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Abstract. We generate solvable cases of the two angular equations resulting from variable separation
in the three-dimensional Dunkl-Schrödinger equation expressed in spherical coordinates. It is shown
that the Dunkl formalism interrelates these angular equations with trigonometric Pöschl-Teller systems.
Based on this interrelation, we use point transformations and Darboux-Crum transformations to
construct new solvable cases of the angular equations. Instead of the stationary energy, we use the
constants due to the separation of variables as transformation parameters for our Darboux-Crum
transformations.
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1. Introduction
Dunkl operators are commuting differential-difference operators associated with reflection groups [1] that play an
important role in various areas of Mathematics and the natural sciences. For example, these operators are closely
related to integrable systems of Calogero-Moser-Sutherland type [2–4], they are applied in the construction
of angular momentum algebras [5, 6], for generalised Fourier analysis related to root systems [7], in nonlinear
models [8], and in the generalisation of classical orthogonal polynomials through reflection groups [9]. A further
field of application for Dunkl operators that has been studied extensively in recent years, is the construction
of deformed quantum theories. Such deformations are obtained by replacing the conventional derivatives, as
they appear for example in quantum momentum operators, through Dunkl operators [10]. By means of this
process, we can construct a large variety of relativistic and nonrelativistic quantum systems within the Dunkl
context. Particular cases that have recently been studied include the harmonic oscillator in the two-dimensional
plane [11, 12], the planar Coulomb system [13], the Klein-Gordon equation for several interactions [14], rational
extensions of the Dunkl oscillator [15], the relativistic harmonic oscillator [16, 17], and three-dimensional systems
that allow for separation of variables in the Schrödinger equation [18]. In the present work, we focus on the latter
type of systems. More precisely, we consider Dunkl-Schrödinger equations that allow for separation of variables
in spherical coordinates. While the radial equation maintains its form within the Dunkl formalism, the two
angular equations are different from their conventional counterparts. In particular, both can be taken to a form
that resembles the conventional Schrödinger equation for a generalised trigonometric Pöschl-Teller potential [19].
Therefore, existing results and methods related to such potentials can be used directly for constructing new
solvable cases of both angular equations, leading to an overall three-dimensional potential. While solutions for a
particular class of potentials were obtained previously [20], here, our focus is more general. The purpose of the
present work is to construct new solutions to the angular equations by incorporating existing results, and by
adapting and applying the Darboux-Crum transformation to our equations. The article is organized as follows.
In Section 2, we state the known general solution of the Schrödinger equation with trigonometric Pöschl-Teller
potential. Since this equation have the same form as the angular equations resulting from the variable separation
in the three-dimensional scenario, the solution presented in Section 2 can be adapted to those angular equations
in a straightforward way. Besides this topic, Section 2 also briefly reviews the Darboux-Crum transformation
that will be applied to the above mentioned angular equations. In Section 3, we begin to develop the method
used in this work by defining the Hamiltonian within the Dunkl formalism and by generating the associated
Schrödinger equation in spherical coordinates. The separation of variables then results, as usual, in a radial
equation and two angular equations. In Section 4, one of these angular equations (the polar equation) is shown
to match the form of the equation that was reviewed in Section 2. By means of this interrelation, solutions of
the polar equation is constructed. These solutions are subsequently generalised by means of Darboux-Crum
transformations, as introduced in Section 2. Section 5 essentially repeats the process from Section 4, but this
time applied to the remaining angular equation (the azimuthal equation).
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2. Preliminaries
In order to make this article self-contained, we will now summarise the results on the trigonometric version of
the Pöschl-Teller potential, and on the closed-form solution of the associated Schrödinger equation. Furthermore,
we briefly review the two algorithms of the Darboux-Crum transformation. Details on these topics can be found
in [19, 21], and references therein.

2.1. The trigonometric Pöschl-Teller system
The stationary Schrödinger equation for the trigonometric Pöschl-Teller potential can be written in the form:

Ψ′′(x) +
[
A + B

sin(x)2 + C

cos(x)2

]
Ψ(x) = 0 , (1)

introducing real-valued constants A, B, and C. The general solution of (1) is given by:

Ψ(x) = c1 sin(x) 1
2 − 1

2
√

1−4B cos(x) 1
2 + 1

2
√

1−4C

× 2F1

[
1
2 −

√
A

2 + K−,
1
2 +

√
A

2 + K−, 1 −
√

1 − 4B

2 , sin(x)2

]
+ c2 sin(x) 1

2 + 1
2

√
1−4B cos(x) 1

2 + 1
2

√
1−4C (2)

× 2F1

[
1
2 −

√
A

2 + K+,
1
2 +

√
A

2 + K+, 1 +
√

1 − 4B

2 , sin(x)2

]
,

where c1, c2 denote the arbitrary linear factors, 2F1 represents the hypergeometric function [22], and the
abbreviation K that stands for:

K± = ±
√

1 − 4B +
√

1 − 4C

4 . (3)

Note that the parameters entering in the general Solution (2) are subject to restrictions, depending on the
domain of Equation (1), and on the boundary conditions imposed on it.

2.2. The Darboux-Crum transformation
The purpose of the Darboux-Crum transformation is to provide an interrelation between the solutions of the
following partner equations:

Ψ′′(x) +
[
E − U(x)

]
Ψ(x) = 0 , (4)

Ψ̂′′(x) +
[
E − Û(x)

]
Ψ̂(x) = 0 . (5)

Here, E denotes the stationary energy, and U , Û stand for the respective potentials. These potentials,
as well as the corresponding solutions Ψ and Ψ̂ of the two equations, can be linked by the Darboux-Crum
transformation, where we need to distinguish two algorithms.

• Standard algorithm: Let the transformation functions Ψ1, . . . , Ψn be solutions of:

Ψ′′
j (x) +

[
Ej − U(x)

]
Ψj(x) = 0, j = 1, 2, . . . , n ,

where the constants E1, . . . , En are usually referred to as factorization energies or transformation energies.
These names stem from the fact that for Schrödinger equations, these constants formally represent energies.
However, in the present work, we will apply the Darboux-Crum transformation to equations that have the
same form as (4), but are not Schrödinger equations, so that the constants E1, . . . , En do not represent
energies. For this reason we will refer to them as transformation parameters throughout this work. Further
details will be discussed below at the beginning of Section 4.2. Now, a solution of equation (5) is given by:

Ψ̂(x) = WΨ1,Ψ2,...,Ψn,Ψ(x)
WΨ1,Ψ2,...,Ψn(x) , (6)

provided the potential Û is constrained with its counterpart U as:

Û(x) = U(x) − 2 d2

dx2 log [WΨ1,Ψ2,...,Ψn
(x)] . (7)

Note that W in (6) and (7) denotes the Wronskian with respect to the functions in its index.
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• Confluent algorithm: Let the transformation functions Ψ1, . . . , Ψn be the solutions of the system:

Ψ′′
1(x) +

[
E1 − U(x)

]
Ψ1(x) = 0 , (8)

Ψ′′
j (x) +

[
E1 − U(x)

]
Ψj(x) = −Ψj−1(x), j = 2, . . . , n , (9)

observe that there is only a single transformation parameter E1. For example, in the case n = 2 (second-order
transformation), the above system of equations reads:

Ψ′′
1(x) +

[
E1 − U(x)

]
Ψ1(x) = 0 ,

Ψ′′
2(x) +

[
E1 − U(x)

]
Ψ2(x) = −Ψ1(x) .

