunity to
laying the foundation for effectively decoding complex biological
systems implicated in disease and deciphering the mechanism of
disease (MOD). While these big data streams offer the
unprecedented potential to discover and distill key components
of the MOD, still some challenges remain as far as data fidelity and
breadth, the incremental costs associated with experiments, ability
to mine these complex data robustly and in a reproducible manner,
and the translatability of preclinical models to the living human
organs and systems in health and in disease.

The use and application of advanced mathematical models to
study biological systems is increasing in drug development,
informed by the increasing availability of informative data. The
advent of innovative and large-scale computing technologies,
computational methodologies, novel learning and prediction
approaches like artificial intelligence, and cloud-based capabilities
is rapidly closing the gap and ability to analyze and integrate
voluminous datasets using various statistical and dynamical
models that could advance our MOD or MOA understanding.
Advanced computational methods applied to large preclinical and
clinical datasets allow one to characterize and design successful
clinical biomarker strategy for quantitative translation into the clinic
that can enable patient stratification and selection for enrollment of
the right patient subsets from the heterogeneous patient population,
and detection of drug activity and early modulation of disease

mechanisms predictive of beneficial changes in important efficacy
endpoints and clinical outcomes for an early Go/No-Go decision
making (Van’t Veer et al., 2002; Wang et al., 2005; Shen et al., 2009;
Shen et al., 2012; Ali et al., 2014; Kantor et al., 2004; Mirnezami et al.,
2012).

Systems biology is an inter-disciplinary field that applies
computational and mathematical methods to the studies of
complex interactions within biological systems as opposed to the
traditional reductionist approach used in research (Hood and Tian,
2012). As a multidisciplinary field, at the intersection of biology,
computation and technology, systems biology is geared towards
leveraging omics technologies to investigate and quantify biology as
a system or network (Berg et al., 2005; Wierling et al., 2015b; Zhou
et al., 2019). Utilizing multi-modality datasets, the systems biology
approach seeks to re-integrate critical elements to describe how
multicomponent interactions form functional networks within an
organism and/or patient and how their dysfunction contributes to a
particular disease state (Bielekova et al., 2014). To date, systems
biology methods contributed to generation of extensive
bioinformatics tools including biological pathway maps and
networks in health and disease built using data from preclinical
models and human samples that can be integrated with quickly
growing human genetics findings and other data types to
strategically enable new drug discovery and identification of
novel therapeutic adjacencies or indications for existing drugs
(Qu and Rajpal, 2012; Wierling et al., 2015a; Obenauf, 2022;
Zareifi et al., 2022).

With its increased role in drug discovery and development, the
systems biology-based approach has evolved well into the
translational and clinical space. This approach offers novel
insights into complex diseases and corresponding drug discovery
and development to enable design of novel combinations that could
re-program disease biology with a prescribed MOA, the translation
of preclinical findings into potential clinical benefits (Pujol et al.,
2010), biomarker signature-based patient selection, advancement of
disease biomarkers, prediction of drug response, elucidation of
disease MOD and drug’s MOA, and drug re-purposing.

3 Convergence of computational
methodologies and biological
processes for informing diseasemodels

In the past decade, there has been an increased convergence of
computational and biological research, with closer collaborations
that lead to better characterized disease models (Navlakha and Bar-
Joseph, 2011). Biologists rely more than ever on computational
sciences to study biology by analyzing and interpreting large data
sets. At the same time, computational scientists and engineers rely
on data generated to improve model performance, reliability,
predictions, and validation. Moreover, researchers are motivated
by high-level design principles of biological systems to inspire
various computational methods. The increasing availability of
systems-level data derived from advanced measurement
technologies enables scientists to characterize the multi-scale
nature of human biology and complex disease pathophysiology to
inform MOD (Azer et al., 2021). Increased knowledge of the
molecular pathway interactions and networks constituting the
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biological system function at the cell, tissue, organ, and organism
level allows for investigation of the MOA of candidate molecules
(Butcher et al., 2004; Hood and Perlmutter, 2004; Sobie et al., 2011).
The combination of computational and biological sciences enables a
data-driven scientific cycle of learning, refining, and confirming
hypotheses. Thus, computational biology, is an invaluable tool in
proposing a biological hypothesis for experimental validation
(Komurov et al., 2012; Zhou et al., 2019).

