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Rice is the staple food for approximately half of the world’s population. Seed

vigour has a crucial impact on the yield, which can be evaluated by germination

rate, vigor index and etc. Existing seed vigour testing methods heavily rely on

manual inspections that are destructive, time-consuming, and labor-intensive.

To address the drawbacks of existing rice seed vigour testing, we proposed a

multispectral image-based non-destructive seed germination testing approach.

Specifically, we collected multispectral data in 19 wavebands for six rice varieties.

Furthermore, we designed an end-to-end pipeline, denoted as MsiFormer

(MisFormer cod3e will be available at https://github.com/LiaoYun0x0/

MisFormer) by integrating a Yolo-based object detector (trained Yolo v5) and a

vision transformer-based vigour testing model, which effectively improved the

automation and efficiency of existing techniques. In order to objectively evaluate

the performance of the proposed method in this paper, we conduct a

comparison between MisFormer and other 3 deep learning methods. The

results showed that, MisFormer performed much better with the accuracy of

94.17%, which was 2.5%-18.34% higher than the other 3 deep learning methods.

Besides MsiFormer, possibilities of CIELab mediated image analysis of TTC

(tetrazolium chloride) staining in rice seed viability and nCDA (normalized

canonical discriminant analysis) in rice seed vigour were also discussed, where

CIELab L* of TTC staining were negatively correlated with vigor index and

germination rate, with Pearson’s correlation coefficient of -0.9874, -0.9802

respectively, and CIELab A* of TTC staining were and positively correlated with

vigor index and germination rate, with Pearson’s correlation coefficient of

0.9624, 0.9544 respectively, and CIELab A* of nCDA had Pearson’s correlation

coefficient of -0.8866 and -0.9340 with vigor index and germination rate,

respectively. Besides testing methods, vigour results within and among variety

(ies) showed that, there were great variations among the 6 rice varieties, and

mean coefficient of variation (CV) of vigor index of individual seed within a variety

reached 64.87%, revealing the high risk of conventional methods in random

sampling. Vigour variations had close relationship with wavelengths of 780 nm-

970 nm, indicating their value in future research.
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1 Introduction

Rice (Oryza sativa L.), the staple food consumed by about half

of the world’s population, is of great importance due to its various

nutrients and caloric contribution (Chen et al., 2022), as well as its

model plant role in monocot genetics (Flavell, 2009). In China, rice

yield account for 40% of total grain output, where planting area of

hybrid rice has exceeded 50% of rice planting (Luo, 2021). Seed

vigour is the sum of those properties that determine the activity and

performance of seed lots of acceptable germination in a wide range

of environments. Growing concerns about improving rice seed

vigour has been observed over the past few decades since rice

production becomes mechanized, with direct sowing replacing

manual transplanting (Liang et al., 2022). Furthermore, seed

vigour should receive the utmost attention in order to address

issues with climate change and land depletion because it can ensure

rapid and uniform germination and subsequent seedling

development to survive under the harsh environments, and

increase productivity of arable lands (Havé et al., 2017; Kishor

et al., 2021). Seed vigour deserves more priority than investments

on fertilizers, pesticides and other inputs since it is the first step in

crop surviving and has impact on yield and field management.

However, seed vigour is less mentioned compared with disease

control, cultivation management, etc.

Seed vigour is a comprehensive concept, and it has tight

connection with the potential of seed germination and field

performance (Sun et al., 2007; Baalbaki, 2009), and is generally

explained via germination rate, vigor index and etc. Germination

test and seedling growth test are still used as the official method for

evaluating seed vigour in most countries which are based on

random sampling (small sampling representing batches or bulks

of seeds) (Agelet et al., 2012). Seed viability (germination capacity)

was defined as the percentage of germinated seeds (Men et al.,

2017), and generally tested by tetrazolium chloride (TTC) staining.

Generally, the seed vigour high, its viability is also high. TTC

staining has been proven its efficiency in assessment of seed

viability of castor bean seeds (Gaspar-Oliveira et al., 2010;

Diantina et al., 2022). However, the quantitative correlation

between intensity of TTC staining and seed viability is unknown.

