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We developed an analytical model to evaluate the effect of signal pileup on the
recorded energy spectrum in X-ray photon-counting detectors affected by dead
time and equipped with retrigger capability. The retrigger function allows the
system to work in a specific non-paralyzable counting mode by counting the
time-over-threshold of piled-up signals inmultiples of a predefined and selectable
retrigger time. The model, designed for rectangle-like-shaped signals, allows for
arbitrary input energy spectra and can significantly help understand and optimize
the behavior of counting detectors with spectral capabilities and retrigger
mechanisms in applications involving polychromatic beams, e.g., spectral X-ray
imaging and computed tomography (CT), in a time-efficient way. Dedicated
numerical simulations were used to validate the model under several
conditions of incoming flux and threshold energy, with excellent results.
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1 Introduction

In the classic configuration of a particle-counting detector, an event is detected as soon as
a signal passes a certain threshold level, and for the time-over-threshold period, the system is
insensitive to additional signals. At high incoming rates, events undergo pileup, and the
resulting signal frequently exceeds the threshold, paralyzing the counting capability. This
behavior is well-described for monochromatic signal pulses by the commonly known
paralyzable counting mode, where the recorded rate m is related to the incoming rate
n—assumed to follow Poisson statistics—with the relationm � ne−nτP , with the dead time τP
being the single pulse time width [1, 2]. The instant retrigger technology is a circuital
expedient introduced by DECTRIS Ltd. first in the PILATUS3 [3] counting ASIC and then
adopted in the subsequent counting ASICs IBEX [4] and KITE [5] to overcome the limits of
the system paralysis, thus extending the response linearity toward higher values of the
incoming rate. In particular, the retrigger mechanism consists of a (time-variant) logic that
counts the time-over-threshold of piled-up signals in multiples of a predefined and selectable
retrigger time τR, making the system work in a particular type of non-paralyzable counting
mode. The analytical relation between the incoming and recorded rates for this specific
behavior and monochromatic signal pulses was provided in [6] as m � n

e−nτP+nτR, and further
statistical insights (spatial and temporal variance) were provided in [7].

An additional and equally fundamental problem of pulse pileup is the distortion brought
to the energy spectrum recorded by the detector. This has potential implications for all those
applications interested in the spectral content of the detected radiation up to high levels of
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incoming fluxes, e.g., X-ray imaging and CT. In the last decade, it has
been demonstrated that photon-counting systems can not only
bring a series of potential improvements with respect to
traditional energy-integrating systems in the field of X-ray
imaging and computed tomography (CT)—such as lower noise,
dose efficiency, and higher spatial resolution—but also allow for
novel diagnostic techniques based on their uniquely offered spectral-
resolving capabilities [8–13]. Understanding the dynamics of pileup-
driven spectral distortion is, therefore, crucial for guiding the design
and optimization of future photon-counting systems, both from the
hardware and image processing/algorithm point of view. Monte
Carlo-based numerical tools are a widespread choice to address this
kind of problem as they provide an extremely flexible and accurate
framework but are often data-intensive and time-consuming
routines. Analytical (or semi-analytical) models can significantly
help in this respect, providing a deeper understanding of the
underlying physics and a better knowledge of the functional
dependence of the model parameters.

Examples of counting detectors operating in the classic non-
paralyzable1 mode and for triangular-like pulse shapes can be found
in [14]; the extension to the case of the classic paralyzable mode is
discussed in [15, 16], addressing it in an exact way and for arbitrary
pulse shapes. Additionally, [17] addresses both counting modes in a
semi-analytical manner, in principle extendable to arbitrary pulse
shapes. The peculiar behavior introduced by the retrigger
mechanism requires, however, a dedicated form of treatment,
which has not yet been addressed. In this work, we present the
derivation and validation of an analytical model that relates the
recorded rate to the incoming rate in counting systems featuring the
retrigger capability for arbitrary input energy spectra. The goal is to
provide a simple and time-efficient tool to evaluate the spectral
performance of this not-yet-fully explored class of detectors up to
high levels of the incoming rate. To achieve this, we extended the
previously described model in [6] to the case of the polychromatic

input energy spectrum. For the needs of the analytical treatment,
signals are assumed to be rectangle-like shaped.