Returning to the general case, if solutions Ψ1, . . . , Ψn of the System (8), (9) are known, then the function:

Ψ̂(x) = WΨ1,Ψ2,...,Ψn,Ψ(x)
WΨ1,Ψ2,...,Ψn(x) , (10)

solves Equation (5), as long as the potential Û is interrelated to its counterpart U by means of:

Û(x) = U(x) − 2 d2

dx2 log [WΨ1,Ψ2,...,Ψn(x)] . (11)

Note that the Forms (10) and (11) are the same as (6) and (7), respectively, so that the only difference
between the two algorithms lies in the equations that determine the transformation functions.

3. The Dunkl-Schrödinger system
Our first goal is to derive the stationary Schrödinger equation in three dimensions within the Dunkl formalism.
This procedure is well known – see e.g. [18] – so we will not give the details of the derivation here. While the
Hamiltonian governing our system is written in the usual form:

H = p2
1 + p̂2

2 + p̂2
3 + V (x1, x2, x3) , (12)

where V represents the potential, and the momentum operators p1, p2, p3 obey a nonstandard definition. Here,
they are given as:

pj = −iDj = −i

(
∂

∂xj
+ νj

xj
− νj

xj
Rj

)
, j = 1, 2, 3 , (13)

introducing real-valued constants ν1, ν2, ν3, and Dunkl operators D1, D2, D3, that generalise the conventional
partial derivative. Furthermore, the Rj stand for parity or reflection operators with respect to the variable xj .
This operator acts on the admissible functions Ψ in the following way:

R1 Ψ(x1, x2, x3) = Ψ(−x1, x2, x3) , (14)
R2 Ψ(x1, x2, x3) = Ψ(x1, −x2, x3) , (15)
R3 Ψ(x1, x2, x3) = Ψ(x1, x2, −x3) . (16)

Note that setting ν1 = ν2 = ν3 = 0 converts the momentum operators in (13) to their conventional form,
thus removing the reflection operators. Now, our Hamiltonian (12) is defined on a weighted Hilbert space L2

w

with weight function:
w(x1, x2, x3) = |x1|2ν1 |x2|2ν2 |x3|2ν3 ,

so that the norm of a function Ψ ∈ L2
w

(
R3) takes the form:

∥Ψ∥ =
√√√√∫

R3

Ψ(x1, x2, x3)∗Ψ(x1, x2, x3)|x1|2ν1 |x2|2ν2 |x3|2ν3 dx1 dx2 dx3 , (17)

where the asterisk denotes a complex conjugation. It is understood that the admissible values of the parameters
ν1, ν2, and ν3 must be suitably restricted so that they do not contribute singularities in the integrand. In the
next step we introduce spherical coordinates r ≥ 0, 0 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π by means of the usual relations:

x1 = r sin(θ) cos(ϕ) ,

x2 = r sin(θ) sin(ϕ) , (18)
x3 = r cos(θ) .
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Furthermore, we restrict the class of potentials in (12) to functions of the following form:

V (r, ϕ, θ) = Vr(r) + 1
r2 Vθ(θ) + 1

r2 sin(θ)2 Vϕ(ϕ) , (19)

introducing the three single-variable parameters Vr, Vθ, and Vϕ. The purpose of representing our potential in
the Form (19) is to ensure that we can separate variables in the Schrödinger equation that we will now construct.
Writing our Hamiltonian (12) into the form of spherical Coordinates (18), and substituting the Potential (19),
we obtain the Schrödinger equation HΨ = EΨ in the form:

0 =
{

∂2

∂r2 + 2
r

(
1 + ν1 + ν2 + ν3

)
∂

∂r
+ E − Vr(r)

+ 1
r2 sin(θ)2

{
∂2

∂ϕ2 − 2
[
ν1 tan(ϕ) − ν2 cot(ϕ)

]
∂

∂ϕ
− ν1(1 − R1)

cos(ϕ)2 − ν2(1 − R2)
sin(ϕ)2 − Vϕ(ϕ)

}
(20)

+ 1
r2

{
∂2

∂θ2 − 2
[
ν3 tan(θ) −

(
1
2 + ν1 + ν2

)
cot(θ)

]
∂

∂θ
− ν3(1 − R3)

cos(θ)2 − Vθ(θ)
}}

Ψ(r, θ, ϕ) .

Recall that we can recover the known, conventional Schrödinger equation by removing the Dunkl context
through the setting ν1 = ν2 = ν3 = 0. Next, in order to separate variables in (20), we first need to apply the
reflection operators to the solution. By rewriting (14)–(16) to the case of spherical coordinates, we obtain:

R1 Ψ(r, θ, ϕ) = Ψ(r, θ, π − ϕ) , (21)
R2 Ψ(r, θ, ϕ) = Ψ(r, θ, −ϕ) , (22)
R3 Ψ(r, θ, ϕ) = Ψ(r, π − θ, ϕ) . (23)

Without further information on the solution Ψ of Equation (20), application of the Actions (21)–(23) would
render our equation in a form that does not allow for separation of variables. Therefore, we impose the following
restrictions on Ψ:

Rj Ψ(r, θ, ϕ) = rj Ψ(r, θ, ϕ), j = 1, 2, 3 , (24)

introducing constants r1, r2, r3, the existence and values of which must be determined separately for each
particular potential (19). We refer to the r1, r2, r3 as parity constants because they typically dictate that the
function Ψ must exhibit a certain type of symmetry or parity. Now, after substituting (24) in (20), and requiring
the usual factored form of the solution:

Ψ(r, θ, ϕ) = R(r) Θ(θ) Φ(ϕ) ,

we can separate variables, so that (20) decomposes into three equations. The radial equation is given by:

R′′(r) + 2
r

(1 + ν1 + ν2 + ν3) R′(r) +
[
E − Vr(r) − λ

r2

]
R(r) = 0 , (25)

where λ is the separation constant. Let us simplify the form of this equation by removing the first-order
derivative term ∼ Ψ′. To this end, we set:

R(r) = 1
rν1+ν2+ν3

S(r) ,

which, after substitution in (25), gives our radial equation in the form:

S′′(r) +
[
E − λ

r2 + (ν1 + ν2 + ν3)(ν1 + ν2 + ν3 − 1)
r2 − Vr(r)

]
S(r) = 0 . (26)

We observe that the terms containing the parameters ν1, ν2, and ν3, can be formally the separation constant
λ. As such, we can conclude that the general form of our radial equation is the same with and without the
Dunkl context. For this reason, we will not consider this equation any further in the present work, except when
stating examples. Next, the polar equation resulting from the separation of (20) takes the form:

Θ′′(θ) − 2
[
ν3 tan(θ) −

(
1
2 + ν1 + ν2

)
cot(θ)

]
Θ′(θ)

+
[
λ − m2

sin(θ)2 − ν3(1 − r3)
cos(θ)2 − Vθ(θ)

]
Θ(θ) = 0 , (27)
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introducing another separation constant m2. Finally, the azimuthal equation can be written as:

Φ′′(ϕ) − 2
[
ν1 tan(ϕ) − ν2 cot(ϕ)

]
Φ′(ϕ)

+
[
m2 − ν1(1 − r1)

cos(ϕ)2 − ν2(1 − r2)
sin(ϕ)2 − Vϕ(ϕ)

]
Φ(ϕ) = 0 . (28)

We point out that the three Equations (25), (27) and (28) turn into their known counterparts if we remove
the Dunkl context by setting ν1 = ν2 = ν3 = 0.

