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Background: Drug repositioning is considered a promising drug development
strategy with the goal of discovering new uses for existing drugs. Compared with
the experimental screening for drug discovery, computational drug repositioning
offers lower cost and higher efficiency and, hence, has become a hot issue in
bioinformatics. However, there are sparse samples, multi-source information, and
even some noises, which makes it difficult to accurately identify potential drug-
associated indications.

Methods: In this article, we propose a new scheme with improved tensor robust
principal component analysis (ITRPCA) in multi-source data to predict promising
drug–disease associations. First, we use a weighted k-nearest neighbor (WKNN)
approach to increase the overall density of the drug–disease association matrix
that will assist in prediction. Second, a drug tensor with five frontal slices and a
disease tensor with two frontal slices are constructed using multi-similarity
matrices and an updated association matrix. The two target tensors naturally
integrate multiple sources of data from the drug-side aspect and the disease-side
aspect, respectively. Third, ITRPCA is employed to isolate the low-rank tensor and
noise information in the tensor. In this step, an additional range constraint is
incorporated to ensure that all the predicted entry values of a low-rank tensor are
within the specific interval. Finally, we focus on identifying promising drug
indications by analyzing drug–disease association pairs derived from the low-
rank drug and low-rank disease tensors.

Results:Weevaluate the effectiveness of the ITRPCAmethod by comparing it with
five prominent existing drug repositioning methods. This evaluation is carried out
using 10-fold cross-validation and independent testing experiments. Our
numerical results show that ITRPCA not only yields higher prediction accuracy
but also exhibits remarkable computational efficiency. Furthermore, case studies
demonstrate the practical effectiveness of our method.
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1 Introduction

Over the past few decades, while funding for drug development
has seen a substantial surge, the number of newly approved drugs for
market release has remained limited. Notably, developing a new
drug demands an average of 13.5 years and involves an average
expenditure of 1.8 billion (Liu et al., 2020). This process is time-
consuming and tremendously expensive and involves high risk
(Chong and Sullivan, 2007; Dickson and Gagnon, 2009). Since
the approved drugs already possess safety records, tolerance, and
pharmacokinetic data of the human body in clinical trials,
discovering new clinical indications for commercialized drugs is
an important strategy to improve the efficiency of drug development
(Ashburn and Thor, 2004). In fact, there have been a few successful
repurposed drugs, such as sildenafil, thalidomide, and retinoic acid,
which have been widely used in application (Luo et al., 2021).

Using computational methods to discover new uses for
established drugs is a crucial aspect of drug repositioning, which
is based on the assumption that drugs with similar properties tend to
treat similar diseases. With the rapid development of high-
throughput technology and continuously generating multi-omics
data, there is an increasing focus on crafting computational methods
for elevated precision (Wang et al., 2021). These approaches can be
classified into four distinct groups: encompassing network-based
methods, machine learning-based methods, matrix-based methods,
and deep learning-based methods.

Network-based approaches infer the scores of drug–disease pairs
by constructing drug and disease heterogeneous biological networks
and extracting topological information. The fundamental assumption
is guilt by association, whereby if a certain drug can interact withmost
of the target’s neighbors, it is probable that the target will also be able
to interact with the same drug and vice versa. Based on the guilt-by-
association principle, Wang et al. (2013) used a priori information
about drugs and targets to establish a heterogeneous graph. A
heterogeneous graph-based inference (HGBI) model was used to
predict new drug–target interactions. Luo et al. (2016) enhanced
the quality of the similarity between drugs and diseases by exploiting
the existing drug–disease associations. Building on the combined
similarity measures, a new bi-random walk algorithm called
MBiRW was developed to infer potential associations between
drugs and diseases. Qin et al. (2022) proposed a network-based
inference model for new emerging diseases, which used genes as a
bridge in a tripartite drug–gene–disease network to infer latent
drug–disease associations. Additionally, to account for the
structures of networks and the biological aspects related to drugs
and indications, Zhao et al. (2022) presented a novel graph
representation model based on heterogeneous networks, namely,
HINGRL. It integrated the biological networks of drugs and
diseases to learn the features from both topological and biological
perspectives.

Machine learning-based approaches use supervised learning
algorithms to identify potential indications for drugs based on input
features and known associations (Vamathevan et al., 2019), including
logistic regression (Yang et al., 2021), random forests Zhao et al. (2022),
and support vector machines (Lavecchia, 2015). Jiang and Huang (2022)
proposed a graph representation model based on random forest for drug
repositioning. The method identified drug–disease associations by
feeding combined features from the molecular association network

into a random forest algorithm. Gao et al. (2022) presented a model
for predicting associations between drugs and diseases, employing
similarity kernel fusion (SKF) to merge diverse similarity kernels for
drugs and diseases. This fusion resulted in two integrated similarity
kernels, and the scores of association pairs were calculated using the
Laplacian regularized least square (LapRLS) algorithm.

Matrix-based methods use the low-rank matrix representation of
the drug–disease association space to identify novel associations based
on the similarity of their profiles. Yang et al. (2019) developed a
bounded nuclear norm regularization (BNNR) method to obtain the
low-rank matrix of the drug–disease association. This method
efficiently handles noise originating from the drug and disease
similarity. Yang et al. (2021) proposed a multi-similarity bilinear
matrix factorization (MSBMF) method that dynamically integrated
multiple similarities of drug and disease into drug–disease association
training. It limited the predicted values of the drug–disease association
to non-negative. Huang et al. (2020) proposed a multi-task learning
method that used ensemble matrix factorization to predict both
treatment associations and non-treatment associations between drug
and disease. The proposedmethod can capture complementary features
associated with these two tasks. Yan et al. (2022) proposed a multi-view
learning with matrix completion method (MLMC), which is capable of
effectively utilizing multi-source similarity matrices. The Laplacian
graph regularization was pulled into MLMC to acquire an all-
encompassing feature representation derived from the multi-
similarity information of drugs and diseases.