The model is validated through a comparison with Monte Carlo
simulations, which mimic the realistic case study of a direct X-ray
tube beam impinging on a pixelated cadmium telluride (CdTe)
sensor read out by a counting ASIC over a wide range of threshold
energies and for values of incoming rates relevant for clinical CT
applications.

The paper is organized as follows. In Section 2.1, we resume the
working principle of the retrigger mechanism; in Section 2.2, we
derive the analytical model, in Section 2.3, we introduce the Monte
Carlo simulation framework used for the comparison; and in Section
2.4, we describe the used case study. Validation results are presented
and discussed in Section 3.1 in terms of the recorded count rate as a
function of the incoming rate and in Section 3.2 in terms of the
recorded spectra as a function of the incoming rate. Finally, in
Section 3.3, we evaluate the impact of a realistic (non-ideal) pulse
shape on the recorded spectra.

2 Materials and methods

2.1 Instant retrigger technology

To ease the reading, we provide a brief description of the
retrigger mechanism principles, which have already been
carefully addressed in [3, 6], with the help of Figure 1. In single
X-ray photon counting circuitry, an event is detected and counted as
soon as the rising edge of the incoming analog signal (shaperout)
exceeds a predefined threshold (vth). Without a retrigger
mechanism, during the time-over-threshold, the system is “dead”
or insensitive to further incoming signals (pileup), leading to
paralyzation at high fluxes (count paralyzed). Conversely, with
the retrigger mechanism, as soon as the first analog signal
exceeds the threshold, an additional internal digital dead time
signal (deadgenout) is generated and periodically evaluated—with
a configurable period that we call retrigger time τR (tdead). At every
evaluation, if the incoming signal is still high, the counter is
increased by a unit; if it has fallen below the threshold, the dead
time signal is deactivated. Possible threshold crossings during the τR
period do not give rise to counts. In this way, a non-paralyzable
counting mode is achieved (count retriggered) with a limiting
recorded rate of 1/τR in the high flux regime. The value of τR is
customarily set slightly longer than the time-over-threshold of the
input signal to prevent the system counting individual pulses
multiple times.

2.2 Pulse pileup model

The model is derived based on the following assumptions:

i. The events’ arrival follows Poisson statistics with an average true
incoming rate n.

ii. The signals have the shape of a rectangle with a width τP.
iii. Signals’ amplitudes are mutually independent stochastic

variables and are distributed according to a probability
function that corresponds to the energy spectrum sE(ϵ).

FIGURE 1
Signal waveforms illustrating the retrigger mechanism, obtained
from [3].

1 The classic non-paralyzable counting mode exhibits a relationm � n
1+nτ [2].

Frontiers in Physics frontiersin.org02

Zambon and Amato 10.3389/fphy.2023.1205638

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1205638


iv. The retrigger time is longer than the pulse width, i.e., τR > τP
2

As for themonochromatic case described in [6], to the purpose of an
analytical treatment of the problem, it is easier to focus on the rate loss
n −m. This can be expressed for convenience as the sum of four separate
contributions that we call l1, l2, l3, and l4 such that

n −m � l1 + l2 + l3 + l4. (1)
l1 and l2 deal with the rate loss occurring in the “dead time” period
after the detection of a signal or after an evaluation of the retrigger
signal; l3 deals with the possibility of an incoming event being
undetected in the first place; and l4 deals with the rate loss occurring
during the time periods in between detected events.

In the following list, we describe the derivation of l1 to l4:

l1) After a positive detection of an incoming event during the “live
period” of the detector or after an evaluation of the retrigger signal,
for a time interval of lengthΔτ = τR − τP, all incoming events are lost
since they would not last until the next evaluation of the retrigger
signal. Therefore, on average, nΔτ incoming events are lost for every
recorded count m, yielding

l1 � mnΔτ. (2)

l2) During the remaining time interval of length τP until the next
retrigger evaluation, three possibilities exist. First, if there is no
incoming event, nothing is lost. Second, if the overall signal
(resulting from the sum of the individual signals) lies below the
threshold, all the incoming events are lost. Third, if there is at least

one incoming event and the overall signal lies above the threshold,
all except one event are lost.