Phenomics is increasingly applied in seed industry (Fan et al.,

2023). Multispectral imaging (MSI) is an emerging technology that

integrates imaging and spectroscopy to obtain both spatial and

spectral information of the target objects simultaneously

(Mastrangelo et al., 2019; França-Silva et al., 2020). MSI can

provide information of chemical composition, and phenotypic

features (texture, color, shape, size) based on reflected and

absorbed light information of interior and surface materials of

seeds (Xia et al., 2019; ElMasry et al., 2019a; Mortensen et al.,

2021). Since sample pretreatments are not a necessity, MSIs provide

the great potential for nondestructive and straightforward

measurement in a rapid and robust manner. MSI was initially

used to screen transgenic rice seeds (Liu et al., 2014) and

discriminate rice varieties (Liu et al., 2016). Currently, this

technology has been increasingly promising, e.g. detection of

physiological and physical properties of seeds of peanut (Oliveira
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et al., 2022), soybean (Silva et al., 2021), tomato and carrot (Galletti

et al., 2020), identifying of hard and soft seeds of six legume species

(Hu et al., 2020), discrimination of different aged and germinated

seeds of cowpea (ElMasry et al., 2019b), assessment of seed viability

of castor beans (Olesen et al., 2015). Compared with other cash

crops, seed vigour is less discussed in rice.

MSI technology in seed testing usually involves multiple steps:

sample preparation, device calibration, image and data acquisition,

ROI (regions of interest) segmentation, feature extraction, analysis

and modelling (Mortensen et al., 2021). For practice purpose, seeds

are typically photographed in bulk instead of single seed. Individual

seed testing is in great favor of accuracy of the whole sample and

removing of unqualified seeds (Li et al., 2018; ElMasry et al., 2019a).

Traditional ROI segmentation is done by hand or with the aid of

cluster algorithms, which is time-consuming, or dependent on

threshold setting. Effective ROI segmentations are few reported

(Li et al., 2018; ElMasry et al., 2019a). In the stage of modelling,

linear discriminant analysis (LDA), artificial neural network

(ANN), support vector machine (SVM) and least squares

discriminant analysis (PLS-DA) are usually employed (Xia et al.,

2019; ElMasry et al., 2019a; Mortensen et al., 2021). Along with the

development of deep learning, more sophisticated algorithms are

expected to enhance prediction accuracy of the models.

In our study, research was carried out to reveal the possibility

MSI technology in rice seed vigour testing. Six rice varieties were

used and treated with 0-, 5-, 10- and 20-day accelerated ageing to

generate vigour gradient artificially. Multispectral images and

corresponding data of rice seeds were acquired taking advantage

of the 19 wavelengths of Videometer Lab4™ instrument. Dataset

was constructed based on ROI segmentation, data augmentation

and data merging. Taking the data of germination rate of the 6 rice

varieties as training and testing samples, a new deep learning

network, i.e. prediction model was developed, which was

combining residual convolutional structure and Transformer.

Performance of our prediction model was evaluated compared

with some classical deep learning methods. Finally, MsiFormer

was proposed in our study for the purpose of germination detecting

of rice seeds. Besides MsiFormer, this paper also revealed the

possibility of CIELab-mediated analysis of TTC staining images

in viability testing and nCDA (normalized canonical discriminant

analysis) images in vigour testing of rice seeds. Vigour variations

and their correlations with reflectance features and morphological

features were investigated as well.
2 Materials and methods

2.1 Materials

Totally 6 varieties were used in our study, which were from ‘Rice

Diversity Panel’ (RDP) established by Genetic stocks Oryza (GSOR)

of Ministry of Agriculture of the U.S.A (McCouch et al., 2016) and

were propagated in Yunnan in 2020. Among the 6 varieties, 3

varieties belong to japonica subgroup, 1 variety belongs to indica

and 1 aus rice (Table 1).
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2.2 Accelerated ageing

Accelerated ageing was adopted to generate vigour gradients

artificially. Seeds of each variety were placed smoothly in one layer

in sealing bags and incubated in 42°C water bath for 5 days, 10 days

and 20 days. After accelerated ageing, seeds were incubated at 25°C

for 1 week before image collection. (Baek et al., 2019)
2.3 Multispectral image analysis on
seed vigour