Deep learning-based methods typically use neural network models
to learn the feature representation of drugs and diseases and use these
features to predict new association pairs. Xuan et al. (2019) introduced a
bidirectional deep learning model based on the convolutional neural
network (CNN) and bi-directional long- and short-term memory
(BiLSTM). This framework incorporates both similarities and
associations between drugs and diseases in addition to pathways that
connect specific drug–disease pairs. This approach effectively integrates
raw and topological data between nodes. Combining similarity network
fusion (SNF) and neural network (NN) deep learning models, Jarada
et al. (2021) proposed a method known as SNF-NN, which was
designed to forecast novel drug–disease associations. Yu et al. (2021)
proposed a layer attention graph convolutional networkmodel to detect
the potential uses of drugs. The model performs graph convolutional
processing on a heterogeneous network constructed from drug and
disease information, thereby achieving association prediction.

To mine latent association features in multiple similarities and
association data, we present an improved tensor robust principal
component analysis (ITRPCA) method. First, we integrate the prior
information of drug and disease to compute five indicators for drug
similarity and two indicators for disease similarity. Considering that
validated drug–disease associations are extremely sparse, a weighted
k-nearest neighbor (WKNN) preprocessing step is employed to
enrich the association matrix that aids in prediction. Then, we
construct a drug tensor and a disease tensor using multi-
similarity matrices and an updated association matrix. Finally, we
apply ITRPCA to isolate the low-rank tensor and noise information
in these two tensors, respectively. We focus on the drug–disease
association pairs in the clean low-rank tensor to infer promising
indications for drugs. Figure 1 illustrates the comprehensive
workflow of the ITRPCA method. Our method’s key
contributions are as follows:
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• ITRPCA presents a comprehensive scheme for
incorporating diverse drug and disease similarities into
prediction training.

• By leveraging the weighted tensor Schatten p-norm, ITRPCA can
effectively extract the low-rank association tensor from the
updated drug and disease tensors, which efficiently separates
noisy data and leads to significantly improved accuracy, as
demonstrated in our results.

• The ITRPCA model includes a boundary constraint that
ensures all predicted tensor entries fall within the
predefined interval.

• We have devised an iterative approach employing the
augmented Lagrangian multiplier (ALM) to numerically
address the ITRPCA model.

2 Materials

To validate the effectiveness of our proposed method, this
study involves three crucial datasets: the gold standard dataset
(Gottlieb et al., 2011), Cdataset (Luo et al., 2016), and CTD
(Davis et al., 2019). Table 1 summarizes the details of these three
data, such as the number of drugs and diseases, the number of

known association pairs, and the intended purposes in this study.
These drugs and diseases are obtained from DrugBank (Wishart
et al., 2006) and the Online Mendelian Inheritance in Man
(OMIM) database (Ada Hamosh, 2005), respectively. The
corresponding drug–disease association matrix denoted as A is
represented by a binary matrix, where the proven drug–disease
associations are denoted by 1 s, while unproven associations are
denoted by 0 s.

Here, we calculate a total of five similarity matrices for
drugs: chemical structure similarity Rchem, anatomical
therapeutic chemical (ATC) code similarity Ratc, side-effect
similarity Rse, drug–drug interactions similarity Rddi, and
target profile similarity Rtarg. Based on the drug’s canonical
SMILES (Weininger, 1988) file, we use the Chemical
Development Kit (CDK) (Steinbeck et al., 2003) tool to
compute the hashed fingerprints for all drugs and then
obtained Rchem. ATC codes for all relevant drugs were
extracted from DrugBank. We use the semantic similarity
algorithm (Resnik et al., 1995) to calculate the similarity
scores between ATC terms and then obtained Ratc. The rest
of the similarities are calculated using the Jaccard
similarity coefficient (Jaccard, 1908), which can be expressed
as follows:

FIGURE 1
Overall workflow of ITRPCA. (A) Construction process of a drug tensor. (B) Drug–disease associations and WKNN preprocessing. (C) Construction
process of a disease tensor. (D) ITRPCA model on a drug tensor. (E) ITRPCA model on a disease tensor. (F) Final association matrix.

TABLE 1 Number of drugs, diseases, and known association pairs in each dataset along with their respective purposes for dataset utilization.

Dataset # of drugs # of diseases # of association pairs Purpose

Gold standard dataset 593 313 1,933 10-fold cross-validation

Cdataset 663 409 2,352 Independent testing

CTD (February 2020) 1,613 969 15,339 Independent testing
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Rse/ddi/targ i, j( ) � |Si ∩ Sj|
|Si ∪ Sj|, (1)

where Si implies the side-effect profiles of drug i in Rse, drug–drug
interaction profiles of drug i in Rddi, and drug–target interaction
profiles of drug i in Rtarg.

For diseases, a total of two similarity measures are calculated: disease
phenotypic similarity Dph and disease ontology similar Ddo. Dph is
obtained from MimMiner (Van Driel et al., 2006), which calculates
the frequency of MeSH (medical subject heading (MeSH) vocabulary
terms co-occurring in the medical descriptions of two diseases retrieved
from the OMIM database. According to the structure of the disease
ontology academic language, Ddo is computed by using the Gene
Ontology-based algorithm (Wang et al., 2007).

In summary, we have collected a total of one drug–disease
association matrix A, five drug similarity matrices (i.e., Rchem,
Ratc, Rse, Rddi, and Rtarg), and two disease similarity matrices
(i.e., Dph and Ddo) for computational drug repositioning.

