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Rice is a vital food crop that feeds most of the global population. Cultivating high-

yielding and superior-quality rice varieties has always been a critical research

direction. Rice grain-related traits can be used as crucial phenotypic evidence to

assess yield potential and quality. However, the analysis of rice grain traits is still

mainly based on manual counting or various seed evaluation devices, which incur

high costs in time and money. This study proposed a high-precision phenotyping

method for rice panicles based on visible light scanning imaging and deep learning

technology, which can achieve high-throughput extraction of critical traits of rice

panicles without separating and threshing rice panicles. The imaging of rice

panicles was realized through visible light scanning. The grains were detected

and segmented using the Faster R-CNN-based model, and an improved Pix2Pix

model cascaded with it was used to compensate for the information loss caused

by the natural occlusion between the rice grains. An image processing pipelinewas

designed to calculate fifteen phenotypic traits of the on-panicle rice grains. Eight

varieties of rice were used to verify the reliability of this method. The R2 values

between the extraction by the method and manual measurements of the grain

number, grain length, grain width, grain length/width ratio and grain perimeter

were 0.99, 0.96, 0.83, 0.90 and 0.84, respectively. Their mean absolute

percentage error (MAPE) values were 1.65%, 7.15%, 5.76%, 9.13% and 6.51%. The

average imaging time of each rice panicle was about 60 seconds, and the total

time of data processing and phenotyping traits extraction was less than 10

seconds. By randomly selecting one thousand grains from each of the eight

varieties and analyzing traits, it was found that there were certain differences

between varieties in the number distribution of thousand-grain length, thousand-

grain width, and thousand-grain length/width ratio. The results show that this

method is suitable for high-throughput, non-destructive, and high-precision

extraction of on-panicle grains traits without separating. Low cost and robust

performance make it easy to popularize. The research results will provide new

ideas and methods for extracting panicle traits of rice and other crops.
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1 Introduction

Rice (Oryza sativa) is one of the most important food crops in

the world. Ensuring its yield and quality is crucial for food security

and social and economic stability in the world (Tester and

Langridge, 2010; Yang et al., 2014). At the same time, with the

continuous development of the world’s socio-economic situation,

people’s demand for food quality will not decline. Cultivating high-

quality rice varieties with high yields has always been an important

research direction of rice breeding (Zhang, 2007). The grain trait of

rice is one of the most basic and essential rice breeding indexes,

which directly reflects the grain yield and quality, including the total

grain number, grain length, grain width, length-width ratio, the

1000-grain weight of a rice plant or a panicle and other traits (Li

et al., 2019). However, unlike the highly developed genomic tools,

the current phenotyping method of rice panicle and grain traits

mainly relies on manual counting, which limits the efficiency and

accuracy of panicle and grain trait statistics (Crossa et al., 2017;

Watt et al., 2020; Sun et al., 2022).

Over the past few decades, researchers commonly obtained

traits such as rice grain number and size by threshing and manually

measuring (Crossa et al., 2017). This method is inefficient and

straightforward to introduce the subjective error of the operator,

and the destructive threshing operation will also affect the accuracy

of the results (Huang et al., 2013). With the rapid development of

computer vision and machine learning technology, automated and

high-throughput crop phenotypic techniques based on various

imaging techniques and image processing algorithms are

gradually becoming essential for obtaining key phenotypic traits

(Yang et al., 2020). Many researchers have made a series of

beneficial explorations in automatically extracting rice grain-

related traits.

The current research on extracting rice panicle-related traits can

be divided into two categories from the perspective of pretreatment

methods: requiring threshing and not requiring threshing. The

method that requires threshing involves the destructive

processing of rice panicles with the help of specialized threshing

and conveying equipment, ultimately flattening the grains on an

imaging platform and automatically calculating the quantity and

size characteristics of the grains using optical imaging methods and

digital image processing technology (Duan et al., 2011a; Duan et al.,

2011b; Huang et al., 2013; Huang et al., 2022). Some works combine

scanning tiled rice grains with image processing techniques to

analyze rice grains’ morphological and color traits (Whan et al.,

2014; Wu et al., 2019). An automated analysis software for rice

panicle traits based on traditional digital image processing methods

has been developed, which can estimate the number of grains on

rice panicles with high throughput (Al-Tam et al., 2013). However,

those methods require specialized threshing, transmission, and

imaging environment, resulting in high image acquisition costs.