With emerging systems and network approaches, experimental
models can be utilized to provide a data-driven system-wide
reconstruction of the interactive and dynamic changes in cellular
and molecular components based on samples derived from cell-
based assays, preclinical animal models or human studies. Multiple
data types can be integrated using omics tools to construct cell
signaling models, networks, and pathways to identify new drug
targets and help discover novel leads by elucidating pathway
mechanisms and components. Efficient utilization of the multi-
omics datasets and data-driven discovery for preclinical models
correlated with experimentally simulated disease phenotypes could
be more impactful in identifying better compounds and drug
discovery opportunities (Berg et al., 2005).

Nevertheless, utilizing model systems depends on their
appropriateness and translatability to human disorders. The
systems biology methodology integrates the human disease biology
knowledgebase and combinatorial design that will allow design of
better and more precise experimental models and phenotypes for
investigation of molecular networks and MOD and for testing and
selecting the best therapeutic compounds and combinations. E.g., the
BioMAP® system, a primary human cell-based assay designed to
model complex human disorders in a functional in vitro format
(Butcher, 2005; Unternaehrer and Daley, 2011). Stimulating
primary human cell types and co-cultures using pathway activator
combinations assists in generating cell signaling networks appropriate
for human disorders. The systems biology approach is often utilized to
select primary human cell types, pathway activator combinations, and
endpoint and biomarker selection for these assays (Berg et al., 2005;
Stacey, 2012).

Creating models against clinically established phenotypes and
utilizing high-throughput drug screening capabilities could allow
integration of the experimental results with disease databases to
predict and prioritize new indications with the highest probability to
benefit from selected treatments. These databases, e.g., human
whole-cell models (Szigeti et al., 2018); and the Human Cell
Atlas Project (Regev et al., 2017), will integrate an understanding
of human biology and disease pathophysiology at the cellular scale
and enable crucial information for mathematical biology, model
development and application (Azer et al., 2021). Moreover,
leveraging a significant array of existing models, e.g., through
EMBL-EBI Biomodels Database (https://www.ebi.ac.uk/
biomodels/) and tools such as SBML Toolbox (http://sbml.org/
Downloads) enables a rapid and efficient model development
process and allows for the advantages of open science platforms
as the developed models are shared and built upon by the scientific
community (Malik-Sheriff et al., 2020).

Advanced statistical learning approaches applied to large clinical
and preclinical data could help better characterize the mechanisms
of pertinent disease, MOD, and mechanisms of action of candidate
drugs, MOA. Ultimately, using omics technology could help reduce

the risk of “trial-and-error” in probing and predicting behavior of
complex biological systems (Berg et al., 2005).

Application of systems biology is especially critical for complex
diseases, considering their unknown etiology and the limited
understanding of molecular mechanisms driving disease
pathogenesis. Since complex, multifactorial disorders have
substantial heterogeneity, selecting right patients for appropriate
therapies based on the MOD/MOA hypothesis for such complex
diseases cannot be achieved without the analysis of the large multi-
modal datasets (genomic, epigenomic, proteomic and metabolomic)
using next-generation computational methods (Silverman and
Loscalzo, 2013). Systems biology analysis has been applied to
defining segments of patients that are more likely to respond to
targeted treatments in asthma based on their genomic profile or
genetic variant subtypes (Karaaslan et al., 2022). This analysis has
also been applied to advancement and discovery of biomarkers of
disease and response such as alpha-synuclein for Parkinson
(Siderowf et al., 2023) and neurofilament light chain (NfL) for
several neurodegenerative diseases, and for advancing molecular
characterization of MOD to facilitate the discovery of novel
therapies, e.g., in Long COVID (Su et al., 2022).

Drug discovery and development decisions rely extensively on
characterizing a target’s MOA, which is crucial in characterizing a
drug’s pharmacologic effect (Berg et al., 2005) and its impact on
biological processes and pathways. Data derived from experimental
models focused on theMOA of a specific drug can be integrated with
analysis of the real-world data from clinical disease registries and
from available translational studies and clinical trial data to hone in
on specific mechanisms implicated in complex diseases and identify
clinical and molecular signatures associated with disease subtypes,
for example, in non-alcoholic steatohepatitis (NASH), type
2 diabetes, and other complex diseases (Zhou et al., 2019;
McGlinchey et al., 2022; Zareifi et al., 2022). Moreover, better
understanding of a drug’s MOA builds more supportive evidence
and confidence in the therapeutic hypothesis and allows for de-
risking of clinical development, e.g., through identification of
biomarkers of response, and advancing data-driven rationale for
identifying drug-responders in heterogeneous disease populations.