Before making l2 explicit, it is necessary to introduce the following
notation. Given sE(ϵ) as the probability density function of the
amplitude (which is proportional to its energy) of an individual
signal, by definition the corresponding cumulative distribution
function, SE(ϵ) is

SE ϵ( ) � Pr(E≤ ϵ) � ∫ϵ

0
sE x( )dx. (3)

When i signals pileup, the stochastic variable Ei � ∑i
k�1Ek is

distributed according to the convolution of the individual
probability density function repeated i times, which is indicated as

sEi ϵ( ) � sE ϵ( )psE ϵ( )p . . . psE ϵ( )︸����������︷︷����������︸
i

�defsE ϵ( )*i, (4)

from which the corresponding cumulative distribution function
can be deduced as

SEi ϵ( ) � Pr(Ei ≤ ϵ) � ∫ϵ

0
sE x( )*idx. (5)

Let us also recall the probability of having i incoming events
following the Poisson distribution in the time interval τP.

Pr i|τP( ) � nτP( )ie−nτP
i!

. (6)

We can now write l2 as

l2 � m ∑+∞
i�1

iPr i|τP( )SEi Eth( ) +∑+∞
i�1

i − 1( )Pr i|τP( ) 1 − SEi Eth( )( )⎧⎨⎩ ⎫⎬⎭, (7)

where Eth is the threshold energy of the counting circuitry.
Rearranging the terms, we can write that

FIGURE 2
Energy spectrum detected using a CdTe sensor with a pixel size
of 330 μm and a thickness of 1500 μm, used as input for both the
model and the Monte Carlo simulations. The direct X-ray tube beam
spectrum (W-anode, an acceleration voltage of 120 kVp, and
6.8 mmAl filtering) is shown as a reference, and themain fluorescence
peaks originated from the W-anode of the X-ray tube and the CdTe
sensor.

FIGURE 3
Count rate curves predicted by themodel and simulated with the
Monte Carlo tool for different values of threshold energy, including the
ideal (no pileup and no electronic noise) rate at the threshold energy of
0 keV. Error bars of the simulated data are smaller than the used
graphical symbol.

2 This condition prevents counting single events multiple times, which is
usually an undesired effect in a retriggered system, unless it is intentionally
operated in a time-over-threshold mode, as shown in [21].
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l2 �m ∑+∞
i�1

iPr i|τP( )SEi Eth( )+∑+∞
i�1

iPr i|τP( ) 1−SEi Eth( )( )−∑+∞
i�1

Pr i|τP( ) 1−SEi Eth( )( )⎧⎨⎩ ⎫⎬⎭
�m ∑+∞

i�1
iPr i|τP( )−∑+∞

i�1
Pr i|τP( ) 1−SEi Eth( )( )⎧⎨⎩ ⎫⎬⎭.

(8)
Considering that ∑+∞

i�1 iPr(i|τP) � ∑+∞
i�0 iPr(i|τP) � nτP and

defining A �def ∑+∞
i�1 Pr(i|τP)SEi(Eth), we can rewrite l2 as follows:

l2 � m nτP + 1 − Pr 0|τP( ) −A{ }, (9)
and since Pr(0|τP) � e−nτP , we obtain

l2 � mnτP −m +me−nτP +mA. (10)

l3) An additional term has to be added to account for the possibility
that an incoming event actually passes undetected; in the case
when the time interval τP precedes each recorded count m, the
overall signal lies below the threshold energy.

l3 � m∑+∞
i�1

Pr i|τP( )SEi Eth( )
� mA.