The threshing process is prone to damage the rice and affect the

accuracy of the final results.

In contrast, methods that do not require threshing have higher

efficiency and stronger generalization ability. Many studies directly

attempt to extract grains and related traits from rice panicle images.
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The two-dimensional image information of rice panicles can also be

used for modeling, a correction-model-referred on-panicle grain

counting method was proposed based on the area of the rice panicle

and its edge contour wavelet analysis and achieves an average

accuracy of 94% compared to the results of manual counting

(Gong et al., 2018). The area of the panicle was also used to

directly predict yield (Zhao et al., 2019). Deep learning

technology has also been widely used in rice counting,

positioning, and segmentation (Wu et al., 2019; Deng et al.,

2022). Due to the frequent adhesion and occurrence of natural

shielding on rice panicles, methods that do not require threshing

can usually only obtain quantitative traits of rice but cannot obtain

morphological traits. Some researchers have reduced shielding by

separating several branches of a single rice panicle and extracting

quantitative and morphological traits of rice grains (Gong et al.,

2018; Wang et al., 2022). However, separating rice branches is time-

consuming and fragile, and it is still impossible to avoid the impact

of rice adhesion on the results. Some advanced imaging systems,

such as the X-ray imaging system, have also been used to extract rice

traits, but high costs and low efficiency limit the promotion of such

methods (Su and Chen, 2019; Hu et al., 2020; Yu et al., 2021).

Therefore, developing a low-cost phenotyping method for analyzing

comprehensive on-panicle rice grain traits with high throughput,

high accuracy, and without complex pretreatment is necessary.

This study proposed a high-throughput phenotyping method

for extracting on-panicle rice grain traits without grain threshing

and branch separating. Color images of individual rice panicles are

efficiently obtained based on visible light scanning imaging

technology. The cascaded Faster R-CNN model and an improved

Pix2Pix model were used to detect, segment, and restore every on-

panicle rice grain. Based on the processing results, fifteen rice grain

traits are automatically calculated in the designed image

processing pipeline.
2 Materials and methods

2.1 Collection of rice panicle

This study randomly selected rice panicles from eight varieties,

including three japonica and five indica varieties. Six were planted

inWuhan, Hubei province (30.27°N,114.2°E) and harvested in mid-

July 2021. The other two were planted in Sanya, Hainan Province

(18.24°E,109.50°E) and harvested in early July 2022. Whether in

Wuhan or Sanya, all materials were planted in the same

experimental field, using different plots to distinguish different

varieties. In terms of field management, both experimental fields

followed the conventional field method of maintaining a certain

water level throughout the entire growth period. The conditions

were strictly identically controlled, except for differences in

varieties. Field maintenance, including weeding and pest control,

was performed by professionals throughout the growth period.

Twenty panicle samples from each variety were randomly selected

for imaging and analysis. Specific information for each variety is

shown in Table 1.
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2.2 Visible light scanning imaging method

All images in the experiment were collected by a visible light

scanner (Uniscan M1, Tsinghua Unigroup, China). The rice

panicles were placed on the scanning panel. A computer with a

64-bit Windows operating system was connected to set the scanning

parameters and control the scanner. The scanning mode is a charge-

coupled device (CCD). The scanning resolution was 600 dpi, and

the image size was 7200 * 10200 pixels. Then crop the image to 5700

* 6800 pixels to remove some background area (Figure 1).

According to scanner parameters, each pixel corresponds to an

actual size of 0.0423 mm. Under this parameter, the time for single

imaging and storing the result is approximately 60 seconds.
2.3 On-panicle rice grain traits extracting
algorithm based on deep learning

The on-panicle rice grain extracting algorithm based on

visible light scanning imaging results comprises three cascade

modules (Figure 2). Firstly, the rice grain detection model

detects each grain on the panicle and outputs a region of

interest (ROI) local image of the target area. Secondly, the

grain occlusion restoration model is used to restore each

output result in the upper part to compensate for possible

information loss caused by occlusion. Thirdly, the grain trait

extraction pipeline is used to calculate rice grain-related

phenotyping traits, including one quantitative trait, eight size

traits, and six morphological traits.
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2.3.1 Rice grain detection model based
on Faster R-CNN

Faster R-CNN (Ren et al., 2015) is a convolutional neural

network model for target detection tasks proposed by Ren

Shaoqing and He Kaiming based on R-CNN (Girshick et al.,

2014) and Fast R-CNN (Girshick, 2015). This network skillfully

solves the problem of slow training and prediction speed for R-

CNN and Fast R-CNN by simultaneously training classification and

regression tasks. It proposes a Regional Proposal Network (RPN),

which enables the network to conduct end-to-end training. Since its

introduction, Faster R-CNN has attracted the attention of many

researchers and has been successfully applied in many fields.