2.3.1 Pipeline for fully automatic seed
germination prediction

In order to efficiently perform end-to-end non-destructive seed

germination detection, a pipeline as shown in Figure 1 was

proposed. Firstly, the seed images were collected through

Videometer Lab4™ for data acquisition, which can obtained a

large number of multispectral images. Secondly, the object detection

of image data was performed by Yolo v5, and the ROI segmentation

of individual seed was implemented. Then, the extracted

multispectral image of each seed was input into the designed

MsiFormer for predicting germination. Finally, the final

germination prediction results of individual seeds were obtained

by MsiFormer.

2.3.2 Image and data acquisition
Raw multispectral images were captured by a Videometer

Lab4™ instrument (Videometer A/S, Herlev, Denmark), which

consists of 19 wavelengths (365, 405, 430, 450, 470, 490, 515, 540,

570, 590, 630, 645, 660, 690, 780, 850, 880, 890 and 970 nm).

Videometer Lab4™ consists of a 5 mega pixel CCD camera,

mounted inside the top of the integrating sphere, coated with

highly white and diffusing paint and illumination by narrowband

high-power LED placed at the rim, and thereby ensures uniform

diffuse lighting, and minimizes shadows or specular reflection.

Before capturing images, calibration was conducted using 3 discs,

i.e. the bright disc for reflection calibration, the dark disc for

background calibration and the dotted disc for aligning

calibration of geometric pixel position. Light configuration was

also calibrated to optimize the intensity at each wavelength. In ‘light

setup’, 100% reflectance was selected in our study.
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For each acquisition, 50 seeds were placed evenly in a 9-cm glass

petri dish, which were then placed at the bottom of the integrating

sphere. Then 20 high resolution multispectral images of 2192 ×

2192 pixels were captured (19 spectral images with different

wavelengths and 1 image in RGB form) within 5-10 seconds. Six

varieties were applied for multispectral image analysis, and for each

variety, 200 seeds were used.

Besides images, corresponding data were also obtained,

including reflectance features and morphological features, e.g.

area, length, width, ratio width/length, compactness circle,

compactness ellipse, betashape a, betashape b, vertical skewness,

CIELab L*, CIELab A*, CIELab B*, saturat ion, hue,

vertical orientation.

2.3.3 ROI segmentation
In the proposed pipeline, Yolo v5 was used to segment the

pictures of each individual seed. Yolo v5 is a very effective deep

learning-based object detection algorithm. It can automatically

identify the categories and locations of different objects in the

image, and label the bounding box of each object accurately.

In order to train Yolo v5, 240 rice seeds were collected from

each of the six varieties, namely CY-7, CY-80, CY-150, CY-203, CY-

229, and CY-256. After accelerated aging processing, multispectral

images were taken respectively.

Then the above images were manually annotated with the

bounding boxes of the seeds. We labeled 6 RGB images without

aging. Each image contained 50 seeds, so we labeled 300 samples in

total. Finally, transfer learning was performed based on Yolo v5.

Afterwards, the IOU loss coefficient was set to be 0.05 and the CLS

loss coefficient to be 0.5. After 5 cycles of training, the model could

accurately detect the bounding box of the seed in the petri dish.

2.3.4 MsiFormer
2.3.4.1 Dataset for germination prediction

Based on the trained Yolo v5 model, 24,000 seed images (6

varieties, 200 seeds for each variety, and 20 images for each seed)

were obtained. Finally, the uniform sampling strategy was used to

obtain 100 germinated seed samples and 100 non-germinated seed

samples from the samples uniformly. 20000 images (1000 seeds)

were selected for training and 4000 images (200 seeds) for testing.

Data augmentation was applied for dataset construction

(Figure 2). After ROI segmentation, images of individual seed
FIGURE 1

The pipeline for fully automatic seed germination prediction.
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were rotated, mirrored and flipped, for the purpose of enriching the

training data and improving the learning ability of the algorithm for

complex data. Finally, images were resized to 256*256, and channels

of RGB image and 19 spectral images were merged to generate 22

channels of multi-channel data.