(11)

l4) During the “live time” of the detector, all those piled-up signals
whose overall signal lies below the threshold are also missed.
Given T as the total acquisition time, the detector live time is
T(1 − mτR). In this time interval, the number of lost events can
be approximated as ∑+∞

i�1 iPr(i|τP)SEi(Eth) for each sub-interval
of the live time with size τP. This leads to

l4 � 1
T

T 1 −mτR( )
τP

∑+∞
i�1

iPr i|τP( )SEi Eth( ), (12)

with the term 1/T arising for normalization purposes. Defining

B �def∑+∞
i�1 iPr(i|τP)SEi(Eth), we can rewrite l4 as follows:

l4 � 1 −mτR
τP

B. (13)

We can finally substitute the expressions of l1 to l4 of Eqs. 2, 10,
11, and 13, respectively, into Eq. 1, and by solving it for m, we
obtain the final relation.

m � n − B
τP

nτR + e−nτP + 2A − τR
τP
B. (14)

A few remarks were observed. Since the energy spectrum
sE(ϵ) is a free parameter of the model that usually lacks an
analytical formulation, the terms A and B need to be evaluated
numerically (typically with negligible computational burden). In

addition, we left implicit in the notation the main functional
dependencies of m = m(n, Eth). In the following, we will refer to
the quantity m(n; Eth) (the semicolon specifies the fixed
parameter) as the count rate curve, m(Eth; n) as the recorded
integral energy spectrum, and ∂m(Eth;n)

∂Eth
as the recorded differential

energy spectrum.

2.3 Monte Carlo validation framework

To validate the model, we used the numerical results of the
custom-developed Monte Carlo model already used in [6, 7],
consisting of the following. First, a temporal axis is created,
spanning a statistically relevant length of several tens of ms and
with a sufficiently small time step, typically on the order of ns. a
number pulse-like events, computed according to the chosen value
of the incoming rate, are distributed across the temporal axis,
following a Poisson distribution. This resulting signal, which
corresponds to the input of the detector system, is then
convolved with the pulse shape of the analog front-end
electronics, which is, in principle, arbitrary but is assumed to be
a rectangle function in this context. To mimic the behavior of the
counting electronics, a count is recorded for every rising edge
crossing a specified threshold. If the retrigger capability is enabled,
a count is also added for every time interval of length τR for which
the signal lies above the threshold. The total recorded counts are
then normalized to the overall temporal axis length to obtain the
recorded rate. The entire operation is repeated for several values of
the incoming rate and as a function of the threshold energy. The
simulation error is estimated by subdividing the total time span

TABLE 1 L2REN of the count rate curves.

Threshold energy (keV) L2REN (%)

5 0.2

20 0.4

50 0.7

70 0.3

90 0.5

140 3.2

FIGURE 4
Recorded integral energy spectra predicted by the model (solid
lines) and simulated with the Monte Carlo tool (dotted lines plus error
bars) for increasing values of the incoming rate (top). Corresponding
relative deviation in percentage (bottom).
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into a set of smaller intervals of equal size, computing the variance
over their ensemble, and scaling it to the overall interval time (see
Appendix A).

The amplitudes of the incoming signals are randomly and
independently extracted from a probability distribution function

that corresponds to the specified energy spectrum. The energy
spectrum was obtained as the convolution of the direct spectrum
of an X-ray tube, computed with the model described in [18],
with the response function of a pixelated counting detector,
estimated based on the numerical results from FLUKA3—a
Monte Carlo particle transport and interaction suite [19, 20]—
and a custom-developed pixelization and counting routine.
Specifically, the FLUKA code computes, for a large number of
incoming X-ray photons, the individual energy depositions in the
sensor volume at the microscopic level, including all secondary
effects like fluorescence and escape. The pixelization routine
translates deposited energy into electric charge, which is drift-
diffused toward the collecting electrodes. Signals collected at the
pixel side (comprehensive of charge sharing effects) are added to
a Gaussian random signal representing the electronic noise and
subsequently histogrammed to obtain the sought energy
spectrum.