Overall, systems biology approaches could help define
phenotypes, timepoints, readouts, and biomarkers to target in the
preclinical models during research stages of drug discovery and
development by leveraging clinical registries and clinical trial data
from relevant disease populations, and utilizing established clinical
endpoints and biomarkers. Clinicians and investigators can draw on
findings from both biological (in vitro, in vivo and ex vivo
experiments) and mathematical models (in silico experiments) to
decipher causal disease mechanisms and guide future decisions for
better interventions.

4 Systems biology as a drug discovery
and development engine

In this new era of technological and data sciences progress,
systems biology approach has a great potential to improve and
accelerate drug discovery and development process through efficient
utilization of existing publicly available and new well-designed
datasets representing preclinical and clinical transcriptomic,
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proteomic, metabolomic, imaging, and other data types. Advanced
computational methods can be applied for the integration and
analysis of the data from multiple sources and multiple formats,
and for the generation of the data-driven therapeutic hypothesis that
will be tested experimentally and in silicowith subsequent parameter
optimization for successful drug candidates and combinations.

The following five steps provide a roadmap from the data-
science driven discovery of disease mechanisms and potential
therapies to the experimental validation, optimization of drug
combinations and dose, and to informing successful clinical trial
design (Figure 2).

• Discover—Characterize the Mechanism of Disease (MOD)
and identify potential modulators to reverse disease biology
and restore health (MOA).

• Prioritize/Rank—Rank the MOD and drug candidates/MOA
predictions.

• Design—Select and confirm drug candidates that have the
highest potential to affect the intended MOA, utilizing a
combination of experimental and computational models.

• Optimize—Find the optimal composition, component ratios,
and the dose to yield maximum treatment effect relevant for
the clinical studies.

• Translate—Develop a clinical path to inform clinical study
design and biomarker strategy to validate pharmacology and
efficacy in the clinic.

4.1 Discover—investigate the mechanism of
disease (MOD) and identify potential
modulators to reverse disease biology and
restore health

Mechanisms associated with disease biology (MOD) and drug
candidates predicted to modulate disease via MOD-reversing
mechanism (MOA), can be identified in this step by the

integrative analysis of mechanistic data from multiple sources
including scientific literature, internal and external datasets,
relevant databases, pathway maps and networks using advanced
data science approaches. Mining and assembly of the relevant data
sources provides context and content for precedented or evaluated
molecular mechanisms and targets for a given disease and the tools
such as animal models or in vitro systems used to test novel
candidates against these targets. Literature mining approaches
including natural language processing (NLP), keyword-based
methodologies, semantic-based and ontology-based searches, can
be leveraged to gain insight into molecular mechanisms of diseases
of interest (MOD) and match them with potential drug targets at a
larger scale and with increased precision (Wu et al., 2012; Joseph
et al., 2016; Azer et al., 2021). To investigate the biology of interest,
specific research objectives and questions have to be established to
customize the data sciences algorithms by designing screening
principles, keywords, and criteria to be applied to selected data
formats. Machine learning (ML) principles can be applied for
automatic annotations and specific knowledge extraction tasks.

ML approaches can also be leveraged to integrate the data from
multiple sources and to build disease networks for internal and
external datasets such as experimental results, historical clinical
data, and disease biomarker data (Parolo et al., 2021). The networks
can be constructed de novo or can be overlayed onto pathways, e.g.,
KEGG (Kanehisa and Goto, 2000), or REACTOME (Gillespie et al.,
2022). Perturbations of these networks by disease (MOD) and by
potential therapeutic modulators (MOA) can be predicted, mapped,
and analyzed in this step simultaneously for many pathways and
drugs or compounds using cloud empowered in silico simulations
(Clish et al., 2004; Valeyev et al., 2010; Ellen, 2014). These
computational models are customized based on the project
objectives, scope, modality of choice and other parameters.
Computational workflows (Denaro et al., 2023) can be developed
and streamlined to enable semi-automated and efficient analysis of
big data, and to allow a broader team of scientists to analyze and
interpret the data. Advanced computational tools like sensitivity

FIGURE 2
Systems biology as a drug discovery and development engine.
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analysis, asymptotic analysis, surface-response modeling and others
can be leveraged to identify patterns and hone in on key variables
driving network behaviors (Merrill et al., 2019; Simoni et al., 2021).