3 Methods

In this section, we introduce ourmethod for identifying potential uses
for established drugs. The structure is as follows: first, we depict the robust
principal component analysis (RPCA) and tensor robust principal
component analysis (TRPCA). Then, we propose the model of
ITRPCA according to the requirements of drug repositioning. At last,
the ALM method is demonstrated to solve the ITRPCA model in detail.

For the ease of reference, bold calligraphy letters represent third-
order tensors, e.g.,X ∈ Rn1×n2×n3 , capital letters denote the matrices,
e.g., X, bold lower-case letters indicate the vectors, e.g., x, and lower-
case X ijk denote the elements of X .

3.1 Robust principal component analysis

RPCA stands as a prominent technique in low-rank representation,
which can separate the noise matrix from the original data matrix and
learn the clean low-rank matrix. It has found successful applications in
computer vision and machine learning, such as video surveillance
(Wright et al., 2009), facial modeling (Peng et al., 2012), and
subspace clustering (Liu et al., 2010). RPCA is targeted at a matrix,
which can decompose the target matrix into a low-rank matrix and a
sparse matrix for achieving noise reduction. Generally, the
mathematical formula of RPCA can be expressed as

min
X,E

‖X‖* + λ‖E‖1 s.t.M � X + E, (2)

whereM denotes the original matrix, X is the low-rankmatrix, and E
is the sparse noise matrix. ‖X‖* = ∑rσr(X) represents the nuclear
norm of matrix X, where σr(X) is the rth singular value of X. ‖E‖1 �∑ij|eij| denotes the L1-norm of E, and eij is the (i, j) element of E.

3.2 Tensor robust principal component
analysis

TRPCA (Lu et al., 2020) is a continuation of RPCA. The primary
motivation behind developing TRPCA is to handle

multi-dimensional datasets, which are prevalent in various
domains, including computer vision (Wang et al., 2014), object
recognition (Zhang and Peng, 2019), and medical imaging (Pham
et al., 2021). TRPCA aims to decompose the multi-dimensional data
into a low-rank tensor, which captures the essential features of the
data, and a sparse tensor, which contains the outliers and noise. The
low-rank tensor can be interpreted as the underlying structure of the
data, while the sparse tensor represents the deviations from this
structure.

Similar to the nuclear norm of the matrix, the tensor nuclear
norm (Kilmer and Martin, 2011) is defined as

‖X‖* � ∑n3
i�1

�X
i( )����� �����* � ∑n3

i�1
∑l
j�1

σj �X
i( )( ), (3)

where X ∈ Rn1×n2×n3 and l � min(n1, n2). �X(i)is denoted as the ith
frontal slice of X , and �X is denoted as the discrete fast Fourier
transform (FFT) of X along the third dimension,
i.e., �X � ifft(X , [], 3). Thus, X � ifft( �X , [], 3). The TRPCA
model is formulated as follows:

min
E,X

λ‖E‖1 + ‖X‖* s.t.M � X + E, (4)

whereM is the original tensor data,X measures the low-rank tensor,
and E denotes the sparse noise tensor. According to Eq. 3, model (4) is
equally regularized for all singular values of the tensor data and shrunk
with the same parameters when minimizing the tensor nuclear norm.

3.3 ITRPCA for drug repositioning

Weighted k-nearest neighbor preprocessing. d1, d2, . . . , dn{ } and
r1, r2, . . . , rm{ } represent the collection of n disease nodes and m drug
nodes, respectively. A ∈ Rn×m represents the original drug–disease
association matrix, where Aij = 1 if disease di is recognized to have
a known connection with drug rj; otherwise, Aij = 0. The ith row vector
of matrix A, i.e., Ad(di) � (Ai1, Ai2, . . . , Aim), represents the
association profile of disease di. The jth column vector of matrix A,
i.e., Ar(rj) � (A1j,A2j, . . . , Anj), represents the association profile of
drug rj. In fact, if novel drug nodes or disease nodes are considered, the
values of their corresponding columns or rows in the adjacency matrix
are zero. This case will lead to unsatisfactory performance in prediction
(Xiao et al., 2018). We utilize the WKNN algorithm to populate the
drug–disease association matrix. This is achieved by considering the
similarities of drugs and diseases.

For each drug rq, the similarities of the other k-nearest known
drugs (where at least one validated association exists) are combined
to update the drug’s association profile:

Ar rq( ) � 1
Qr

∑K
j�1

αj−1R rj, rq( )Ar rj( ), (5)

where the drugs r1 to rk are arranged in descending order according
to their similarity with rq. α ∈ [0, 1] is a decay term, and R denotes the
mean matrix of five drug similarity matrices. This means that when
the similarity between rj and rq is strong, a higher weight will be
assigned; conversely, a lower weight will be assigned. Furthermore,
Qr � ∑1≤j≤kR(rj, rq) is the normalization term.

In the same way, the updated association profile for each disease
dp is obtained as follows:
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Ad dp( ) � 1
Qd

∑K
i�1

αi−1D di, dp( )Ad di( ), (6)

where d1 to dk are the diseases sorted in descending order based
on their similarity to dp. α ∈ [0, 1] is a decay term, and D denotes
the mean matrix of two disease similarity matrices. Qd is a
normalization term, and Qd � ∑1≤i≤kD(di, dp). Finishing these
profile operations, we obtain the aforementioned two matrices
Ar and Ad from drug and disease spaces, respectively. Then, the
new drug–disease association matrix ADR is calculated as
follows:

ADR � max A,
Ar + Ad

2
( ). (7)

After the processing of WKNN, the density of the updated
association matrix ADR is greatly improved, and it no longer
contains all zero rows and all zero columns. However, some
noise information is inevitably added into the association matrix.
Subsequently, we will propose our new method for noise separation.

Algorithm 1 summarizes the preprocessing step for updating the
drug–disease association matrix using WKNN.