2.4 Case study

The predictions of the analytical model were compared with the
results ofMonte Carlo simulations for a realistic case study consisting of
a direct beam from an X-ray tube with a W-anode, an acceleration
voltage of 120 kVp, and 6.8 mm Al filtering, detected using a CdTe
sensor with a pixel size of 330 μm and a thickness of 1500 μm, and read
out by a counting ASIC. The spectrum and the threshold energy were

TABLE 2 L2REN of the recorded integral spectra in the energy range of 1–120 keV.

Incoming rate (ph/s/pix) Incoming rate (ph/s/mm2) L2REN (%)

105 9.18·105 0.8

106 9.18·106 0.8

107 9.18·107 0.8

2·107 1.84·108 1.4

5·107 4.59·108 0.7

108 9.18·108 < 0.1

TABLE 3 L2REN of the recorded spectra in the energy range of 1–120 keV.

Incoming rate (cts/s/pix) Incoming rate (cts/s/mm2) L2REN (%)

105 9.18·105 9.7

106 9.18·106 9.6

107 9.18·107 7.6

2·107 1.84·108 9.0

5·107 4.59·108 20.1

108 9.18·108 17.6

FIGURE 5
Recorded differential energy spectra obtained by deriving the
curves of Figure 4 (top) with respect to the threshold energy.
Corresponding relative deviation in percentage (bottom).

3 v. 4–2.1. The physics was set to multiple Coulomb scattering with a cutoff
energy of 1 keV for electrons and 100 eV for photons. Fluorescence was
enabled, and no biasing was used.
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sampled with a step of 1 keV. The front-end electronics was assumed to
introduce a noise of 1 keV rms. The pulse time was τP = 80 ns, and the
retrigger time was τR = 100 ns. Incoming fluxes n were investigated up
to 108 ph/s/pix, which corresponds to roughly 109 ph/s/mm2 for the
used pixel size, a value that can be considered the upper boundary in
clinical CT applications. Figure 2 shows the energy spectrum as detected

by the pixelated detector and used as input for both the model and
Monte Carlo simulations. The spectrumof the original direct X-ray tube
beam is also shown as a reference.

3 Results and discussion

3.1 Count rate curves

Figure 3 shows the comparison between the count rate curves
predicted by the model and simulated with the Monte Carlo tool for
incoming rates up to 108 ph/s/pix and several values of threshold
energies ranging from 5 keV to 140 keV. The rate curve
corresponding to the total counts—intended as the ideal (no
pileup and no electronic noise) rate obtained with a threshold
energy of 0 keV—is also shown as a reference. For increasing
threshold energies, the deviation of the recorded curves from one
of the total counts, even at low incoming rates, becomes larger as the
obvious consequence of losing an increasing fraction of low-energy
events. On the other hand, all the recorded curves saturate for
increasing incoming rates to the limit 1/τR, set by the retrigger
mechanism. As a quantitative measure of the agreement between
predicted and simulated results, we chose the L2 relative error norm
(L2REN), which is defined as follows:

L2REN � ∑NoP
i�1 xsim

i − xana
i( )2

∑NoP
i�1 xsim

i( )2 , (15)

whereNoP is the number of analyzed points. The values are reported
in Table 1. An excellent match on the sub-percent level is obtained
up to the last threshold energy (90 keV in this case), whose value lies
below the highest energy actually contained in the input spectrum,

FIGURE 6
Asymmetric Gaussian-like function used as a realistic pulse
shape. The rising edge consists of a Gaussian function with a standard
deviation of 36 ns and a falling edge but with a standard deviation of
134 ns. The ideal rectangle function is shown for comparison.

FIGURE 7
Recorded integral energy spectra predicted by the model (solid
lines) and simulated with the Monte Carlo tool (dotted lines plus error
bars) using the asymmetric Gaussian-like pulse shape of Figure 6 (top).
The retrigger time was increased to τR′ = 150 ns. Corresponding
relative deviation in percentage (bottom).

FIGURE 8
Recorded differential energy spectra obtained by deriving the
curves of Figure 7 (top) with respect to the threshold energy.
Corresponding relative deviation in percentage (bottom).
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i.e., 120 keV. For threshold energies higher than that, only pure
piled-up events are detected, and the increase in L2REN seems to
suggest that the accuracy of the approximations used in the
derivation of the model (in particular, the term l4) begins, in
these conditions, to fade.