4. The polar equation
In this section we show that Equation (27) is closely related to trigonometric Pöschl-Teller systems. This
relation can be used directly to find solutions of the polar equation for different potentials Vθ. Furthermore,
these solutions can be generalised by the application of the Darboux-Crum transformation.

4.1. Extended trigonometric Pöschl-Teller systems
In order to observe the similarity between Equation (27) and trigonometric Pöschl-Teller systems, we rewrite
the solution Θ in terms of a new function η as follows:

Θ(θ) = cos(θ)−ν3 sin(θ)−ν1−ν2− 1
2 η(θ) . (29)

Substitution renders the polar Equation (27) in the form:

η′′(θ) +
[

λ + (1 + 2ν1 + 2ν2 + 2ν3)2

4 + (r3 − ν3)ν3

cos(θ)2

+ 1 − 4m2 − 4(ν1 + ν2)2

4 sin(θ)2 − Vθ(θ)
]

η(θ) = 0 . (30)

Comparison with (1) shows that this equation has Schrödinger form for a trigonometric Pöschl-Teller potential,
extended by the function Vθ. As such, any extension that maintains solvability of (30), leads to a new polar
term in the Potential (19), along with a solution of the associated Schrödinger Equation (20). Straightforward
examples for such extensions Vθ are given by functions that resemble the shape of the trigonometric Pöschl-Teller
potential, one of its special cases (as will be shown below), or their generalisations [23]. While the last case is
beyond the scope of this article, let us consider a function Vθ that has the shape of a trigonometric Pöschl-Teller
potential. We let:

Vθ(θ) = α + β

sin(θ)2 + γ

cos(θ)2 , (31)

where α, β and γ are constants. Observe that there are equivalent ways of expressing this function, for example,
through tangent and cotangent functions. We have, for example, the two following representations:

Vθ(θ) = α + β + γ + γ tan(θ)2 + β

tan(θ)2 ,

Vθ(θ) = β + (α − β + γ) sin(θ)2 − α sin(θ)4

sin(θ)2 cos(θ)2 ,

both of which coincide with (31). By substituting (31) into (30), we obtain:

η′′(θ) +
[

λ + α + (1 + 2ν1 + 2ν2 + 2ν3)2

4

+ (r3 − ν3)ν3 + γ

cos(θ)2 + 1 − 4m2 − 4(ν1 + ν2)2 + β

4 sin(θ)2

]
η(θ) = 0 . (32)

This equation is exactly-solvable, as we can see from the comparison with (1). In addition, renaming the
solution and the variable, we can match the two equations by setting:

A = λ + α + (1 + 2ν1 + 2ν2 + 2ν3)2

4 , (33)

B = 1
4 − m2 − (ν1 + ν2)2 + β

4 , (34)

C = (r3 − ν3)ν3 − γ . (35)
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Hence, implementing these settings in (2) provides the general solution of (32). Let us now continue by
presenting an example that focuses on the special case of Vθ being a trigonometric Pöschl-Teller I potential. We
set:

α = β = 0 . (36)
In addition, we will aim for constructing a solution to our polar Equation (27) that forms part of a bound

state to (20). Keeping this in mind, the inspection of the general Solution (2) shows that we must impose the
condition c1 = 0 in order to avoid singularities generated by the coefficient of the hypergeometric function.
Furthermore, the hypergeometric function itself produces a singularity at θ = π/2, unless it degenerates to a
polynomial. It is known that this case occurs if its first argument equals to a nonpositive integer. From (2)
and (3), we have the condition:

1
2 −

√
A

2 +
√

1 − 4B +
√

1 − 4C

4 = −N, N = 0, 1, 2, . . . . (37)

By substituting (33)–(35), and solving for the separation constant λ, we obtain:

λ = − (1 + 2ν1 + 2ν2 + 2ν3)2

4

+ 1
4

[
4N + 2 + 2

√
m2 + (ν1 + ν2)2 +

√
1 + 4γ + 4ν3(ν3 − r3)

]2

. (38)

Now, taking into account the present Settings (33)–(38), we can get the solution of Equation (32) from (2)
and (3) in the form:

η(θ) = sin(θ) 1
2 + 1

2
√

1−4B cos(θ) 1
2 + 1

2
√

1−4C
2F1

[
− N,

1
2 +

√
A

2 + K+, 1 +
√

1 − 4B

2 , sin(θ)2

]
, (39)

where we have not substituted the explicit form of our parameters, as the resulting expression would become
very long. In the next step, we build a solution Θ of our polar Equation (28) for the current settings by means
of the point Transformation (29). This gives our Solution (39) as:

Θ(θ) = sin(θ) 1
2 + 1

2
√

1−4B−ν1−ν2− 1
2 cos(θ) 1

2 + 1
2

√
1−4C−ν3

× 2F1

[
− N,

1
2 +

√
A

2 + K+, 1 +
√

1 − 4B

2 , sin(θ)2

]
. (40)

The final task consists in determining the constant r3 that is inserted in (35). Recall that this constant
results from applying the reflection operator R3, as shown in (24). We can determine r3 by evaluating (23),
taking into account that it only acts on the function Θ. Since we know that:

R3 sin(θ) = sin(π − θ) = sin(θ) ,

R3 cos(θ) = cos(π − θ) = − cos(θ) ,

from (40) and (35) we obtain that:

R3Θ(θ) = (−1) 1
2 + 1

2
√

1−4C−ν3 Θ(θ) = (−1) 1
2 + 1

2

√
1−4(r3−ν3)ν3+4γ−ν3 Θ(θ) .

Comparison of this result with (24) gives the following equation for the constant r3:

r3 = (−1) 1
2 + 1

2

√
1−4(r3−ν3)ν3+4γ−ν3 . (41)

Since we assume that r3 is real-valued, the right side of this condition can only attain the two values −1 and
1, thus making it the only two possible values for r3. Consequently, in the case r3 = −1, the exponent of the
right side of (41) must be an odd number, giving the condition:

1
2 + 1

2
√

1 + 4(1 + ν3)ν3 + 4 γ − ν3 = 2k + 1 , (42)

where k denotes any integer. Observe further that if (42) is satisfied, then the function Θ in (40) is odd with
respect to the point θ = π/2. In the other case r3 = 1, the exponent must be an even number, so that we must
have:

1
2 + 1

2
√

1 − 4(1 − ν3)ν3 + 4γ − ν3 = 2k , (43)
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for any integer k. If this condition is satisfied, then the function Θ in (40) is even with respect to the point
θ = π/2. In summary, the latter function is a solution to our polar Equation (27) for the Potential (31) with
the Settings (3) and (33)–(38), provided the parameters are chosen to comply with (42) or (43). Let us now
present examples for solutions of our polar equation for the overall settings:

ν1 = ν2 = ν3 = 1
2; m = 5 . (44)

Odd-parity solutions are obtained by setting r3 = −1 and γ = 8, note that these parameter values satisfy the
Constraint (42) for k = 1. Substituting the latter values and (44) in combination with (33)–(36) into (40) gives:

Θ(θ) = sin(θ)−1+
√

26 cos(θ)3
2F1

[
− N, N + 4 +

√
26, 1 +

√
26, sin(θ)2

]
. (45)

Graphs of this function for different values of N can be found in Figure 1. For the even case, we set r3 = 1,
γ = 4, and keep the remaining parameters at the same values they were assigned in the previous case. From (40),
we obtain that:

Θ(θ) = sin(θ)−1+
√

26 cos(θ)2
2F1

[
− N, N + 3 +

√
26, 1 +

√
26, sin(θ)2

]
. (46)

0.5 1.0 1.5 2.0 2.5 3.0
Θ

-0.5

0.5

QHΘL

N = 2

N = 1

N =

Figure 1. Graphs of odd Solutions (45) for different values of N .