• Input: The original drug–disease association matrix

A ∈ Rn×m, the five drug similarity matrices: Rchem,

Ratc, Rse, Rddi, Rtarg; the two disease similarity

matrices: Dph, Ddo, decay term α, neighborhood

sizes k.

• Output: Optimized association matrix ADR.

1. R = (Rchem + Ratc + Rse + Rddi + Rtarg)/5, D = (Dph + Ddo)/2

2. for each drug rq do

3. V � KNN(rq,k,R); //KNN(rq,k,R) is the function to obtain

the k known nearest neighbors of rq in matrix R in

descending order.

4. Qr � ∑k
j�1R(rj ,rq);

5. Ar(rq) � ∑k
j�1α

j−1R(rj ,rq)A(rj)/Qr;//rj ∈ V

6. end for

7. for each disease dp do

8. U � KNN(dp ,k,D);
9. Qd � ∑k

i�1D(di ,dp);
10. Ad(dp) � ∑k

i�1αi−1D(di ,dp)A(di)/Qd;//di ∈ U

11. end for

12. ADR � max(A, Ar+Ad
2 );

13. return ADR.

Algorithm 1 : WKNN preprocessing step for updating the
association matrix.

Drug tensor and disease tensor. We construct a third-order
drug tensor with five frontal slices denoted asR ∈ R(m+n)×m×5. This
tensor comprised five drug similarity matrices and an updated
association matrix. Specifically, the first frontal slice of the drug
tensor is a concatenation of Rchem and ADR, which can be described
as follows:

�R
1( ) � Rchem

ADR
[ ], (8)

where �R(1) ∈ R(m+n)×m. In the same way, the remaining four frontal
slices of the drug tensor can be constructed with other similarity
matrices and ADR, which is presented as

�R
2( ) � Ratc

ADR
[ ], �R 3( ) � Rse

ADR
[ ],

�R
4( ) � Rddi

ADR
[ ], �R 5( ) � Rtarg

ADR
[ ]. (9)

A third-order disease tensor with two frontal slices, namely,
D ∈ Rn×(m+n)×2, is constructed using two disease similarity matrices
and an updated association matrix. The disease tensor D is stacked
by two slices. Each of its slices can be denoted as

�D
1( ) � ADR Dph[ ],

�D
2( ) � ADR Ddo[ ], (10)

where �D(1), �D(2) ∈ Rn×(m+n).
ITRPCA model. In the two tensors, R and D, some noise is

involved in both the similarity data and the inferred association data
by WKNN. TRPCA can be employed to separate noise tensors from
low-rank tensors. In order to fully exploit the significant information
embedded within drug and disease tensors, it is crucial that we adjust
the shrinking of large and small singular values such that the large
singular values shrink less and the small singular values shrinkmore.
However, TRPCA fails to effectively utilize this prior knowledge
during the minimization of tensor nuclear norm. Therefore, the
weighted tensor Schatten p-norm is introduced to treat different
singular values separately, which is defined as

‖X‖ω,Sp � ∑n3
i�1

�X
i( )����� �����pω,Sp⎛⎝ ⎞⎠1

p

� ∑n3
i�1

∑h
j�1

ωjpσj �X
i( )( )p⎛⎝ ⎞⎠1

p

,

(11)

whereX ∈ Rn1×n2×n3 , h � min(n1, n2), σj denotes the jth singular value,
andωj denotes the weight value of the jth singular value.When p = 1 and
ω � 1, ‖X‖* is a special case of ‖X‖ω,Sp. Moreover, it is crucial to note
that the entries of the low-rank tensor using TRPCA can be any real value
in the range of (−∞, +∞). However, it is imperative to ensure that the
predicted values are contextually relevant, as any values falling outside the
interval of [0,1] would be meaningless. To address this concern, a bound
constraint should be incorporated to restrict the predicted values of
unobserved elements within the interval [0, 1]. Our ITRPCA model is
formulated as follows:

min
E,X

λ‖E‖1 + ‖X‖pω,Sp
s.t. M � X + E

0≤X ≤ 1,
(12)

whereM can be replaced by a drug tensorR and disease tensorD
in practice.

Here, we use the drug tensor R instead of M as an example.
By optimizing the ITRPCA model, a clean low-rank drug tensor
R* ∈ R(m+n)×m×5 can be obtained. Its potential low-rank
representation comes from drug multiple similarity data and
association information. Actually, we focus on the part of the
association tensor in R*, which is denoted as ADR1* and equal to
R*(m + 1: n +m, : , : ). In order to obtain a predicted association
matrix for inferring potential drug–disease pairs, we take the
average of the tensor ADR1* in the longitudinal direction. This
operation can be expressed asADR1* � avg(ADR1* , 3), where ADR1*
is the optimized drug–disease association matrix from the drug’s
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perspective. In the same manner, we substitute the disease tensor
D for M in model (12). A new low-rank tensor D*, the other
association tensor ADR2* , and the corresponding association
matrix ADR2* can be conducted from the perspective of
diseases using ITRPCA. It should be noted that ADR2* �
D*(: , 1: m, : ) and ADR2* � avg(ADR2* , 3). Finally, the
integrated drug–disease association matrix ADR* was obtained
by averaging the prediction results of both drugs and diseases.

ADR* � ADR1* + ADR2*
2

. (13)

Algorithm 2 summarizes the process of applying ITRPCA in
drug repositioning. Based on the predicted pair scores in ADR* , the
potential drug–disease association can be inferred.

• Input: Original drug–disease association matrix

A ∈ Rn×m, the mean of drug multiple similarity

R ∈ Rm×m, the mean of disease multiple similarity

D ∈ Rn×n, neighborhood sizes k, p-value of Schatten

p-norm.

• Output: Predicted association matrix ADR* .