3.2 Spectral response

Figure 4 (top) shows the comparison between the recorded
integral energy spectra predicted by the model and simulated with
the Monte Carlo tool as a function of the threshold energy and for
increasing values of incoming rates ranging from n = 105 ph/s/pix to
n = 108 ph/s/pix. Figure 4 (bottom) shows the corresponding
deviations expressed in percentage. Looking at the integral spectra,
it is possible to observe how, for increasing incoming rates, events of
energy higher than the highest one contained in the input spectrum,
i.e., 120 keV, and, therefore due to pure pileup effects, are detected
with increasing probability. At the same time, the integral spectra tend
to the limit set by the retrigger mechanism 1/τR, in a monotonic
(i.e., non-paralyzable) way at all values of threshold energy. The
relative deviation is in the order of a few percent up to the notable
value of 120 keV (between −8% and +4%), a result that we can
consider excellent considering the several orders of magnitudes
spanned by the spectra across this threshold energy range. For
threshold energies higher than this limit and high input rates
(above 2·107 ph/s/pix), the deviation slightly increases. As
previously mentioned, this could be due to the approximations
used in the derivation of the model starting to lose their validity. It
is nevertheless worth noting that, in a realistic X-ray imaging/CT
scenario, the threshold energy is not set above a certain fraction of the
X-ray tube acceleration voltage. Therefore, a discrepancy in this

extreme energy range is not of practical concern. For this reason,
we limited the computation of the L2REN figure of merit to the
threshold energy interval of 1 keV–120 keV. The values, reported in
Table 2, show the agreement that lies at the (sub-)percent level.

Figure 5 shows the comparison between the recorded differential
energy spectra obtained by numerical derivation of the integral
spectra of Figure 4 (top) with respect to the threshold energy and the
corresponding relative deviations. The L2REN metrics, computed in
the threshold energy interval of 1–120 keV, are reported in Table 3.
Although higher values of deviation as compared to the recorded
integral spectra have to be expected due to the “amplification”
caused by the derivative operation, they nevertheless lie below
10% up to incoming rates of 2·107 ph/s/pix and at most 20% for
higher incoming rates, which are anyway rather extreme as they
basically lead to an almost complete count rate saturation.

Based on these results, we can conclude that the predictions of
the presented analytical model faithfully represent the expectations
obtained by numerical tools.

3.3 Impact of non-ideal pulse shape

Real-world analog signals have shapes that significantly differ
from the ideal rectangle. Apart from few other special cases (e.g.,
pulses with a triangular shape in [14] or with a decreasing
exponential shape in [16]), a general analytical solution for
arbitrary shapes remains, at the moment, more complex, if not
out of sight.

To evaluate the impact of this non-ideality on the recorded
spectra, we simulated a case study intentionally violating
assumption ii. In particular, we used a more realistic pulse
shape consisting of an asymmetric Gaussian-like function, as

TABLE 4 L2REN of the recorded integral spectra in the energy range of 1–120 keV using the asymmetric Gaussian-like pulse shape.

Incoming rate (ph/s/pix) Incoming rate (ph/s/mm2) L2REN (%)

105 9.18·105 0.6

106 9.18·106 1.3

107 9.18·107 6.4

2·107 1.84·108 5.7

5·107 4.59·108 1.3

108 9.18·108 0.1

TABLE 5 L2REN of the recorded spectra in the energy range of 1–120 keV using the asymmetric Gaussian-like pulse shape.

Incoming rate (ph/s/pix) Incoming rate (ph/s/mm2) L2REN (%)

105 9.18·105 8.1

106 9.18·106 10.2

107 9.18·107 22.7

2·107 1.84·108 23.4

5·107 4.59·108 35.0

108 9.18·108 106.5
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shown in Figure 6. The curve was created by using, as a rising
edge, a Gaussian function with a standard deviation of 36 ns and,
as a falling edge, a Gaussian function with a standard deviation of
134 ns. The overall FWHM is 80 ns, matching one of the ideal
rectangles. The retrigger time was increased to τR′ = 150 ns in
order to reduce spurious multiple counts at low threshold
energies.