Overall, leveraging the literature, internal and external datasets
coupled with data science approaches provides an opportunity for a
reliable, data-driven knowledge discovery process of network model
development for the biological systems of interest towards
advancing an MOD strategy for a given disease and initial
identification of potential molecular candidates predicted to
reverse components of the MOD.

4.2 Prioritize—rank the MOD and drug
candidates/MOA predictions

The advantage of the data sciences approach is the ability to
digest large amounts of data and generate selected outputs at a large
scale. In order to rank these outputs and prioritize and select the
mechanisms and targets for subsequent follow-up and validation,
the strategy needs to be established based on general and project-
specific principles. The target product profile provides broad
context, criteria, and direction for development. Some of the
general principles for analyzing, interpreting, and ranking the
processes and outputs are.

• the strength of evidence based on human genetics, clinical
precedence, and preclinical experimental models.

• phenotypic characteristics and common biological processes
(i.e., inflammation, cell death, proliferation, mitochondrial
biology).

• redundant pathways and circuits.
• compensatory mechanisms.

Project-specific principles and criteria for the output
prioritization can be related to the diseases or biology of interest,
patient segments (e.g., genetic variants), specific therapeutic
modalities or delivery routes, organs or tissues, or specific
subcellular localization or process. Moreover, other factors such
as existing standard of care, gaps in therapeutic approach and
patient unmet needs, potential for combination with other
products can help shape and guide the prioritization process.
Implementation of the ranking strategy will represent cross-
functional efforts between biologists, data scientists, and
clinicians to create a prototype for a ranking algorithm,
algorithm execution, and manual verification and curation of
computer-based predictions.

4.3 Design—select and confirm drug
candidates that have the highest potential to
affect the intended MOA, utilizing a
combination of experimental and
computational models

For selecting drug components with a maximum effect on
disease biology, experimental and computational models will
have to be established for the top ranked MODs. Disease MOD
can be represented by multiple in vitro, ex vivo, and in vivo models

focused on specific phenotypes or pathways, especially in the context
of multi-targeted combination design that may include effects on
cell survival in multiple cell types, effect on biological processes
requiring multi-cellular systems or in vivo models, e.g., fibrosis, or
effect on complex phenotypes requiring specialized in vivo models,
e.g., behavior and cognition. Once the models are established and
phenotypes, timepoints, readouts and other features are optimized,
these preclinical models will be used to validate predicted drug
activity (MOA) against the multiple targets in the design (Haycock,
2011; Daou et al., 2021). The drugs and drug combinations selected
in experimental and computational MOD models will be based on
their ranks following prioritization driven by the key criteria
relevant for the project. Special attention should be given to
selection and characterization of biomarkers of
pharmacodynamics and efficacy. Candidate biomarkers for
evaluation in experimental systems can be identified based on the
MOD/MOA networks and translational criteria including
availability of reliable assays, ability for non-invasive
measurements, and association of the biomarker changes to
disease progression or efficacy in the clinic.

Computational or manual curation methods are applied to the
MOD/MOA networks to determine whether individual compounds
will be sufficient to achieve a maximum effect for each phenotype
and experimental model or whether there is an optimal drug
combination that is predicted to have a maximum effect. Top
ranked predicted modulators are investigated for potential
redundant, compensatory, inhibitory or activation properties.
Simulations and computer modeling can be used for well-
established systems with reliable parametrization to screen
multiple drugs and drug combinations, with subsequent
validation experimentally, and to bracket concentration ranges
and relative ratios of combination composition, paving the way
for optimization. The proposed drug design will include single drugs
or drug combinations with experimentally and computationally
confirmed, non-redundant, and complementary MOAs with a
maximum effect on reversing the MOD.