1. ADR ←WKNN preprocessing (A,R,k);
2. Assign R and D by the Eqs (8 − 10).

3. R* ← ITRPCA(R,p);
4. ADR1* � R*(m + 1: n + m, : , : );
5. D* ← ITRPCA(D,p);
6. ADR2* � D*(: ,1: m, : );
7. ADR1* ← avg(ADR1* ,3),ADR2* ← avg(ADR2* ,3);
8. ADR* � ADR1* +ADR2*

2 ;

9. return ADR* .

Algorithm 2 : ITRPCA algorithm in drug repositioning.

3.4 Solutions for ITRPCA

In this subsection, the ALMmethod is derived to solve the model
(12). Accordingly, the augmented Lagrangian function becomes

Γ E,X ,L, μ( ) � λ‖E‖1 + 〈L,M −X − E〉
+‖X‖pω,Sp +

μ

2
‖M −X − E‖2F, (14)

where L is the Lagrange multiplier and μ is the penalty
parameter. The primary procedure comprises the subsequent
distinct subtasks:

Compute Ek+1:We fixXk andLk to minimize Γ(E,X k ,Lk, μk)
for Ek+1. The model (14) becomes

arg min
E

λ

μk
‖E‖1 + 1

2
E −Hk‖ ‖2F, (15)

where Hk � M + μ−1k Lk −Xk, and drawing inspiration from the
soft-thresholding operator, we have

Ek+1 � T λ
μk

Hk( ), (16)

where the (i, j, k)th element of T λ
μk

(Hk) is
sign((Hk)i,j,k)• max(|(Hk)i,j,k| − λ/μk, 0).

Compute X k+1: We fix Ek+1 and Lk to minimize
Γ(Ek+1,X ,Lk, μk) for Xk+1. The model (14) becomes

arg min
X

μ−1k ‖X‖pω,Sp +
1
2
X − Yk‖ ‖2F, (17)

where Yk � M + μ−1k Lk − Ek+1. This is a weighted tensor
Schatten p-norm minimization (WTSNM) problem based on
t-SVD (Kilmer and Martin, 2011). In order to tackle
this concern, the subsequent lemma and theorems can be
employed.

Lemma 1 (Xie et al., 2016). For the optimization problem

minδ≥0f δ( ) � 1
2
δ − σ( )2 + ωδp, (18)

with the given p and ω, there exists a specific threshold

τGSTp ω( ) � 2ω 1 − p( )( ) 1
2−p + ωp 2ω 1 − p( )( )p−12−p, (19)

and we have the following conclusions:

1) When σ ≤ τGSTp (ω), the optimal solutionTGST
p (σ,ω) of Eq. 18 is 0.

2) When σ > τGSTp (ω), the optimal solution is
TGST
p (σ,ω) � sign(σ)SGSTp (σ,ω), and SGSTp (σ,ω) can be obtain

by solving SGSTp (σ,ω) − σ + ωp(SGSTp (σ,ω))p−1 � 0.

Theorem 1 (Xie et al., 2016). Let Y � UYDYVT
Y be the SVD of

Y ∈ Rm×n, τ > 0, l = min (m, n), 0 ≤ ω1 ≤ ω2 ≤ / ≤ ωl, then a global
optimal solution of the following model:

arg min
X

1
2
‖X − Y‖2F + τ‖X‖pω,Sp , (20)

is

ϒτpω Y[ ] � UYPτpω Y( )VT
Y, (21)

where Pτpω(Y) � diag(γ1, γ2, . . . , γl) and γi � TGST
p (σ i(Y), τpωi),

which can be obtained by Lemma 1. The σ i(Y){ } is organized in
a descending order, while ωi{ } is arranged in an ascending order.

Theorem 2 (Gao et al., 2021). Suppose A ∈ Rn1×n2×n3 ,
l � min(n1, n2), 0≤ω1 ≤ω2 ≤ /≤ωl, let A � UpSpVT given the
model

arg min
X

1
2
‖X −A‖2F + τ‖X‖pω,Sp . (22)

Then, a global optimal solution to the model (22) is

X* � ϒτpω A( ) � Upifft Pτpω
�A( )( )pVT, (23)

where Pτpω( �A) is a tensor and Pτpω( �A(i)) is the ith frontal slice of
Pτpω( �A). U � ifft( �U , [], 3) and V � ifft( �V, [], 3).

TABLE 2 Sum of AUC and AUPR values using different k- and p-values in the 10-
fold cross-validation.

p \ k 10 20 30 40 50

0.6 1.294 1.299 1.302 1.308 1.312

0.7 1.318 1.327 1.335 1.342 1.348

0.8 1.352 1.365 1.370 1.377 1.378

0.9 1.379 1.391 1.395 1.394 1.394

1 1.359 1.364 1.366 1.366 1.365
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According to Theorem 2, the global optimal solution of model
(17) is

X* � ϒμ−1
k
pω Yk( ) � Upifft Pμ−1

k
pω Yk( )( )pVT. (24)

In addition, we limit the entry values ofXk+1 to the interval [0,1]
by using the following projection operator.

X k+1 � Q 0,1[ ] X*( ), (25)
where Q[0,1] is defined as

Q 0,1[ ] X*( )( )ijk � 1, X ijk* > 1,
X ijk* , 0≤X ijk* ≤ 1,
0, X ijk* < 0.

⎧⎪⎨⎪⎩ (26)

Compute Lk+1: We fix Ek+1 and Xk+1 to minimize
Γ(Ek+1,X k+1,L, μ) for Lk+1. The model (14) becomes

Lk+1 � Lk + μk M − Xk+1 − Ek+1( ). (27)
Compute μk+1: In the ITRPCA model, we employ a scheme that

gradually increases the learning rate to facilitate fast convergence
(Gao et al., 2021). The penalty parameter becomes

μk+1 � min ρμk, μmax( ). (28)
Algorithm 3 provides the overall iterative scheme of the

ITRPCA model. It can extract significant information from
the drug tensor and disease tensor and ensure
that the predicted drug–disease association values are within [0,1].