The Faster R-CNN mainly includes four parts: feature extraction

network, region proposal network (RPN), ROI Pooling module, and

classification/regression module. This architecture has good

performance in general target detection tasks. Still, in this study, the

research targets are small and densely distributed, making it difficult for

the original Faster R-CNN network structure to detect grains

accurately. Feature pyramid networks (FPN) significantly improve

the detection effect of models for small targets by fusing feature

maps of different depths (Lin et al., 2017). Therefore, to improve the

model’s accuracy for detecting grains in the ear, this study incorporated

the FPN module into the Faster R-CNN. The overall structure of the

designed rice grain detection model is shown in Figure 3.

2.3.2 Rice grain occlusion restoration model
based on improved Pix2Pix

Pix2Pix (Isola et al., 2017) is an image translation model based

on a conditional generative adversarial network (CGAN) (Mirza
TABLE 1 Variety information.

Rice variety Subspecies Growing area Harvested time

Jiujiuxinxiang indica Sanya 2022.07

Hongxiangyou3 japonica Sanya 2022.07

Kendao1867 japonica Wuhan 2021.07

Kenyan1803 japonica Wuhan 2021.07

Wangdao2 indica Wuhan 2021.07

Wendao21 indica Wuhan 2021.07

Z98-308 indica Wuhan 2021.07

Ganzhi indica Wuhan 2021.07
FIGURE 1

Visible light scanning imaging process.
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and Osindero, 2014). Pix2Pix learns a mapping between the input

and output images by conditioning the input image to obtain the

specified output image. The U-Net structure will be adopted as the

generator in Pix2Pix (Figure 4B). Different from the traditional

encoder-decoder structure, U-Net (Ronneberger et al., 2015) uses

skip connections between corresponding encoder and decoder

layers to preserve low-level features that may be lost during

downsampling. These skip connections concatenate the feature

maps from the encoder with those of the corresponding decoder

layer, significantly improving image details’ reconstruction. The key

for Pix2Pix training is the discriminator, which is named

PathchGAN. Unlike traditional GlobalGAN discriminator, the

output of PatchGAN is not a scalar but an N×N two-dimensional

matrix, and each element of this matrix corresponds to a patch in

the original image. By discriminating each patch, PatchGAN can

provide better feedback to the generator about the local consistency

of the generated images.

In the process of grain restoration, the restoration effect of

global and local image details will affect the extraction of traits. In

order to obtain more accurate grain traits, we need to
Frontiers in Plant Science 04
comprehensively consider the global and local details of the

restored grain image. Therefore, GlobalGAN and PatchGAN are

fused as the discriminator of the grain occlusion restoration

model (Figure 4C).

In summary, the complete grain occlusion restoration model

(Figure 4A) mainly includes the following three parts: the generator

of the U-Net structure, the discriminator of the fusion of

GlobalGAN and PatchGAN, and the CGAN architecture to train

the network. The overall structure of the grain occlusion restoration

model is shown in Figure 4.

2.3.3 Image-based automatic extraction pipeline
for rice grain traits

An automatic extraction pipeline for grain traits was designed

to process each rice grain image obtained in the previous step. The

automatic extraction pipeline, as shown in Figure 5, was developed

with Python language and OpenCV (Bradski, 2000), an open-

source image processing toolkit. Firstly, the RGB image of each

independent rice grain (Figure 5A) was used as input to the

pipeline. Secondly, the red channel (Figure 5B) was extracted
FIGURE 2

Workflow of on-panicle rice grain traits extracting algorithm.
FIGURE 3

Designed rice grain detection model based on Faster R-CNN.
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from the RGB image of the grain. Compared with other channels,

the contrast of the red channel was more obvious, which could

better separate the grain from the background. Thirdly, the OTSU

algorithm was used to automatically generate the optimal

segmentation threshold and binarize the gray-scale image

(Figure 5C). Fourthly, extracting the outer contour (Figure 5D)

based on binary images was the basis for further trait calculation.