Figure 7 and Figure 8 show, respectively, the resulting integral
and differential energy spectra (top) and corresponding relative
deviations (bottom). Analytical data were recomputed with the
new value of retrigger time. What emerges from the comparison
is that while the overall trends are respected, significant
deviations arise for values of incoming flux n ≥ 107 ph/s/pix
and threshold energies Eth < 10 keV. This is due to the fact that
the model does not take into account the possibility that
individual signals can have a time-over-threshold longer than
the chosen retrigger time due to the longer pulse tail. The values
of L2REN computed in the energy range of 10–120 keV for the
recorded integral spectra vary in the range of 0.6%–6.4% (see
Table 4), while for the recorded differential spectra, they
monotonically increase from 8% to 106% with increasing
incoming fluxes (see Table 5).

It is also legit to question whether the general discrepancy could
be “compensated” by the use of an effective pulse time τPeff, as
described in [6]. Unfortunately, as shown in the reference, τPeff
would be a function of the threshold energy (to be empirically found,
moreover) and, therefore, not compatible with the model presented
in this work.

4 Conclusion

We presented the derivation of an analytical model to
evaluate the effect of pulse pileup on the recorded energy
spectrum measured by X-ray photon-counting detectors
affected by dead time and featuring the retrigger capability—a
circuital mechanism that allows the detector to work in a specific
non-paralyzable counting mode. The model is valid for arbitrary
incoming energy spectra and derived for the case of a rectangle-
like pulse shape.

We compared the analytical predictions with the results of
Monte Carlo simulations obtained with a custom-developed
numerical code for the realistic clinical CT case study of a direct
X-ray tube beam with an acceleration voltage of 120 kVp, impinging
on a CdTe sensor with a pixel size of 330 μm and a thickness of
1500 μm, and read out by a counting ASIC. The investigated
quantities (count rate curves and recorded energy spectra)
showed an excellent level of agreement, quantified in terms of
L2REN, over a wide range of incoming rates relevant for X-ray
CT applications, i.e., up to 108 ph/s/pix, which corresponds to
approximately 109 ph/s/mm2 with our pixel size, and over a wide
range of threshold energies. Slight deviations, possibly ascribable to
approximations used in the model derivation, were progressively
found for the concurrence of increasing threshold energies above the

highest energy contained in the incoming spectrum and mid-high
incoming rates (> 5·107 ph/s/pix). However, considering that in
realistic scenarios, threshold energies are commonly kept below
that limit, this does not seem like a practical concern. For
completeness, we also investigated the impact of a non-ideal
pulse shape on the recorded spectra, thus intentionally violating
one of the assumptions on the basis of the model. We found that
despite the overall trend being respected, significant relative
deviations can arise, and this constitutes one of the main
limitations to the general applicability of the proposed method.

Despite the simplification of rectangle-like shaped signals
needed for the analytical treatment of the problem, having an
analytical expression for the recorded count rate for such a class
of detectors can significantly help better understand the yet
unexplored impact of the retrigger mechanism on the spectral
response and optimize the system design and parameters, all in a
time-efficient way, with potential benefits in particular in the field of
spectral X-ray imaging and CT applications allowed by modern
multi-threshold photon-counting systems.
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Appendix A: Computation of the
simulation error

Let T be the total simulated time interval,M be the total number
of recorded events in this time interval, and m be the recorded rate,
then we obtainm =M/T. By dividing the total interval T into N sub-
intervals of equal size (large enough to maintain a relevant statistics),
we obtain Mi independent recorded counts for each sub-interval
such that

M � ∑N
i�1

Mi. (A1)

Given that Mi shares the same probability space, the variance of m
can be inferred using the basic properties of random variables as
follows:

Var m[ ] � Var
∑N

i�1Mi

T
[ ] � 1

T2
Var Mi[ ]N. (A2)
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