2.3.4.2 Modelling for germination prediction

A new deep learning network (MsiFormer) combining residual

convolutional structure and Transformer for germination

prediction was proposed in our study.

According to Table 2, the network accepted images of size (256,

256, 22) and outputs features of size (8, 8, 2048) from layers 0 to 4 of

the designed residual network structure. The global features of

images were further learned by the self-attention module of the

Transformer, and features of size (1, 1, 2048) were output. The

residual block of our designed deep residual network used skip

connections, which relieved the problem of gradient disappearance

brought by increasing depth in deep neural networks, and improved

the accuracy by increasing a comparable depth. Self-attention was

used in our vision Transformer module to make each pixel related

to other pixels, which greatly enhanced their correlation with

seed germination.

Figure 3 briefly showed the architecture of the neural network

used for germination prediction purposes. The input to the deep

learning model was an image with height of 256, width of 256, and

channels of 22, while the output was a feature map with height of 1,

width of 1, and channels of 2048 (Figure 3). Our deep learning
Frontiers in Plant Science 04
backbone network adopted the idea of combining residual structure

and Transformer. The residual structure was initially used to design

five large residual convolution layers to perform residual

convolution operation on the feature map and learn the feature

information of the seed. The skip connection of residual structure

was used in each convolutional layer, which greatly reduced the loss

of details of features and solved the problem of gradient

disappearance and gradient explosion of convolutional networks.

Feature maps with length 8, width 8 and number of channels

2048 were output from the final convolutional layer. A “self-

attention mechanism” was used to design a Transformer

architecture, which greatly improved the relevance of each feature

information in the seed feature map. The designed architecture used

five self-attention layers. Unlike convolutional neural networks,

Transformers did not change the size and number of channels of

the data, but directly extracted features through global attention.

Different from the traditional transformer, linear attention

(Katharopoulos et al., 2020) was used to replace dot-product

attention, where the dot-product attention used an exponential

kernel and the linear attention used an alternative kernel function

sim(Q,K) = j(Q) · j(K)T , w h e r e j( · ) = elu( · ) + 1. L i n e a r

attention can reduce the computational complexity from O(N2)

to O(N), which greatly improved the operation speed of the model.

Afterwards, the size of the output data and the number of channels

were still 8*8*2048. With the Transformer structure, the size of the

feature map was further reduced and the number of channels was

unchanged. The final output was a feature map of (1, 1, 2048).
TABLE 2 Description on deep convolutional networks stage.

Layer Layer Description Output Tensor (h*w*n)

Input Input image patch 256*256*22

Stage 0 (CNN) Conv(3*3), stride(2), padding(1)
Conv(3*3), stride(2), padding(1)

64*64*64

Stage 1 (CNN) Conv(3*3), stride(1) 64*64*256

Stage 2 (CNN) Conv(3*3), stride(2), padding(1) 32*32*512

Stage 3 (CNN) Conv(3*3), stride(2), padding(1) 16*16*1024

Stage 4 (CNN) Conv(3*3), stride(2), padding(1) 8*8*2048

Transformer Self-attention 8*8*2048

Output Conv(8*8), stride(1) 1*1*2048
"*" means multiplication.
TABLE 1 Information of the 6 rice varieties.

Code Variety Name Subpopulation Country of origin

CY-7 JHONA 26 aus Pakistan

CY-80 KALIBORO::IRGC77201-1 NA Bangladesh

CY-150 BOTRA FOTSY::IRGC77840-1 tropical-japonica Madagascar

CY-203 WU KE NUO::IRGC59990-1 temperate-japonica China

CY-229 JOALBHANGA 499::IRGC6560-1 indica Bangladesh

CY-256 KYEEMA::GERVEX 1656-C1 tropical-japonica Australia
NA: it was unclear which subgroup the variety belongs to.
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The feature maps generated by the deep learning model were

output to the fully connected layer. All the previously extracted

features were integrated and classified by the cross-entropy

function. The softmax function was first used to output the

probabilities of germinant and non-germinant seeds with values
Frontiers in Plant Science 05
of ‘0’ and ‘1’, respectively. When calculating the final loss of model

sprouting, cross-entropy loss function was designed to evaluate the

accuracy of softmax to further calculate the logarithmic loss. N was

the number of samples; yi presented the label of the ground truth of

the sample i, i.e. 1 for positive class and 0 for negative class; p
FIGURE 3

Architecture of MisFromer used in germination prediction. "*" means multiplication.
FIGURE 2

Illustration of the dataset construction.
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denoted the probability that sample i was predicted to be positive.