Fifthly, the projection area, perimeter, and length of the rice grain

are obtained by measuring the area of the grain, the outer contour

length, and the distance between the farthest two points on the

contour (Figure 5E). Obtain the intersection point of lines

perpendicular to the major axis and the contour and use the

maximum value of the distance as the grain width. Grain length/

width ratio, perimeter/area ratio, equivalent ellipse and circularity

could be further calculated by the previous traits. Table 2 shows the

total fifteen on-panicle rice grain-related traits that can be extracted.
Frontiers in Plant Science 05
3 Result

3.1 Accuracy evaluation of on-panicle rice
grain detection model

This experiment was run on a Dell Precision3650 server with

Intel core i7-11700k CPU (32 GB memory) and NVIDIA GeForce

RTX 3090 GPU (24 GB graphic memory). The software

environment for deep-learning model training uses Python

language under an Ubuntu operation system with Pytorch deep-

learning framework.

Since the selection of model parameters will directly affect the

final performance of the model, all the relevant parameters were

adjusted before the training of the Faster R-CNN model for the

situation where the number of on-panicle rice grains panicle is

large, the size is small, and there is a certain degree of mutual
B

C

A

FIGURE 4

Structure of rice occlusion restoration model based on improved Pix2Pix. (A) Structure of rice occlusion restoration model. (B) Structure of the
generator. (C) Structure of the discriminator.
B

C

D EA

FIGURE 5

Automatic extraction pipeline for rice grain trait. (A) Single-grain scanning image. (B) Grayscale of the red channel. (C) Binary image after OTSU
segmentation. (D) Outside contour of grain. (E) Morphological traits of grain.
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occlusion to be detected in this study. The main parameters are

shown in Table 3.

This study obtained 160 images of rice panicles in natural form.

After manual labeling, all the images were divided into training,

verification, and test sets in a 2:1:1 ratio. Based on the number of

grains detected by the grain detection model and the actual number

of grains in the panicle, the R2 coefficient, mean absolute percentage

error (MAPE) and root mean square error (RMSE) were used to
Frontiers in Plant Science 06
measure the accuracy of the grain detection model. Mean average

precision (mAP) was used to evaluate the accuracy of on-panicle

rice grain location.

The R2, MAPE and RMSE were calculated by the following

equation:

R2 = 1 − on
i=1

(ŷ i−yi)
2

on
i=1

(yi−�y)
2 (1)
TABLE 2 On-panicle rice grain phenotyping traits evaluated in this study.

Type Traits Abbreviation Mean ± SD Unit

Quantity trait Grain number GN 109.450 ± 48.782 –

Size trait Mean value of grain length MGL 8.607 ± 0.697 mm

Standard deviation of grain length SGL 0.589 ± 0.156 mm

Mean value of grain width MGW 2.770 ± 0.139 mm

Standard deviation of grain width SGW 0.248 ± 0.052 mm

Mean value of grain projection area MGPA 18.140 ± 1.307 mm2

Standard deviation of grain projection area SGPA 1.875 ± 0.332 mm2

Mean value of grain perimeter MGP 21.313 ± 1.481 mm

Standard deviation of grain perimeter SGP 1.386 ± 0.412 mm

Morphology trait Mean value of grain area/perimeter ratio MGAPR 0.851 ± 0.037 –

Standard deviation of grain area/perimeter ratio SGAPR 0.070 ± 0.011 –

Mean value of grain circularity MGC 0.507 ± 0.048 –

Standard deviation of grain circularity SGC 0.048 ± 0.007 –

Mean value of grain length/width ratio MGLWR 3.148 ± 0.340 –

Standard deviation of grain length/width ratio SGLWR 0.377 ± 0.100 –
Symbol "-" indicates that the parameter has no units.
TABLE 3 Main hyperparameter settings of rice grain detection model and occlusion restoration model.