• Input: Tensor data M (using drug tensor R or

disease tensor D), p-value of Schatten p-norm.

• Output: Low-rank tensor X.

• Initialize: X0 � E0 � L0 � 0,μ0 � 1e − 4,μmax � 1e10,

ρ = 1.1, regularization coefficient λ and weight

vector ω.

repeat

1. Update Ek+1 by Eq. 16.

2. Update X* by Eq. 24.

3. Xk+1 ← Q[0,1](X*).
4. Update Lk+1 by Eq. 27.

5. Update μk+1 by Eq. 28.

6. k ← k + 1.

until convergence

returnX.

Algorithm 3 Solution for the ITRPCA model.

4 Results and discussion

4.1 Evaluation metrics

To evaluate the effectiveness of ITRPCA, we employ 10-fold cross-
validation to predict potential indications for existing drugs. In this
process, known drug–disease associations within the gold standard

TABLE 3 AUC, AUPR, and precision values of all comparisonmethods in 10-fold
cross-validation for the gold standard dataset.

Metric ITRPCA HGBI MBiRW BNNR MSBMF MLMC

AUC 0.952 0.829 0.917 0.932 0.941 0.951

AUPR 0.442 0.102 0.264 0.423 0.421 0.436

Precision 0.476 0.130 0.304 0.463 0.455 0.475

The most optimal outcomes are indicated in bold, while the second-best results are

underlined.

FIGURE 2
Prediction results of all methods for 10-fold cross-validation on the gold standard dataset. (A) Receiver operating characteristic curve of prediction
results. (B) Average running time for each of the 10 folds.
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dataset are randomly split into 10 distinct sets of comparable sizes. One
subset serves as the test data, while the remaining nine subsets serve as
the training data. This 10-fold cross-validation is repeated 10 times with
varied random splits, and the resultant averages are considered the final
results. Following prediction generation, potential diseases associated
with the test drug are sorted in descending order according to their
prediction scores. We utilize three evaluation metrics to evaluate the
overall performance of ITRPCA: the area under the receiver operating
characteristic curve (AUC), the area under the precision–recall curve
(AUPR), and precision.

4.2 Parameter setting

In the ITRPCA algorithm, there are some default parameters
and two key hyperparameters that need to be adjusted. These default
parameters are determined empirically. Specifically, in the WKNN
step, we set a decay term α equal to 0.95. In model (12), the
regularization coefficient λ � 1

5
����
n1n2n3

√ , where n1, n2, and n3 are the
size of X . For drug and disease tensors, we design an adaptive
scheme to determine the weight vector ω of model (12). We divide ω
into three parts: the first part ranges from 1 to u, the second part
ranges from u + 1 to v, the third part ranges from v + 1 to the end,

and the specific weights of each part are [1, 2, 4]. The number of u
and v are determined by

U � avg u1, u2, . . . , un3( ), V � avg v1, v2, . . . , vn3( ), (29)
where

uj � arg min
x

∑x
i�1σj,i∑m
i�1σj,i

≥ 0.1{ }, j � 1, 2, . . . , n3, (30)

vj � arg min
x

∑x
i�1σj,i∑m
i�1σj,i

≥ 0.2{ }, j � 1, 2, . . . , n3. (31)

Actually, σj,i is the ith largest singular value of the jth frontal
slice matrix of X . It is evident that by minimizing the weighted
tensor Schatten p-norm, the singular values of the second and
third parts can be shrunk more compared to the first part. The
reason is that these two parts are assigned weight values greater
than 1. In addition, the two key hyperparameters are needed to be
adjusted, which are neighborhood sizes k and p value of Schatten
p-norm. We perform grid search to select the appropriate values
according to the sum of AUC and AUPR in cross-validation. k is
chosen from {10, 20, 30, 40, 50}, and p is picked from {0.6, 0.7, 0.8,
0.9, 1}. The numerical results for determining the parameters k
and p are reported in Table 2. When k = 30 and p = 0.9, the
highest rating value appears. Meanwhile, we terminate the
ITRPCA algorithm when the following stopping criterions are
satisfied or the maximum number of iteration steps is reached.

fk ≤ tol1,
|fk+1 − fk|
max 1, |fk|{ }≤ tol2, (32)

where fk � ‖Xk+1−Xk‖F
‖Xk‖F and tol1 and tol2 are the given tolerances,

which are set as 10–3 and 10–4 in the algorithm, respectively.

4.3 Comparison with state-of-the-art drug
repositioning methods

We compare ITRPCA with five state-of-the-art methods in
computational drug repositioning: HGBI (Wang et al., 2013),
MBiRW (Luo et al., 2016), BNNR (Yang et al., 2019), MSBMF
(Yang et al., 2021), and MLMC (Yan et al., 2022). To ensure a fair
comparison, the parameters used in these compared methods are set to
the recommended values by the authors (HGBI: α = 0.4; MBiRW: α =
0.3 and l = r = 2; and BNNR: α = 1 and β = 10) or determined by a grid
search (MSBMF: λ1 and λ2 are chosen from {0.001, 0.01, 0.1, 1}, and τ =
0.7; MLMC: λr and λd are selected from {0.0001, 0.001, 0.01, 0.1, 1}, and
threshold = 0.8).