L =
1
NoiLi =

1
Noi½yi · log (pi) + (1 − yi) · log(1 − pi)� (1)
2.4 Biological analysis on seed vigour

2.4.1 Conventional seed vigour testing
Seed vigour test was conducted according to the GB/T 3543.4-

1995 (National Standards of P. R. China, 1995) to discriminate the

viable seeds from the non-viable seeds. After multispectral imaging,

seeds were transferred in sequence to another dish lined with 2

pieces of wet sterilized filter paper, and incubated for 10 days in

growth chamber (28°C at day and 25°C at night with a 14-h/10-h

light/dark photoperiod). Germinated seeds and corresponding

germination time were individually recorded everyday based on

the standard of root length ≥ 2 mm. On the 5th day, shoot lengths of

each seed were measured, and vigor index and germination rate

were calculated according to Song method (Song et al., 2015).
2.4.2 Tetrazolium chloride staining
After accelerate aging, rice seeds (CY-7, CY-80, CY-150, CY-

203, CY-229, CY-256) were hulled and soaked in sterile water, and

then incubated at 25°C dark condition for 16 h. After water on the

seed surface was removed with filter paper, seeds were stained with

1% TTC for 3 h, and washed with PBS buffer (pH 7.0) for 3 times

(Olesen et al., 2015; National Standards of P. R. China, 2017; Chen

et al., 2021). Seeds were cut in half lengthways, and the embryo

staining was observed, where red embryos indicated viable seeds.

Staining percentages were calculated based on the stained seeds.

There were 3 replicates for each treatment, and 30 seeds for

each replicate.

To determine the quantitative correlation between staining

intensity of each seed and corresponding seed viability, CY-150

was used. After staining and cutting, the stained embryos were

observed and photographed using stereoscope (Leica, M205FC). To

determine the staining intensity and staining area, images were

analyzed by our software with independent intellectual property

rights (Liu, 2022), which can do the quantitative analysis on color

via color space conversion from RGB to CIELab.
2.5 Statistic analysis

To analyze the correlation between seed vigour and

multispectral Imaging, software packages of python and R

language (version 4.2.1) was applied, including nCDA, tidyverse,

ggplot2, WGCNA, ggsci, etc.

To evaluate the performance of our modelling, four types of

metrics were applied, including True Positives (TP, prediction is

positive and correct), False Positives (FP, prediction is positive and

wrong), True Negative (TN, prediction is negative and correct) and

False Negative (FN, prediction is negative and wrong). Based on the

4 types of metrics, Accuracy (ACC), Precision, True Positive Rate
Frontiers in Plant Science 06
(TPR), False Positive Rate (FPR), True Negative Rate (TNR), False

Negative Rate (FNR) were also used for further evaluation.

3 Results

3.1 Seed vigour testing based on
conventional methods

Figure 4 showed that, seed vigour of the 6 rice varieties were

generally dropping, including germination rate, vigor index and

TTC staining. There were significantly positive correlations between

germination rate and vigor index (Pearson’s correlation coefficient:

0.9101), between germination rate and TTC staining (Pearson’s

correlation coefficient: 0.8929) and between vigor index and TTC

staining (Pearson’s correlation coefficient: 0.8170). Besides the

general dropping trend, there were also variations within and

among the 6 varieties. The mean coefficient of variation (CV) of

germination rate and vigor index of individual seed of the 6 varieties

were 11.18% and 64.87%, respectively, indicating the high risk in

seed vigour testing via small sampling representing batches or bulks

of seeds.

As for variety, CY-80 seeds kept the highest vigour under 0-, 5-

or 10-day accelerated ageing (Figure 4); CY-80, CY-7, CY-150, CY-

256 and CY-229 dropped their vigour much less after 10-day

accelerated ageing than those after 20-day accelerate ageing; CY-

203 had obviously dropping vigour after 10-day accelerated ageing

compared with those after 20-day accelerated ageing (Figure 4).