Model Hyperparameter Setting

Rice grain detection model based on Faster R-CNN Img_size 1425 x 1700 pixels

NMS threshold 0.74

Batch size 1

Optimizer SGD

Learning rate 0.02

Momentum 0.9

Weight decay 0.0001

RPN proposal number 4000

Maximum epoch number 100

Rice grain occlusion restoration model based on improved Pix2Pix Img_size 256x256 pixels

Batch size 64

Optimizer Adam

Learning rate 0.0002

Maximum epoch number 500
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MAPE = 1
no

n

i=1

ŷ i − yij j
yi

� 100% (2)

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i=1(ŷ i − yi)
2

q
(3)

ŷ i is the trait parameters extracted from the grain image

after restoration,

yi is the true trait parameter,
�y represents the average value of grain trait in samples

The two most commonly used feature extraction networks (He

et al., 2016), based on Resnet50 and Resnet101, were used for

performance comparison to select the network depth appropriate

for rice grain detection (Figure 6A). At the beginning of training,

the losses of both models decreased rapidly. After training for 20

epochs, the speed of loss reduction slowed down and converged

after 80 epochs, and the model achieved the optimal state. Faster R-

CNN using Resnet50 as a feature extraction network showed faster

and better convergence. Figure 6A shows the AP variation curve of

the Faster R-CNN model on the validation set. The changing trend

of AP was opposite to the changing trend of loss. Finally, the Faster

R-CNN model using Resnet50 as a feature extraction network

achieved a higher AP, proving that Resnet50 was more suitable

for detecting grains in the panicle than Resnet101. In addition, it

was found that the AP reached 0.965, 0.933 and 0.601 when IoU was

0.50, 0.75 and 0.95, respectively.

The Faster R-CNN model marks the detected grains on the

original map as detection frames, so the number of detection frames

on the resulting map is the number of detected grains. Two types of

image data, including natural morphology and separating the

branch, were used to verify the accuracy of the network. The

counting results are shown in Figure 6B. In all cases, the Faster
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R-CNN model can accurately count the on-panicle rice grains, with

R2 reaching 0.99. In addition, the counting accuracy of the Faster R-

CNN model using Resnet50 as a feature extraction network was

slightly higher than that of Resnet101, both in natural morphology

and after artificially separating branches of the panicle. Compared

with the case of separate branches, the model showed a slight

decrease in accuracy in the case of the natural panicle. Specifically,

the MAPE value increased by 0.69% and the RMSE value increased

by 1.26. In conclusion, for natural rice panicles, the on-panicle rice

grain detection model proposed in this study achieved 1.65% on

MAPE and 4.39 on RMSE.
3.2 Performance evaluation of on-panicle
rice grain occlusion restoration model

The dataset of the on-panicle rice grain occlusion restoration

model must be paired. Various situations that may occur under

natural conditions can be simulated by manually adjusting the grain

occlusion ratio. Finally, 2000 pairs of images, set at an 8:2 ratio, were

used in the model ’s training set and verification. The

hyperparameter settings for the model are shown in Table 3.

Fifty pairs of images with varying degrees of occlusion were

used to test the performance of the restoration model. The MAPE

value was used to verify the model’s restoration performance from

the perspective of trait calculation (Figure 7). Peak signal-to-noise

ratio (PSNR) and structural similarity (SSIM) were used to evaluate

the model’s ability in image feature restoration (Figure 8). To prove

the excellent performance of the proposed model (Improved

Pix2Pix, ImpP2P), this paper used the same hyperparameters to
BA

FIGURE 6

Performance of the rice grain detection model. (A) The training loss and AP curves with Resnet50 and Resnet101. (B) Comparison between the
number of grains prediction by the model and manual counting.
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train an auto-encoder-based generating model (AE) and the

original Pix2Pix model (P2P).

PSNR and SSIM have been commonly used evaluation metrics

in image restoration. PSNR is based on the error of corresponding

pixels with the dB unit. The higher the PSNR, the smaller the image

distortion. SSIM is a full-reference image quality evaluation metric

that measures the similarity of images from three aspects:

luminance, contrast, and structure. Its value range is from 0 to 1.

The larger the SSIM, the smaller the image distortion. Their

calculation formulas are shown in equations 4 and 5, respectively.

PSNR = 10* log10
MAX2

I
1
mnom−1

i=0 on−1
j=0

X(i,j)−Y(i,j)2

� �
(4)

Where X(i, j) and Y(i, j) represent the pixel values of the real

grain image and the grain image after restoration at the coordinate
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(i, j). m and n represent the height and width of the image. In this

paper, both m and n are 256. MAXI represents the maximum

possible pixel value for the image, which is 255 in the case of an 8-

bit binary grayscale image.