We assess the performance of all methods in a 10-fold cross-
validation for the gold standard dataset. Table 3 shows theAUC,AUPR,
and precision values of all compared methods. As shown in Table 3,
ITRPCAhas the best performance compared to othermethods in terms
of AUC, AUPR, and precision. Specifically, ITRPCA achieves the best
AUPR value of 0.442, which is 67.424%, 4.492%, 4.988%, and 1.376%
higher than the corresponding AUPRs of MBiRW, BNNR, MSBMF,
and MLMC, respectively. It can be seen that ITRPCA performs slightly
better thanMLMC. The ROC curves of all methods in the 10-fold cross-
validation are shown in Figure 2A.

Based on the test results from the repeated 10-fold cross-
validation, we used the Wilcoxon rank sum tests to evaluate the

FIGURE 3
ROC curves for all comparisonmethods tested independently on
the Cdataset.

TABLE 4 p-values obtained through Wilcoxon rank sum tests and Bonferroni
correction, comparing ITRPCA with other methods on AUC, AUPR, and
precision.

p-value MLMC MSBMF BNNR MBiRW HGBI

AUC 1.899 1.125e-09 3.019e-22 4.932e-32 1.281e-33

AUPR 1.154 4.741e-05 4.741e-05 4.741e-05 4.741e-05

Precision 3.846 4.554e-05 1.433e-11 1.235e-33 1.227e-33
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statistical significance of ITRPCA compared to other methods in
terms of AUC, AUPR, and precision. The p-values were carefully
adjusted using the Bonferroni correction to control for multiple
testings. Table 4 shows the p-values obtained from the rank sum
test and the Bonferroni correction. The results indicate that
ITRPCA is significantly better than the other methods, except
for MLMC (p-value < 0.05). It suggests that ITRPCA
outperforms most of the compared methods in terms of AUC,
AUPR, and precision. The significance of the comparison was
carefully adjusted using the Bonferroni correction to control for
multiple testing.

In addition, to demonstrate the computational efficiency of the
compared methods, we have recorded the average amount of time
taken by each fold. The 10-fold cross-validation is executed on a
personal laptop, which is powered by an Intel Core i7 processor and
comes with 16 GB RAM. Figure 2B shows the average running time
for each of the 10 folds across all comparison methods. As shown in
Figure 2B, the methods with an average running time of less than
10 seconds are HGBI, MSBMF, and ITRPCA. The average required
time for MLMC and MBiRW is relatively long, which is
approximately five times that of our method. Therefore, ITRPCA

is a promising prediction method that shows both effective
predictions and efficient computational performance.

4.4 Independent testing

To further demonstrate the performance of ITRPCA in real
applications, we conduct two types of independent testing
experiments. The gold standard dataset is used as the training
set to train the models, and the set of associated pairs in the
Cdataset excluding the training set is used as the testing set to
evaluate the performance of the models. To be specific, we have
collected a total of 57 drug–disease association pairs in the testing
set. Figure 3 shows the ROC curves of all comparative methods in
independent testing. As shown in Figure 3, ITRPCA has
demonstrated clear superiority over other methods in this
independent testing. Specifically, ITRPCA yields an AUC value
of 0.943, while HGBI, MBiRW, BNNR, MSBMF, and MLMC
yield AUC values of 0.873, 0.908, 0.882, 0.925, and 0.892,
respectively. It is worth mentioning that the AUC value of
ITRPCA is 5.717% higher than that of MLMC.

FIGURE 4
Number of top 5 to top 30 indications correctly predicted for all drugs by all comparisonmethods in the CTD. The x-axis represents the comparison
of different methods across six specific top n scenarios. The y-axis represents the cumulative sum of confirmed indications among the top n predicted
indications for each drug, as determined by the respective methods.

TABLE 5 Compared results of ITRPCA, “w/o WKNN,” “only WKNN,” “ITRPCA-drug,” and “ITRPCA-disease” with 10-fold cross-validation on the gold standard
dataset.

Metric ITRPCA w/o WKNN only WKNN ITRPCA-drug ITRPCA-disease

AUC 0.952 0.929 0.903 0.940 0.950

AUPR 0.442 0.397 0.336 0.429 0.425

Precision 0.476 0.437 0.380 0.466 0.462

The most optimal outcomes are indicated in bold, while the second-best results are underlined.
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In addition, the other independent testing is conducted using all
known associations in the gold standard dataset as training samples and
unknown associations as candidate samples. The prediction scores of all
candidate pairs are obtained by computational methods and ranked for
each specific drug. We focus on how many of the top n candidate
indications for each drug could be found and confirmed to have been
used in clinical treatment in the CTD (released in February 2020) (Davis
et al., 2019). Specifically, among all the drugs and diseases involved in the
gold standard dataset, we have identified a total of 938 drug–disease
associations that were subsequently validated in the CTD. As shown in
Figure 4, the number of correctly predicted associations for 593 drugs is
counted for the top 5 to top 30 candidate indications. It is evident that
ITRPCA predicts the highest number of correct associations among all
the methods for all drugs, followed byMSBMF andMLMC. Specifically,
the number of validated associations from the top 5 to top 30 identified
by ITRPCA is 163, 269, 348, 409, 456, and 492, respectively. In contrast,
the corresponding numbers of identified associations by MLMC are all
lower than those by ITRPCA,with a difference of 7, 30, 35, 44, 45, and 46,
respectively.

4.5 Ablation experiment

To elucidate the individual impact of components within ITRPCA, we
designed four ablation experiments: “w/o WKNN,” “only WKNN,”
“ITRPCA-drug,” and “ITRPCA-disease.” To be specific, “w/o WKNN”
implies the ITRPCAmethodwithoutWKNNpreprocessing for prediction.
“only WKNN” represents using only the WKNN algorithm to infer the
potential drug–disease associations, without the need for using our tensor
RPCA model. “ITRPCA-drug” represents that only the drug tensor in
ITRPCA was used to predict drug–disease associations, while “ITRPCA-
disease” only uses the disease tensor in ITRPCA. To ensure a rigorous and
unbiased comparison, the same prior similarity information and
parameters as the ITRPCA model are employed in the aforementioned
experiments.