Figure 2 shows graphs of this solution for several values of the parameter N .

0.5 1.0 1.5 2.0 2.5 3.0
Θ

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

QHΘL

N = 2

N = 1

N = 0

Figure 2. Graphs of even Solutions (46) for different values of N .

4.2. The Darboux-Crum transformation
In addition to using results on extended Pöschl-Teller systems directly in the polar Equation (27), we can also
generate solvable cases of the latter equation by means of the Darboux-Crum transformation, if we consider our
polar equation in the Form (30). As will be discussed below, this equation matches the form of (4), so that
the Darboux-Crum transformation is applicable. It is important to stress that the transformation parameter,
in our case, is not the stationary energy E of the system, as this energy does not enter in the polar equation.
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Instead, we will use the separation constants λ and m2 as our transformation parameters. More precisely, we
will now show that each of these two separation constants can be used as a transformation parameter for a
Darboux-Crum transformation, while the remaining parameters must be kept at fixed values. This is a strong
restriction, as we will discuss further below. Before we continue, let us remark that in the vast majority of cases,
where the Darboux-Crum transformation is applied to a Schrödinger equation, the transformation parameter
is given by the stationary energy. This allows to control the discrete spectrum of the system, for instance,
energy levels can be added or deleted. However, there are applications that involve non-energy transformation
parameters. An example for such a case is given by the two-dimensional massless Dirac equation at zero energy,
where the transformation parameter for the Darboux-Crum transformations is given by the wave number [24]. In
another application to the one-dimensional Dunkl-Schrödinger equation, the transformation parameter consists
of a constant involving the Dunkl constants [25]. As a result, transformed potentials in the latter reference are
dependent on the stationary energy.

4.2.1. Transformation parameter λ

Our goal in this section is to apply our Darboux-Crum transformation to the polar equation, where the separation
constant λ plays the role of the transformation parameter. Our starting point is Equation (30), where we observe
that after renaming the solution and the variable, this equation matches (4), if we set:

E = λ ,

U(θ) = − (1 + 2ν1 + 2ν2 + 2ν3)2

4 − (r3 − ν3)ν3

cos(θ)2 − 1 − 4m2 − 4(ν1 + ν2)2

4 sin(θ)2 + Vθ(θ) . (47)

Consequently, the Darboux-Crum transformation can be applied to Equation (30). Let us now assume that
ν1, ν2, . . . , νn are transformation functions that solve the following version of Equation (30):

η′′
j (θ) +

[
λj + (1 + 2ν1 + 2ν2 + 2ν3)2

4 + (r3 − ν3)ν3

cos(θ)2

+ 1 − 4m2 − 4(ν1 + ν2)2

4 sin(θ)2 − Vθ(θ)
]

ηj(θ) = 0, j = 1, . . . , n , (48)

where λ1, . . . , λn are transformation parameters, and the potential Vθ is given by (31). Then, substituting into
the Expressions (6) and (7) gives the results:

η̂(θ) = Wη1,η2,...,ηn,η(θ)
Wη1,η2,...,ηn

(θ) , (49)

V̂θ(θ) = Vθ(θ) − 2 d2

dθ2 log [Wη1,η2,...,ηn(θ)] . (50)

Let us point out that due to (48), the function η̂ depends on the transformation parameters λ1, . . . , λn, and
also on the separation constant λ from Equation (30). Furthermore, the associated potential V̂θ also depends
on the transformation parameters λ1, . . . , λn, but it does not depend on λ. The function η̂ and the associated
potential V̂θ are inserted in the transformed counterpart of (30) that reads:

η̂′′(θ) +
[

λ + (1 + 2ν1 + 2ν2 + 2ν3)2

4 + (r3 − ν3)ν3

cos(θ)2

+ 1 − 4m2 − 4(ν1 + ν2)2

4 sin(θ)2 − V̂θ(θ)
]

η̂(θ) = 0 .

In the next step, we must rewrite this equation in the Form (27) that was obtained after the separation of
variables. This form is given by:

Θ̂′′(θ) − 2
[
ν3 tan(θ) −

(
1
2 + ν1 + ν2

)
cot(θ)

]
Θ̂′(θ)

+
[
λ − m2

sin(θ)2 − ν3(1 − r3)
cos(θ)2 − V̂θ(θ)

]
Θ̂(θ) = 0 , (51)

where the functions Θ̂ and V̂θ will be determined now. In order to do so, we have to rewrite both (49) and (50)
in terms of quantities pertaining to Equation (27). The functions η1, η2, . . . , ηn can expressed through solutions
Θ1, Θ2, . . . , Θn of the latter equation by means of the point Transformation (29). We obtain:

Θj(θ) = cos(θ)−ν3 sin(θ)−ν1−ν2− 1
2 ηj(θ), j = 1, 2, . . . , n .
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By using (29) once more for relating η̂ to a new function Θ̂, we obtain from (49):

Θ̂(θ) = cos(θ)−ν3 sin(θ)−ν1−ν2− 1
2 η̂(θ)

= cos(θ)−ν3 sin(θ)−ν1−ν2− 1
2

Wη1,η2,...,ηn,η(θ)
Wη1,η2,...,ηn

(θ) (52)

= WΘ1,Θ2,...,Θn,Θ(θ)
WΘ1,Θ2,...,Θn(θ) .

This is the explicit form of the transformed solution to our polar Equation (51). The associated potential
can be obtained from (50) as follows:

V̂θ(θ) = Vθ(θ) − 2 d2

dθ2

{
log
[

cos(θ)nν3 sin(θ)n(ν1+ν2+ 1
2 )WΘ1,Θ2,...,Θn

(θ)
]}

= Vθ(θ) −
2n
(
ν1 + ν2 + 1

2
)

cos(θ)2 − 2nν3

sin(θ)2 − 2 d2

dθ2 log [WΘ1,Θ2,...,Θn
(θ)] . (53)

We observe that this transformed potential contributes terms of the trigonometric Pöschl-Teller form,
independent of the initial potential Vθ. In summary, the Solution (52) satisfies the transformed polar Equation (51)
with Potential (53). As indicated above, the latter potential, in general, depends on all parameters except
on the transformation parameter λ. This includes the separation constant m2 and the parity constant r3.
Hence, varying these parameters will also change the transformed potential. Since this is not desirable, the
aforementioned parameters must be kept at a fixed value. Recall that this does not hold for λ.

Example: second-order Darboux-Crum transformation. Let us now give an example of a potential
Vϕ, for which the polar Equation (27) is in a solvable form, such that a Darboux-Crum transformation can be
applied. We take the simplest case Vθ = 0, that is, we have our initial equation in the form:

Θ′′(θ) − 2
[
ν3 tan(θ) −

(
1
2 + ν1 + ν2

)
cot(θ)

]
Θ′(θ)

+
[
λ − m2

sin(θ)2 − ν3(1 − r3)
cos(θ)2

]
Θ(θ) = 0 .