SSIM(x, y) =
(2mxmy+c1)(2sxy+c2)

(m2
x+m2

y+c1)(s 2
x +s2

y +c2)
(5)

Where x and y represent the unoccluded grain image and the

grain image after restoration, respectively. mx and my represent the

mean value of image respectively, and sx and sy represent the

variance of image, respectively. sxy represents the covariance of the

images. c1 and c2 are constants to avoid division by zero.

As shown in Figure 7, the improved Pix2Pix model performs best

on all four grain traits. Regarding grain length, the MAPE of AE and

P2P is 2.76% and 1.68%. As for the improved Pix2Pix model, it

achieves 1.50%. They are 4.01%,3.48% and 2.41% in grain width for
FIGURE 7

The restoration performance of each model in grain traits.
FIGURE 8

The restoration performance of each model in SSIM and PSNR.
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AE, P2P and ImpP2P. In grain perimeter, they are 3.21%, 2.92% and

2.85% for AE, P2P and ImpP2P. In grain projection area, they are

4.42%, 3.84% and 2.74% for AE, P2P and ImpP2P. For individual rice

grains, when occlusion occurs on the end, side, surround, and large

area of the rice grain, it will cause significant errors in the length,

width, perimeter, and area measurement, respectively.

Figure 8 shows four representative occlusion situations. All

models can restore the approximate shape of the grain, and the

ImpP2P model performs best in terms of overall structure and signal-

to-noise ratio. For 50 rice grains with various degrees of occlusion, the

average SSIM of ImpP2P achieves 0.953, better than AE (0.929) and

P2P (0.924). The average PSNR of ImpP2P, AE and P2P are 32.49,

30.59 and 32.22. The visualization of four typical convolutional layers

is shown in Figure 9, they are feature maps of the 1st encoding layer,

the 2nd encoding layer, the 6th decoding layer and the 7th decoding

layer. It can be found that the network has learned some features in

different abstractive layers. In the encoding layers, the edge

information of rice grains and significant internal areas are more

concerned by the network. Correspondingly, in the decoding layers,

the edge and internal center regions of the target are first restored and

eventually extended to the entire rice grain.
3.3 Reliability verification of on-panicle rice
grain phenotyping traits

Forty rice panicles selected randomly from eight varieties were

used as samples to verify the reliability and robustness of the

proposed on-panicle rice grain phenotyping method. The grain

number of all rice panicles is distributed between 45 and 250. The

result of the fifteen traits is shown in Table 2, and the average time-

consuming for the processing and trait calculation of each rice

panicle image is about 10 seconds. The time-consuming will

inevitably increase with the growth of on-panicle grain numbers.

Four morphological traits directly related to rice quality, mean grain
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length, mean grain width, mean grain length-width ratio and mean

grain perimeter were used to compare the result by the method with

the ground truth, which was obtained by manually measuring rice

grains after threshing (Figure 2). For all grains on each panicle,

mean length, mean width, mean length/width ratio and mean

perimeter extracted by the method proposed in this paper are

compared with the results of manual extraction (Figure 10), and

the R2 values between them reach 0.96, 0.83, 0.90 and 0.84. The

MAPE values of the method versus the manual measurement for

the four traits are 7.15%, 5.76%, 9.13% and 6.51%. Their RMSE

values are 0.68mm, 0.18mm, 0.37 and 1.64mm, respectively.

According to the conclusion in Figure 6, the R2, MAPE, and

RMSE values for grain number counting are 0.99, 1.65% and 4.39.

Referring to the concept of thousand-grain weight commonly

used in rice seed evaluation, the thousand-grain length, thousand-

grain width, and thousand-grain length/width ratio of eight

varieties were obtained. The histograms of the distribution

quantities on three traits of the samples are shown in Figure 11.