Therefore, the 4 types of accelerated ageing had different impact on

the 6 varieties, as well as on individual seed within the variety.

Comparison among the results of germination rate, vigor index

and TTC staining showed that, germination rate of the 6 varieties

were high (after 0- or 5-day accelerated ageing) and low (after 20-

day accelerated ageing) as a whole, with little difference (Figures 4A,

D), while vigor index of the 6 varieties showed great difference after

0-, 5- and 10-day accelerated ageing, with the most obvious

difference after 10-day accelerated ageing (Figures 4B, E),

indicating vigor index had more potential in distinguishing

different viable seeds in early stages, which was in correspondence

with the fact that seeds with germination power may lose the

capability of growing (Corbineau et al., 2010; Olesen et al., 2015).

It was interesting to note that, CY-203 had low germination rate

(10%) and vigor index (0.0164) after 10-day accelerated ageing, but

moderately high TTC staining (61.11%), and similar inconformity

was also found in vigor index (0) and TTC staining (58.73%) of CY-

7 after 20-day accelerated ageing. The reasons may be that, the

stained cells had no responsibility to or had lost the capability to

germinate or grow despite their ability to respire.
3.2 Seed vigour testing based on RGB
imaging analysis

To further explore the correlation between vigor index (or

germination rate) and TTC staining, RGB image analysis of

staining of seed embryo was conducted. Figure 5 illustrated that,
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the intensity of TTC staining became weak gradually (Figure 5).

CIELab values of TTC staining had significant correlation with

vigor index, and germination rate as well, where CIELab L* was

negatively correlated with vigor index and germination rate, with

Pearson’s correlation coefficient of -0.9874, -0.9802 respectively,

and CIELab A* was positively correlated with vigor index and
Frontiers in Plant Science 07
germination rate, with Pearson’s correlation coefficient of 0.9624,

0.9544 respectively, (Figure 6A), indicating the potential of CIELab

analysis of TTC staining images in the testing of seed viability.

Furthermore, according to our results, TTC staining was always

weakening from inside to outside, rather than weakening as a whole,

indicating cell ageing of scutellum may contribute little to viability
A B

D E F

C

FIGURE 5

TTC staining of rice variety CY-150 after accelerated ageing. (A): structure diagram of embryo of rice seed after TTC staining; (B–F): indication of
intensity and distribution of TTC staining of the whole embryo.
A B

D E F

C

FIGURE 4

Germination rate (A, D), vigor index (B, E) and TTC staining (C, F) of 6 rice varieties after treatments of 0-, 5- 10- and 20-day accelerated ageing).
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loss, while ageing of hypocotyl and radicle may play a major role.

Since staining time in our study was ensured, above weakening

features in intensity and distribution revealed the cell ageing of

individual seed was unsynchronous.

Besides TTC staining, correlation between vigor index of

individual seed and morphological features was also analyzed.

Figure 6B indicated that, CIELab L* and CIELab A* had negative

correlation with vigor index, with Pearson’s correlation coefficient

of -0.1513 and -0.2756, respectively, at the level of P<0.001. Since

the correlation coefficient were not very high and besides, instead of

natural aging, heating (42°C) was used for accelerated ageing

purpose in our study, whether heating made the hull color

changed was unknown. Therefore, above correlation between

external color change and vigour difference inside need to be

further explored.
Frontiers in Plant Science 08
3.3 Seed vigour testing based on
multispectral imaging analysis

According to Figure 7, nCDA was able to distinguish the 4

groups of seeds with different ageing duration into blue, green,

yellow and red as a whole, which was in general correspondence

with their vigour results. The ability of nCDA in global assessment

of seed vigour was also reported in researches of peanut, castor, et al.

(Olesen et al., 2015; Oliveira et al., 2022).