We can obtain a particular solution of this equation from our prior calculations. More precisely, this solution
is given by (40) for the settings:

λ = − (1 + 2ν1 + 2ν2 + 2ν3)2

4 +
[
2N + 1 +

√
m2 + (ν1 + ν2)2 + 1

2
√

1 + 4ν3 (ν3 − r3)
]2

, (54)

A =
[
2N + 1 +

√
m2 + (ν1 + ν2)2 + 1

2
√

1 + 4ν3(ν3 − r3)
]2

, (55)

B = 1
4 − m2 − (ν1 + ν2)2 , (56)

C = (r3 − ν3)ν3 . (57)

Now, in order to apply a Darboux-Crum transformation of second order, we must provide two transformation
functions Θ1 and Θ2 that solve our initial equation for transformation parameters λ1 and λ2, given by (54), and
determined by the values of N1 and N2. These values are chosen as:

N1 = 1 N2 = 2 .

By substituting them into (40) along with the Settings (54)–(57), we obtain our transformation functions Θ1
and Θ2. The first of these functions reads:

Θ1(θ) = cos(θ) 1
2 −ν3+ 1

2

√
1+4ν3(ν3−r3) sin(θ)−ν1−ν2+

√
m2+(ν1+ν2)2

×

{
2 + 2

√
m2 + (ν1 + ν2)2 − sin(θ)2

[
4 + 2

√
m2 + (ν1 + ν2)2 +

√
1 + 4ν3(ν3 − r3)

]}
, (58)

we omit the explicit form of the remaining transformation function Θ2 due to its length. Let us now perform the
Darboux-Crum transformation by inserting our transformation functions, and the Solution (40) with (54)–(57)
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into (52) and (53). Since the resulting expressions are very long, we restrict ourselves here to show a particular
case of the solution and the potential that enter in the transformed polar Equation (51). We choose our
parameters as follows:

ν1 = 1 ν2 = 2 ν3 = 3 m = 5 . (59)

Next, we insert them into (52). The evaluation gives the simplest solutions in the form:

Θ̂(θ)|N=0,r3=−1 = 8(2483+426
√

34) cos(θ)3 sin(θ)−1+
√

34

992+156
√

34−4(745+129
√

34) sin(θ)2+(2483+426
√

34) sin(θ)4
,

Θ̂(θ)|N=0,r3=1 = 440(35+6
√

34) cos(θ)3 sin(θ)−1+
√

34

896+148
√

34−4(637+109
√

34) sin(θ)2+55(35+6
√

34) sin(θ)4
.

Graphs of these functions can be found in Figures 3 and 4. Note that the parameter values chosen in the
latter functions comply with the appropriate Conditions (42) and (43), respectively.
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Figure 3. Graphs of odd Solutions (52) for the Settings (59), r3 = −1, and different values of N . The transformation
functions for the Darboux-Crum transformation are obtained from (40) with the Settings (54)–(57), and N1 = 1,
N2 = 2.
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Figure 4. Graphs of even Solutions (52) for the Settings (59), r3 = 1, and different values of N . The transformation
functions for the Darboux-Crum transformation are obtained from (40) with the Settings (54)–(57), and N1 = 1,
N2 = 2.
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Before we conclude this example, let us state a particular case of the transformed potential V̂θ that is
obtained from (53), as described above. Upon substituting the parameter Settings (59) and r3 = −1, we find:

V̂θ(θ) =
{

4
[

− 89 (14609723 + 2505554
√

34) cos(2θ) − 10(53136719 + 9112838
√

34)

× cos(4θ) − 29(1632977 + 280054
√

34) cos(6θ) + 2048(385457 + 66281
√

34)
sin(θ)2

+ 313632(361 + 60
√

34)
cos(θ)2 − 398655716

√
34 − 2327701978

]}
(60)

×
{[

4(497 + 90
√

34) cos(2θ) + (2483 + 426
√

34) cos(4θ) + 231(15 + 2
√

34))2
]}−1

.

The graph of this potential, along with its counterpart for r3 = 1, can be seen in Figure 5.
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Figure 5. Graphs of the Potential (60) and its counterpart for the two admissible values of r3.

4.2.2. Transformation parameter m2

Instead of λ, we can also use the separation constant m2 as a Darboux-Crum transformation parameter. In order
to do so, we must change the form of our equation, so that it matches (4). This requires a point transformation
that changes both the dependent and the independent variable. We set:

θ(y) = 2arccot[exp(iy)] , (61)

η(y) = exp [i(ν1 + ν2)y] [exp(2iy) − 1]ν3

[exp(2iy) + 1]ν1+ν2+ν3
Θ{2arccot[exp(iy)]} , (62)

introducing a new function η. By inserting this point transformation in (27), we obtain our equation as:

η′′(y) +
{

m2 + (ν1 + ν2)2 − λ + (ν1 + ν2 + ν3)(1 + ν1 + ν2 + ν3)
cos(y)2

+ (r3 − ν3)ν3

sin(y)2 + 1
cos(y)2 Vθ{2arccot[exp(iy)]}

}
η(y) = 0 . (63)

Note that the coordinate Change (61) in our point transformation was necessary because in (27) the
separation constant m2 has a nonconstant coefficient that needs to be removed. We observe that Equations (63)
and (4) can now be matched, if we choose:

E = m2 ,

U(y) = −(ν1 + ν2)2 + λ + (ν1 + ν2 + ν3)(1 + ν1 + ν2 + ν3)
cos(y)2

− (r3 − ν3)ν3

sin(y)2 − 1
cos(y)2 Vθ{2arccot[exp(iy)]} .
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Consequently, the Darboux-Crum transformation can be applied to Equation (63). In order to apply this
transformation, we need:

η′′
j (y) +

{
m2

j + (ν1 + ν2)2 − λ + (ν1 + ν2 + ν3)(1 + ν1 + ν2 + ν3)
cos(y)2

+ (r3 − ν3)ν3

sin(y)2 + 1
cos(y)2 Vθ{2arccot[exp(iy)]}

}
ηj(y) = 0 , (64)

where j = 1, . . . , n, the transformation parameters are given by m2
1, . . . , m2

n, and the potential Vθ is provided
by (31). Now, evaluation of (6) and (7) gives:

η̂(y) = Wη1,η2,...,ηn,η(y)
Wη1,η2,...,ηn

(y) , (65)

V̂θ{2arccot[exp(iy)]} = Vθ{2arccot[exp(iy)]} + 2 cos(y)2 d2

dy2 log [Wη1,η2,...,ηn(y)] . (66)

Here, the function η̂ depends on the transformation parameters m2
1, . . . , m2

n, and also on the separation
constant m2 from Equation (63). Furthermore, the associated potential V̂θ also depends on the transformation
parameters m2

1, . . . , m2
n, but it does not depend on m2. The function η̂ and the potential V̂θ are inserted in the

transformed version of (63), which reads:

η̂′′(y) +
{

m2 + (ν1 + ν2)2 − λ + (ν1 + ν2 + ν3)(1 + ν1 + ν2 + ν3)
cos(y)2

+ (r3 − ν3)ν3

sin(y)2 + 1
cos(y)2 V̂θ{2arccot[exp(iy)]}

}
η̂(y) = 0 .