Overall, most rice grains are 5-11mm long for all varieties, the grain

width of samples from subspecies japonica is larger, appearing

thicker and shorter compared to subspecies indica, while samples

from subspecies indica are slender. As shown in Figure 11, rice

grains of Kenyan1803 are generally short, most of them in the range

of 6-8mm. Grains of Ganzi have a prominent length; most are larger

than 8mm, and a considerable part is higher than 10mm. As for

grain width, most of the grain widths of all varieties are between 2

and 4mm, and some varieties, such as Wangdao2 and Ganzhi, have

very few grains with a grain width of less than 2mm. For

Kenyan1803, almost all the grains are wider than 2.5mm. The

length/width ratio is one of rice grains’most crucial reference traits,

and the eight varieties are mostly distributed between 2 and 5. The

grain distribution range of Kenyan1803 is the most concentrated,

and most are between 2 and 3, indicating that the grains of this

variety have little difference in shape. On the contrary, the grain

length-width ratio distribution of Jiujiuxinxiang, Wendao21, Z98-
FIGURE 9

The visualization of typical convolutional layers in occlusion restoration model.
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308 and Ganzhi is relatively dispersed, indicating that the grains of

these varieties have significant differences in shape.
4 Discussion

The number of grains per panicle and grain morphological-related

traits of rice varieties are essential reference data for rice breeding and

functional identification of crucial genes. High throughput, convenient,

and economical phenotypic trait evaluation methods are crucial. In

previous work, the accuracy and efficiency of measuring grain-related

traits were often contradictory. High-accuracy methods often rely on

complex mechanical equipment and post-processing algorithms. In

contrast, simple and efficient imaging and processing methods are

challenging to obtain accurate and comprehensive phenotyping traits.

These problems limit the promotion and development of these

phenotyping methods. This study proposed a method based on

visible light scanning imaging and deep learning technology for on-

panicle rice grain traits, which balanced measurement efficiency and

accuracy. Visible light scanning equipment is inexpensive (The price is

less than one percent or even lower than that of large seed testing

equipment and X-ray imaging equipment), readily available, and can
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provide stable imaging results in laboratory and field environments.

The method in this study does not require complex sorting and

threshing of samples, which often takes one minute or even longer

for a single rice panicle. The method in this study could potentially

expand to the detection of rice panicle and grain traits at multiple

growth stages of rice.

Due to the natural occlusion of on-panicle rice grains, previous

measurement methods can only estimate the number of rice grains

and other morphological traits after separating the branches.

Separating and fixing branches is time-consuming and fragile,

and the accuracy of trait extraction is easily affected by the degree

of separation. Even so, avoiding the possible occlusion between

adjacent grains is impossible. Deep learning technology provides a

way to solve this problem. This study proposed a cascade model

based on the Faster R-CNNmodel and improved the Pix2Pix model

to achieve accurate counting and occlusion restoration of the on-

panicle grains. From the restoration results, morphological traits of

grains can be extracted without panicle separation. For rice panicles

with grain numbers between 45 and 250, the grain detection will be

completed in about 1 second, and the extraction of traits will take

about 10 seconds. The sufficient experimental result proves the high

accuracy and reliability of the method.
FIGURE 11

Analysis of on-panicle grain traits of eight rice varieties.
FIGURE 10

Analysis of extraction results of four morphological traits.
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The method proposed in this study achieves high-throughput

and high-accuracy extraction of on-panicle rice grain traits without

separating the branch. However, there are still some directions for

improvement. Firstly, portable visible-light scanning devices could

be developed for researchers to use in field environments. Secondly,

simultaneous imaging of multiple rice panicles is possible, which

can double the efficiency of trait analysis. For the deep learning

model, more occlusion scenes and occlusion degrees can be

designed to improve the model’s accuracy when applied to

multiple varieties.
5 Conclusions

This study proposed a high-throughput and separating-free

method for extracting on-panicle rice grains phenotyping traits

based on visible light scanning imaging and deep learning. Samples

from eight varieties were used to verify the accuracy of the method.

The results showed that the method proposed in this paper could

obtain images of rice panicles within 60 seconds and automatically

extract 15 traits of on-panicle grains in about 10 seconds. Compared

with manual measurement, the R2 values of the method on grain

counting, grain length, grain width, grain length/width ratio and

grain perimeter reach 0.99, 0.96, 0.83, 0.90 and 0.84, respectively.

The difference in the distribution of grain traits among different

varieties indicates that this method can effectively distinguish

varieties and help screen high-quality traits. In general, the

method proposed in this paper can be used to realize the rapid

measurement of rice grain traits and has the potential to be

extended to the field environment and other crops.
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