4.4 Optimize—find the optimal composition,
component ratios, and the dose to yield
maximum treatment effect relevant for the
clinical studies

In this step, the effect of drugs and drug combinations will be
further evaluated in the experimental and computational models to
determine the optimal drug characteristics, individual
concentrations, and optimal dose. Translational modeling
approaches, such as quantitative systems pharmacology (QSP,
Azer et al., 2021; Bai et al., 2019; EFPIA MID3 Workgroup et al.,
2016; Berg et al., 2005), are used to characterize the
pharmacokinetic/pharmacodynamic (PK/PD) relationship and
build the dose response curve ideally based on more than one
preclinical model and measure the PD effect on multiple
biomarkers to generate robust data. Optimal dose is usually
selected to achieve maximum effect on selected PD biomarkers.
To strengthen the confidence in translatability to the clinic, it is
recommended to measure the same biomarkers in preclinical
models that will be included in the clinical biomarker strategy.
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Experimental and computational models can also be utilized to
evaluate the effect of genetic variants and epigenetic modifications
relevant to disease of interest on dose, therapeutic effect, choice of
biomarkers and other clinical trial design considerations.

In the optimization step, experimental design can be improved
by computational models such as systems pharmacology and
mechanistic modeling approaches (Zineh, 2019; EFPIA
MID3 Workgroup et al., 2016; Bai et al., 2019) that can quantify
the pharmacology of the composition and ultimately aid as a
translation tool into the clinic to ascertain the clinical dose and
quantify target engagement. QSP can also be applied with cell-based
systems to quantify the contribution of individual components in
the combination and aiding in addressing regulatory requirements
like the fixed combination rule. QSP models, by integrating cellular
and molecular interactions knowledge, support target and
combination selection and validation in early drug discovery and
optimal trial design (Cucurull-Sanchez et al., 2012; Benson et al.,
2014; Betts et al., 2019; Chelliah et al., 2021) and provide a means of
simulating differential response in genetically or mechanistically
defined patient subtypes, as for the example in the case for SOD1-
ALS (Paris et al., 2022). Data obtained via this process is modeled for
drug exposure-response relationship using pharmacometrics
techniques to demonstrate drug effects and dose optimization.
“Fit-for-purpose” principles should guide decision-making and
study planning based on the best pharmacological and biological
knowledge (Kiyosawa and Manabe, 2016). The combination of
preclinical and clinical data and computational models is
subsequently utilized as we enter the clinical development phase
to expand and advance understanding of the MOA, utilizing omics
studies, metabolic experiments, flux studies, multicellular systems,
among others.

4.5 Translate/roadmap to the
clinic—develop a clinical path to inform
clinical study design and biomarker strategy
to validate pharmacology and efficacy in the
clinic

Clinical development of novel drugs and drug combinations is
dependent on non-clinical experiments and translational modeling
to a significant extent (Yates et al., 2020). Successful translation is
achieved by leveraging commensurate and precedented preclinical
and clinical knowledge and data on disease endpoints, patient
segments and biomarkers. Moreover, leveraging of natural disease
history, real-world evidence and disease biomarkers studied in
translational and clinical studies enables de-risking of later phase
clinical trials and informs a strong clinical biomarker strategy.
Designing and developing drug combinations (e.g., in rare
diseases and oncology) is not only experimentally and clinically
demanding. The predictability of disease biomarkers and endpoints
from one trial to the other and in vivo to clinical translation remains
an area of development for the field more broadly. Developing
‘virtual clinical trials’ with a ‘virtual population’ could be an
opportunity to optimize chances of success and personalized
treatment options for clinical practice (Kovatchev et al., 2009;
Abrams et al., 2020). Moreover, PK/PD, QSP and translational
modeling studies are critical in informing the dose and

translational strategy for entry into the clinic (Haraya et al.,
2022). Developing disease platform QSP models is a unique and
powerful strategy to mitigate some of these challenges (Azer et al.,
2021). In addition, utilizing systems biology analysis to identify
genetic mutations or epigenetic changes linked to disease to help
define patient subpopulations that are more likely to response to
treatment is crucial. For example, understanding both genetically
defined segments of Parkinson (such as GBA, LRKK2 and alpha-
synuclein) and underlying MOD that may be overlapping across
these segments, and potentially shared with other neurodegenerative
diseases allows for optimal patient selection in POC trials focused on
selected biomarkers relevant to the segment, as well as a longer term
strategy of advancing combinations that may be beneficial across
diseases with shared underlying biology (Merchant et al., 2019;
Bloomingdale et al., 2022; Righetti et al., 2022).