Now we need to revert our point Transformation (61), (62), so that this equation is converted back to the
Form (51). A solution Θ̂ can be found in two steps, the first of which is the implementation of (62). We obtain:

Θ̂{2arccot[exp(iy)]} = [exp(2iy) + 1]ν1+ν2+ν3

exp [i(ν1 + ν2)y] [exp(2iy) − 1]ν3 η̂(y)

= [exp(2iy) + 1]ν1+ν2+ν3

exp [i(ν1 + ν2)y] [exp(2iy) − 1]ν3

[
Wη1,η2,...,ηn,η(y)
Wη1,η2,...,ηn(y)

]
. (67)

In the second step, we invert the coordinate Change (61). Taking into account that:

y(θ) = −i log
[
cot
(

θ

2

)]
,

and defining functions Θ1, Θ2, . . . , Θn by reverting (61), (62) as:

Θj(θ) =
tan

(
θ
2
)ν1+ν2

cos(θ)ν3 sin
(

θ
2
)2ν1+2ν2

ηj

{
−i log

[
cot
(

θ

2

)]}
, j = 1, 2, . . . , n ,

we find, after substitution into (67) and simplification of the Wronskians, that:

Θ̂(θ) = sin(θ)n WΘ1,Θ2,...,Θn,Θ(θ)
WΘ1,Θ2,...,Θn

(θ) . (68)

The remaining task is to rewrite the transformed Potential (66) in terms of the functions Θ1, Θ2, . . . , Θn,
and the coordinate θ. By implementing (61) and (62) in a first step:

V̂θ(θ) = Vθ(θ)

+ 2
sin(θ)2

(
d2

dy2 log
{

exp [i(ν1 + ν2)y] [exp(2iy) − 1]ν3

[exp(2iy) + 1]ν1+ν2+ν3
WΘ1,Θ2,...,Θn

(y)
})

|y=y(θ)

. (69)
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In the next step, we focus on simplifying the second derivative term that we abbreviate as L. By expanding
the logarithm, we find:

L(θ) =
(

d2

dy2 log
{

exp [i(ν1 + ν2)y] [exp(2iy) − 1]ν3

[exp(2iy) + 1]ν1+ν2+ν3
WΘ1,Θ2,...,Θn

(y)
})

|y=y(θ)

=
(

d2

dy2 log
{

exp [i(ν1 + ν2)y] [exp(2iy) − 1]ν3

[exp(2iy) + 1]ν1+ν2+ν3

}
+ d2

dy2 log [WΘ1,Θ2,...,Θn
(y)]

)
|y=y(θ)

. (70)

Now we can evaluate the second derivative in the first term, and change coordinates to θ. We obtain:

L(θ) =
[

ν1 + ν2 + ν3

cos(y)2 − ν3

sin(y)2

]
|y=y(θ)

+
{

d2

dy2 log [WΘ1,Θ2,...,Θn
(y)]

}
|y=y(θ)

= sin(θ)2
[
ν1 + ν2 + ν3

cos(θ)2

]
+
{

d2

dy2 log [WΘ1,Θ2,...,Θn
(y)]

}
|y=y(θ)

.

We proceed by changing the coordinate in our remaining logarithmic term. After rewriting the second
derivative in terms of the variable θ, and applying this derivative, we arrive at:

L(θ) = sin(θ)2
[
ν1 + ν2 + ν3

cos(θ)2

]
−

[
sin(θ)2 d2

dθ2 + 1
2 sin(2 θ) d

dθ

]
log
{

[−i sin(θ)]
n(n−1)

2 WΘ1,Θ2,...,Θn
(θ)
}

= sin(θ)2
[
ν1 + ν2 + ν3

cos(θ)2

]
+ n(n − 1)

2 + sin(θ)2

× d2

dθ2 log [WΘ1,Θ2,...,Θn
(θ)] + n(1 − n)

2 cos(θ)2 d

dθ
log [WΘ1,Θ2,...,Θn

(θ)] .

By combining this result with (69), we obtain our transformed potential in the form:

V̂θ(θ) = Vθ(θ) + 2
[
ν1 + ν2 + ν3

cos(θ)2

]
+ n(n − 1)

sin(θ)2 + 2 d2

dθ2 log [WΘ1,Θ2,...,Θn
(θ)]

+ n(1 − n)cot(θ)2 d

dθ
log [WΘ1,Θ2,...,Θn

(θ)] . (71)

In conclusion, the Function (68) solves our transformed polar Equation (51) for the Potential (71). Recall
that the latter potential generally depends on all parameters except on m2. It is therefore, desirable to keep the
latter parameters at fixed values. As a further comment, let us point out that the transformed potentials, for
the two cases of λ and m2 being the transformation parameters, are entirely different.

5. The azimuthal equation
Similar to the previous case, the azimuthal equation can be linked to trigonometric Pöschl-Teller systems. In
addition to using results on those systems to construct solutions, we will show Darboux-Crum transformations
to be applicable. In contrast to the polar equation, this time there is only one transformation parameter.

5.1. Extended trigonometric Pöschl-Teller systems
We will approach the azimuthal Equation (28) by first converting it in into a form similar to the conventional
Schrödinger form. To do this, we use the point transformation:

Φ(ϕ) = cos(ϕ)−ν1 sin(ϕ)−ν2ξ(ϕ) , (72)

which transforms (28) into:

ξ′′(ϕ) +
[

m2 + (ν1 + ν2)2 + (r1 − ν1)ν1

cos(ϕ)2 + (r2 − ν2)ν2

sin(ϕ)2 − Vϕ(ϕ)
]

ξ(ϕ) = 0 . (73)

Similar to the polar Equation (51), this can be interpreted as a Schrödinger equation for a generalisation
of the trigonometric Pöschl-Teller potential. While the two equations are very similar in this sense, the main
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differences are in the domains and in the presence of two parity parameters in (73). To give a simple example of
a solution to (73), we choose the function Vϕ as:

Vϕ(ϕ) = γ

cos(ϕ)2 , (74)

introducing a real-valued constant γ. By substituting Vϕ into (73), we obtain (73) in a form that matches (4),
provided we choose the parameters A, B, and C as follows:

A = m2 + (ν1 + ν2)2 , (75)
B = (r2 − ν2) ν2 , (76)
C = (r1 − ν1) ν1 − γ . (77)

Furthermore, we will employ the Condition (37) here, which requires that the separation constant m2 is
given by:

m2 = −(ν1 + ν2)2 +
[

1 + 2N + 1
2
√

1 + 4γ + 4ν1(ν1 − r1) + 1
2
√

1 + 4ν2(ν2 − r2)
]2

. (78)

Now, according to (2) and (3), a particular solution of (73) can be written in the form:

ξ(ϕ) = sin(ϕ) 1
2 + 1

2
√

1−4B cos(ϕ) 1
2 + 1

2
√

1−4C
2F1

[
− N,

1
2 +

√
A

2 + K+, 1 +
√

1 − 4B

2 , sin(ϕ)2

]
, (79)

recall that the parameters A, B, C are defined in (75)–(77), where A depends on m2 from (78). In the next step,
we use our point Transformation (72) to build the solution for our azimuthal Equation (28) with (74). The
result reads:

Φ(ϕ) = sin(ϕ)−ν2+ 1
2 + 1

2
√

1−4B cos(ϕ)−ν1+ 1
2 + 1

2
√

1−4C
2F1

[
− N,

1
2 +

√
A

2 + K+, 1 +
√

1 − 4B

2 , sin(ϕ)2

]
. (80)

We now need to find the values of our parity parameters r1 and r2 using the Relations (21), (22), and (24).
Before we do so, it is convenient to find the actions of the reflection operators on the sine and cosine functions.
We have:

R1 sin(ϕ) = sin(ϕ) ,

R1 cos(ϕ) = − cos(ϕ) ,

R2 sin(ϕ) = − sin(ϕ) ,

R2 cos(ϕ) = cos(ϕ) .