Table 5 shows the AUC, AUPR, and precision results obtained
from the 10-fold cross-validation of the comparative methods on

the gold standard dataset. As anticipated, ITRPCA performs the
best with AUC, AUPR, and precision values. This indicates that
combining WKNN and TRPCA has a positive impact on
predictive performance. In fact, the “w/o WKNN” model does
not exhibit prominent results in predicting latent associations. It
illustrates that WKNN preprocessing in ITRPCA can assist in the
prediction. For the “only WKNN” model, relevant information
was added based on drug and disease similarity. However, this
addition also introduced more noise, leading to poor prediction
performance. It serves as evidence from the opposite perspective
that the effectiveness of TRPCA in noise reduction is significant.
Furthermore, based on the prediction results of “ITRPCA-drug”
and “ITRPCA-disease,” we find that the simultaneous utilization
of tensor information from both drugs and diseases leads to
better performance compared to using only one type of tensor
information. It implies that the effective enhancement of
prediction outcomes can be achieved through the integration
of prior knowledge from drugs and diseases.

4.6 Case studies

To demonstrate the practical application of ITRPCA, we conducted
case studies with the aim of uncovering novel applications for existing
drugs. By utilizing all available drug–disease associations and multiple
similarities in the gold standard dataset, we applied the ITRPCAmethod to
predict the unexplored relationship between drugs and diseases. Based on
the prediction results of ITRPCA, we generated all possible candidate
indications for each drug and sorted them according to their obtained
scores. In recent years, the development of drugs for tumors and leukemia
has received widespread attention. Here, we selected four commonly used
anti-tumor drugs ( cisplatin, vincristine, doxorubicin, and methotrexate)
and one anti-malignant hematologic drug ( cytarabine) to search for
evidence of their candidate indications in the CTD.

Table 6 shows the top 10 candidate indications predicted by the
ITRPCA algorithm for the five drugs, with confirmed indications
highlighted in bold. It was observed that each drug had 4–6

TABLE 6 Top 10 candidate indications for cisplatin, vincristine, doxorubicin, methotrexate, and cytarabine.

Drugs (DrugBank ID) Top 10 candidate diseases (OMIM ID)

Cisplatin (DB00515) Rhabdomyosarcoma 2 (268220); lung cancer (211980); lymphoblastic leukemia, acute, with lymphomatous features (247640); diffuse
gastric and lobular breast cancer syndrome (137215); reticulum cell sarcoma (267730); leukemia, chronic lymphocytic, susceptibility to
2 (109543); Wilms tumor 1 (194070); breast cancer (114480); colorectal cancer (114500); thyroid cancer, and non-medullary, 2
(188470)

Vincristine (DB00541) Leukemia, chronic lymphocytic (151400); mycosis fungoides (254400); myelofibrosis (254450); breast cancer (114480); osteogenic
sarcoma (259500); bladder cancer (109800); lung cancer (211980); Kaposi sarcoma, susceptibility to (148000); small cell cancer of
the lung (182280); and diffuse gastric and lobular breast cancer syndrome (137215)

Doxorubicin (DB00997) Leukemia, chronic lymphocytic, susceptibility to, 2 (109543); reticulum cell sarcoma (267730); esophageal cancer (133239); small cell
cancer of the lung (182280); testicular germ cell tumor (273300); colorectal cancer (114500); Dohle bodies and leukemia (223350);
prostate cancer (176807); renal cell Carcinoma, nonpapillary (144700); and hepatocellular carcinoma (114550)

Methotrexate (DB00563) Lung cancer (211980); Wilms tumor 1 (194070); leukemia, chronic lymphocytic (151400); myeloma, multiple (254500); prostate
cancer (176807); renal cell carcinoma, nonpapillary (144700); neuroblastoma, susceptibility to, 1 (256700); thyroid cancer,
nonmedullary, 2 (188470); myelofibrosis (254450); and moved to 619182 (175505)

Cytarabine (DB00987) Leukemia, chronic lymphocytic (151400); mycosis fungoides (254400); myelofibrosis (254450); rhabdomyosarcoma 2 (268220); myeloma
multiple (254500); colorectal cancer (114500); small cell cancer of the lung (182280); Kaposi sarcoma, susceptibility to (148000); testicular
germ cell tumor (273300); and breast cancer (114480)

The predicted indications in bold have been confirmed by the CTD.
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validated indications among the top 10 predictions. As an example,
doxorubicin (DB00997), a broad-spectrum antitumor medication with
antibiotic-like properties, was found to be effective in treating various
types of cancer, including esophageal cancer, colon cancer, prostate
cancer, renal cell carcinoma (nonpapillary), and hepatocellular
carcinoma, as shown in Table 6. Additionally, chronic lymphocytic
leukemia (susceptibility to, 2) and reticulum cell sarcoma were ranked
first and second in the candidate indication list, respectively. However,
their validity as indications has not been confirmed yet. These
unconfirmed candidate indications hold potential as promising
targets for further research.

5 Conclusion

In the study, we have proposed a novel computational method
called ITRPCA for identifying drug-associated indications. ITRPCA
can not only effectively exhibit robustness in isolating the low-rank
tensor and noise information but also restrict predicted entry values of
the low-rank tensor within a specific interval. The cross-validation
and independent testing experiments have shown that ITRPCA is a
highly effective prediction method. In particular, when compared to
existing drug repositioning methods in independent testing, ITRPCA
outperforms them in all measures, indicating a clear advantage.
Additionally, case studies have confirmed ITRPCA’s reliability in
predicting new indications for known drugs. Therefore, we are
confident that ITRPCA will serve as a valuable tool to successfully
facilitate practical drug repositioning.
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