Another emerging area with an enormous potential on
improving clinical trial design with realistic duration to observe
efficacy is collection of the real-world evidence and better
understanding of natural disease history, and disease
heterogeneity classifying patients based on their disease subtypes
or disease progression rates. Since these efforts will lead to
generation of large-scale multi-modal and rich, complex datasets,
systems biology will be instrumental in data analysis and revealing of
trends, signatures, and selection of patient subsets based on
molecular biomarkers, demographic and clinical parameters who
are more likely to respond to specific therapies based on the type of
therapy or trial duration.

5 Challenges and future directions

While significant progress has been achieved over the last
2 decades and has revolutionized our view, understanding and
opportunity to intervene for restoring health and maintaining
wellness, several key challenges still lie ahead for the purpose of
advancing innovative medicines to patients with unmet medical
needs. We will differentiate here between two related types of
challenges, namely, scientific and operational.

Some of the main areas of scientific challenge include elucidating
mechanisms of disease for complex diseases that represent
significant clinical heterogeneity such as neurodegenerative
diseases, improving probability of success for translation to the
clinic, and advancement in computational capability and
commensurate data platforms to consolidate and synthesize vast
and disparate sources of information and advance actionable
information towards identification of novel targets and design of
novel agents. We anticipate that progress in each of these areas will
be incremental, and success dependent on effective industry-
academic partnerships, expanded adoption and integration of
multi-disciplinary research, as well as increased avenues of
patient engagement in biomedical research.

Challenges in operationalizing systems biology in industry
include balancing cost and resources for data generation and
synthesis to maximize learning about disease processes for
efficient drug design while staying on course in terms of budget
and timelines. Moreover, strategic decisions around the balance of
investment in platform capabilities to allow for speed, efficiency and
scale, and application to specific programs through to the clinic and
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ultimately to approval are critical to developing a programmable at
scale platform with timely and broad applications to biomedical
science.

As progress unfolds across these and other areas of challenge, we
expect to see future directions and opportunities unfold for systems
biology and its applications in bringing innovative medicines to
patient in need. The COVID-19 pandemic has shown
programmable technology such as mRNA can rapidly be adapted
to new applications, in this case a novel virus, and successfully
vaccinate individuals and populations against emerging variants.
Building on these successes, and advancements in RNA technology
and CRISPR, systems biology will continue to be an invaluable tool
in advancing and realizing the full potential of novel modalities like
gene editing and RNA targeting in addressing previously
unaddressable diseases. Moreover, broader and increased utility
and application of systems biology in biotechnology research will
be invaluable to stand up research and translational platforms that
can fulfill the promise of biomedical research at scale by both
improving pre-emptive health and restoring disease back to
healthy homeostasis.

6 Summary

There is an unprecedented number of investigational products
in clinical development for various diseases, including
neurodegenerative, oncology, metabolic, cardiovascular, immune,
rare, and neglected diseases. The complexity of the underlying
biological systems is significant in these diseases and
combinatorial therapies is increasingly taking centerstage. An
urgent and imploring requirement exists for enhancing the
process of efficient design and translation of drug candidates, and
clinical trial design to improve the probability of success and reduce
failure rates in the clinic. A proactive systems biology platform, that
integrates computational and biological sciences, towards decoding
complex and rare diseases with intricate biological networks is
essential to enabling efficient and effective development of
innovative medicines that impact unmet medical needs. Utilizing
systems biology will enable the development of combination
therapies designed for engineered MOD, and that provide novel
insights into choosing the right treatment based on the disease types,
and future adjacent opportunities in other disease areas. While this
approach without a doubt will accelerate and improve drug

discovery and development process for individual drugs, it is also
more efficient and powerful for drug combinations that may be the
answer for many complex diseases where the patient is left with little
or no therapeutic options.

The drug development process is incrementally being adapted
by biotech and pharmaceutical companies to increase efficiencies
and improve probability of success by adapting to and deriving
benefits from data-driven platform approaches that integrate the
many facets and disciplines of drug discovery and development in a
reproducible way and as part of an increasingly effective learning
and confirming cycle. With the appropriate support from regulatory
agencies, this will shape up as a standard practice wherein virtual
trials are running ahead of and in parallel with clinical trials to
accelerate the time for targeted treatment options for patients.
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