Thus, applying these operators to the Solution (80) results in:

R1 Φ(ϕ) = (−1)−ν1+ 1
2 + 1

2
√

1−4CΦ(ϕ) ,

R2 Φ(ϕ) = (−1)−ν2+ 1
2 + 1

2
√

1−4BΦ(ϕ) .

Now, if we combine this with (21) and (22), we obtain conditions for the parity parameters r1 and r2. These
read:

r1 = (−1)−ν1+ 1
2 + 1

2
√

1−4C , (81)

r2 = (−1)−ν2+ 1
2 + 1

2
√

1−4B , (82)

note that the constants B and C are defined in (76) and (77), respectively. The first of these conditions is
satisfied if the exponent equals an even or an odd number, depending on the value of r1. We have the two
conditions:

−ν1 + 1
2 + 1

2
√

1 + 4γ + 4ν1(ν1 − r1) = 2k1 + 1 , (83)

−ν1 + 1
2 + 1

2
√

1 + 4γ + 4ν1(ν1 − r1) = 2k1 , (84)
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where k1 is an integer. If (83) is satisfied, then r1 = −1, meaning that the Solution (80) has odd parity with
respect to the points ϕ = π/2 and ϕ = 3π/2. In the other case that the parameters comply with (84), then
r1 = 1, so that (80) has even parity with respect to the points ϕ = π/2 and ϕ = 3π/2. A similar way of reasoning
can be applied to the second Condition (82). We have:

−ν2 + 1
2 + 1

2
√

1 + 4ν2(ν2 − r2) = 2k2 + 1 , (85)

−ν2 + 1
2 + 1

2
√

1 + 4ν2(ν2 − r2) = 2k2 , (86)

for an integer k2. If (85) is satisfied, then r2 = −1, so that (80) is odd with respect to the origin. Otherwise,
If (86) is true, then r2 = 1, meaning that (80) is even with respect to the origin. Let us show examples of our
Solutions (80) for the following parameter setting:

ν1 = 2 ν2 = −1
2 ν3 = 2 γ = 14 . (87)

Figures 6 and 7 show graphs of the Functions (80) for the parameter Setting (87), and different choices for
the parity parameters r1 and r2.
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Figure 6. Graphs of the Solution (80) for the parameter Settings (87) and r1 = −1, r2 = 1 for different values of N .
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Figure 7. Graphs of the Solution (80) for the parameter Settings (87) and r1 = r2 = 1 for different values of N .

It is important to point out that the parameter settings used in Figures 6 and 7, are compatible with the
Conditions (81) and (82).

5.2. The Darboux-Crum transformation
We will follow an analogous approach as in Section 4.1. There is only one separation constant m2 that
appears in our equation. This separation constant will act as transformation parameter in the Darboux-Crum
transformation. As a first step we see that (73) matches (4) if the following settings are made:

E = m2 ,

U(ϕ) = −(ν1 + ν2)2 − (r1 − ν1)ν1

cos(ϕ)2 − (r2 − ν2)ν2

sin(ϕ)2 + Vϕ(ϕ) . (88)
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Since these settings make our Equations (4) and (73) match, our Darboux-Crum transformation becomes
applicable. Before we construct this transformation, let us observe that (73) can be interpreted as a Schrödinger
equation for an extended trigonometric Pöschl-Teller potential, similar to the rewritten polar Equations (30)
and (63). For our Darboux-Crum transformation, we require transformation functions ξ1, ξ2, . . . , ξn that are
solutions to the following version of Equation (73):

ξ′′
j (ϕ) +

[
m2

j + (ν1 + ν2)2 + (r1 − ν1)ν1

cos(ϕ)2 + (r2 − ν2)ν2

sin(ϕ)2 − Vϕ(ϕ)
]

ξj(ϕ) = 0, j = 1, . . . , n . (89)

Here, the constants m2
1, . . . , m2

n are the transformation parameters, and the potential Vϕ is given by (74).
Evaluation of (6) and (7) then gives:

ξ̂(ϕ) = Wξ1,ξ2,...,ξn,ξ(ϕ)
Wξ1,ξ2,...,ξn(ϕ) , (90)

V̂ϕ(ϕ) = Vϕ(ϕ) − 2 d2

dϕ2 log [Wξ1,ξ2,...,ξn(ϕ)] . (91)

For the sake of clarity, let us point out that the function ξ̂ is dependent on the transformation parameters
m2

1, . . . , m2
n, as well as on the separation constant m2 from (73). The potential V̂ϕ is dependent on the

transformation parameters m2
1, . . . , m2

n, but not on m2. Now, after applying the Darboux-Crum transformation,
these two functions are inserted into the resulting equation as follows:

ξ̂′′(ϕ) +
[

m2 + (ν1 + ν2)2 + (r1 − ν1)ν1

cos(ϕ)2 + (r2 − ν2)ν2

sin(ϕ)2 − V̂ϕ(ϕ)
]

ξ̂(ϕ) = 0 .

We now need to convert this equation into a transformed version of (28) that reads:

Φ̂′′(ϕ) − 2
[
ν1 tan(ϕ) − ν2 cot(ϕ)

]
Φ′(ϕ)

+
[
m2 − ν1(1 − r1)

cos(ϕ)2 − ν2(1 − r2)
sin(ϕ)2 − V̂ϕ(ϕ)

]
Φ̂(ϕ) = 0 . (92)

The solution of this equation can be found from (90) by introducing functions Φ1, Φ2, . . . , Φn through our
point Transformation (72) as:

Φj(ϕ) = cos(ϕ)−ν1 sin(ϕ)−ν2ξj(ϕ), j = 1, 2, . . . , n . (93)

Substitution into (90) gives, after simplification:

Φ̂(ϕ) = WΦ1,Φ2,...,Φn,Φ(ϕ)
WΦ1,Φ2,...,Φn

(ϕ) . (94)

The transformed potential V̂ inserted into Equation (73) is obtained by combining (72) and (91). Substitution
yields:

V̂ϕ(ϕ) = Vϕ(ϕ) − 2 d2

dϕ2 log
[

cos(ϕ)nν1 sin(ϕ)nν2WΦ1,Φ2,...,Φn
(ϕ)
]

= Vϕ(ϕ) + 2n

[
ν1

cos(ϕ)2 + ν2

sin(ϕ)2

]
− 2 d2

dϕ2 log
[
WΦ1,Φ2,...,Φn(ϕ)

]
. (95)

We observe that this potential contributes a term of trigonometric Pöschl-Teller type, independent of its
initial counterpart Vϕ. Since (95) generally depends on all parameters in the Function (88), these parameters
must be assigned fixed values in order not to change the potential. This is not valid for the transformation
parameter m2, since (95) does not depend on it. In summary, the transformed Equation (92) for this potential
is solved by the Function (94).

Example: confluent second-order Darboux-Crum transformation. In this application, we will generate
a solvable case of the azimuthal equation by means of a confluent Darboux-Crum transformation. Our starting
point is Equation (28) for the potential Vϕ = 0. This results in equation:

Φ′′(ϕ) − 2 [ν1 tan(ϕ) − ν2 cot(ϕ)] Φ′(ϕ) +
[
m2 − ν1(1 − r1)

cos(ϕ)2 − ν2(1 − r2)
sin(ϕ)2

]
Φ(ϕ) = 0 . (96)
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In order to perform a confluent Darboux-Crum transformation of second order, we resort to the version of
our equation that is obtained after applying the point Transformation (72). This equation is given by (73) for
Vϕ = 0, that is, we have:

ξ′′(ϕ) +
[

m2 + (ν1 + ν2)2 + (r1 − ν1)ν1

cos(ϕ)2 + (r2 − ν2)ν2

sin(ϕ)2

]
ξ(ϕ) = 0 .

A particular solution is found from (79), where the parameters must be chosen according to (75)–(78) for
γ = 0. This gives:

A =
[
1 + 2N + 1

2
√

1 + 4ν1(ν1 − r1) + 1
2
√

1 + 4ν2(ν2 − r2)
]2

,

B = (r2 − ν2)ν2 ,

C = (r1 − ν1)ν1 , (97)

m2 = −(ν1 + ν2)2 +
[
1 + 2N + 1

2
√

1 + 4ν1(ν1 − r1) + 1
2
√

1 + 4ν2(ν2 − r2)
]2

.

In the next step we must provide two transformation functions ξ1 and ξ2, together with a single transformation
parameter m2

1. This parameter is determined by choosing a value for the constant N in (97). In the present
case, we choose N = N1 = 0, so we can extract the first transformation function from (79). This gives:

ξ1(ϕ) = ξ(ϕ)|N1=0 = cos(ϕ) 1
2 + 1

2

√
1+4ν1(ν1−r1) sin(ϕ) 1

2 + 1
2

√
1+4ν2(ν2−r2) . (98)

The remaining transformation function is a solution of Equation (9) for j = 2 and the present settings. This
equation reads:

ξ′′
2 (ϕ) +

[
m2 + (ν1 + ν2)2 + (r1 − ν1)ν1

cos(ϕ)2 + (r2 − ν2)ν2

sin(ϕ)2

]
ξ2(ϕ) = −ξ1(ϕ) , (99)

recall that m2 and ξ1 are given in (97) and (98), respectively. A solution of (99) can be found by taking the
derivative of ξ with respect to the transformation parameter [26]. Applying the chain rule gives:

ξ2(ϕ) =
[

d

d(m2) ξ(ϕ)
]

|N=N1=0

=
{[

4 + 8N + 2
√

1 + 4ν1(ν1 − r1) + 2
√

1 + 4ν2(ν2 − r2)
]−1

d

dN
ξ(ϕ)

}
|N=N1=0

= 1
4 + 2

√
1 + 4ν1(ν1 − r1) + 2

√
1 + 4ν2(ν2 − r2)

× cos(ϕ) 1
2 + 1

2

√
1+4ν1(ν1−r1) sin(ϕ) 1

2 + 1
2

√
1+4ν2(ν2−r2) (100)

×

{
d

dN
2F1

[
− N, 1 + N + 1

2
√

1 + 4ν1(ν1 − r1) + 1
2
√

1 + 4ν2(ν2 − r2), 1

+ 1
2
√

1 + 4ν2(ν2 − r2), sin(ϕ)2

]}
|N=N1=0

.

We substitute the transformation Functions (98) and (100) into the expressions for the Solution (90), and the
Potential (91), taking into account that n = 2. The results are long and involved, so we refrain from presenting
them in their general form here. Instead, we show specific cases of the solution Φ̂ to our transformed azimuthal
Equation (92), that we compute by means of (93) and (94). Let us make the overall settings:

ν1 = 1 ν2 = 2 N = N1 = 0 . (101)
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We can now demonstrate specific cases of our Solution (94). The two solutions exhibiting the simplest form
are given by:

Φ̂(ϕ)r1=r2=1 =
cos(ϕ)5 sin(ϕ)2

2F1
[
2, 5, 9

2 , sin(ϕ)2]
−3 arcsin[sin(ϕ)]

sin(ϕ)5 + cos(ϕ)
[
−8 + 2

sin(ϕ)2 + 3
sin(ϕ)4

]

Φ̂(ϕ)r1=r2=−1 =
cos(ϕ)8 sin(ϕ)3

2F1
[
2, 7, 11

2 , sin(ϕ)2]
−15 arcsin[sin(ϕ)]

sin(ϕ)7 + cos(ϕ)
[
−112 − 64 cos(2ϕ) + 8

sin(ϕ)2 + 10
sin(ϕ)4 + 15

sin(ϕ)6

] .

Graphs of these solutions and of more general cases are shown in the Figures 8 and 9. Note that for the sake
of brevity, we will not present the explicit conditions for the parity constants r1 and r2.

1 2 3 4 5 6
Φ

-0.4

-0.2

0.2

0.4

F
`
HΦL

N = 3

N = 2

N = 1

Figure 8. Graphs of the Solution (80) for the parameter Settings (101) and r1 = r2 = 1 for different values of N .
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-0.3

-0.2
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0.3

F
`
HΦL

N = 3

N = 2

N = 1

Figure 9. Graphs of the Solution (80) for the parameter Settings (101) and r1 = r2 = −1 for different values of N .

Before we conclude this application, let us present examples of the Potential (95) that is inserted in the
transformed azimuthal Equation (92). Since the transformation Function (100) is not elementary, the potential
cannot be expressed through elementary functions either. Since its general form is very long, we will not show it
here. Instead, we show examples in Figure 10, where we observe that these potentials can be interpreted as
deformed trigonometric Pöschl-Teller interactions. Note that this behaviour is expected due to the form of (95).
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Figure 10. Graphs of the Potential (80) for the parameter Settings (101) and different values of r1 and r2.

6. Concluding remarks
The main observation in this work concerns the close interrelationship between the angular equations associated
with three-dimensional, non-relativistic Dunkl-Schrödinger equations in spherical coordinates that is derived
in Section 3, and one-dimensional trigonometric Pöschl-Teller systems. This interrelationship can be seen
after separating the variables in the three-dimensional equation. As shown in Sections 4.1 and 5.1, a simple
point transformation takes each of the two angular equations resulting from the separation, into the form of
a Schrödinger equation for a trigonometric Pöschl-Teller potential. It is interesting to note here that in the
standard case without the presence of Dunkl operators ν1 = ν2 = ν3 = 0, the two angular Equations (27)
and (28) do not contain a trigonometric Pöschl-Teller potential. More precisely, the polar Equation (27)
maintains a term proportional to an inverse sine function, while there is no trigonometric term in the azimuthal
Equation (28). Returning to the Dunkl scenario, we can find solutions of our angular equations by using known
results on trigonometric Pöschl-Teller systems, as demonstrated in Sections 4.1 and 5.1, respectively. Since
the latter angular equations in their versions (30) and (73) match the Schrödinger form, the Darboux-Crum
transformation becomes applicable to them. As the examples in Sections 4.2 and 5.2 illustrate, the application
of the Darboux-Crum transformation allows to construct solvable angular equations within the Dunkl formalism
by using results on trigonometric Pöschl-Teller systems and their generalisations. As mentioned above, the
Darboux-Crum transformation generates potentials that will generally depend on all parameters in the respective
angular equation except for the transformation parameter. Since this behaviour is undesirable, it is necessary to
assign fixed values to all these parameters before performing the Darboux-Crum transformation, which imposes
a strong constraint on the transformed system.
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