Besides global assessment, CIELab values of nCDA were all

negatively correlated with vigor index and germination rate, where

CIELab A* had Pearson’s correlation coefficient of -0.8866 and

-0.9340 with vigor index and germination rate, respectively

(Figure 7C), also revealing the potential of CIELab analysis of

nCDA image in the testing of seed vigour.
A

B

C

FIGURE 7

Overview of seeds of CY-256 after 0-, 5- 10- and 20-day accelerated ageing. (A): RGB image; (B): transformed image by nCDA (normalized
canonical discriminant analysis); (C): correlation between CIELab L*, CIELab A*, CIELab B* of nCDA images and vigor index, germination rate.
A B

FIGURE 6

Correlation between vigor index and TTC staining (A) as well as morphological features (B). (A): after accelerated ageing and TTC staining, correlation
between vigor index of CY-150 and CIELab L*, CIELab A*, CIELab B* of staining images was concluded; (B): after accelerated ageing, correlation between
vigor index of the 6 rice varieties and the 15 morphological features was analyzed. *, **, ***: significant correlation with p<0.05, p<0.01, p<0.001, respectively.
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The spectral reflection results showed that, there was little

variation among different types of accelerated ageing in lower

wavelength (Figure 8A), while the variation became obvious when

it came to higher wavelength (from 780 nm to 970 nm, Figure 8B).

Compared with non-aged seeds, seeds with accelerated ageing had

higher reflection intensity (Figures 8A, B), which were in

accordance with previously reported researches (ElMasry et al.,

2019b). Meanwhile, correlation between vigor index and spectra

also illustrated their significantly negative correlation, where the

Pearson’s correlation coefficient were from -0.2523 to -0.2994 in

wavelength from 780 nm to 970 nm, and much higher than those of

lower wavelength (Pearson’s correlation coefficient: from -0.1411 to

-0.2267) (Figure 8C). Therefore, 780 nm - 970 nm may be the

feature spectrum for seed vigour. Since 780 nm - 970 nm has close

relationship with fat (Song et al., 2015; Sendin et al., 2018), further

researches on material composition and gene expression

are required.

Four types of metrics were applied in our study for the purpose

of evaluating the capability of our modelling in germination

prediction, including TP, FP, TN, FN, and based on which, ACC,

Precision, TPR (also knwon as recall), FPR, TNR and FNR were also

used for further evaluation.

 ACC =  
TP + TN

TP + TN + FP + FN
(2)

  Precision =
TP

TP + FP
(3)

 TPR =
TP

TP + FN
(4)

 FPR =
FP

FP + TN
(5)

 TNR =
TN

TN + FP
(6)
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 FNR =
FN

FN + TP
(7)

Based on the metrics mentioned above, the MsiFormer

proposed in our study was evaluated in comparison with several

excellent deep learning methods, e.g. ResNet (He et al., 2016),

DenseNet (Huang et al., 2017) and EfficientNet (Tan and Le,

2019). ResNet (He et al., 2016) is a convolutional neural network

and has good performance in image classification and object

recognition. ResNet was designed with many residual blocks that

used skip connections to improve accuracy by adding considerable

depth, alleviating the problems of gradient disappearance and

gradient explosion caused by increasing depth in deep neural

networks. DenseNet (Huang et al., 2017) is a densely connected

convolutional network which connects each layer to other layers in

a feed-forward fashion, where the input of each layer comes from

the output of all previous layers. DenseNet reduces the number of

parameters and enhances the transfer and reuse of features, and

performs well in image classification, object detection, and image

generation. EfficientNet (Tan and Le, 2019) is a deep learning

method and uses the web search technique NAS to increase the

resolution, depth and width of the network simultaneously for

better results. EfficientNet is also a general architecture for

computer vision that could handle multiple vision tasks including

image classification. Based on special design (Mentioned in ‘2.

Materials and Methods’), MsiFormer can classify multispectral

images containing more channels (22 channels), while ResNet,

DenseNet and EfficientNet can only classify RGB images with

3 channels.

According to Table 3, MsiFormer surpassed other methods in

all evaluation metrics, revealing the great efficiency of our deep

learning architecture.

As shown in Figure 9, the ROC curve comparison of different

methods was plotted, where TPR and FPR were taken as ordinate

and abscissa, respectively. Generally, the closer the ROC curve is to

the top left, the higher the accuracy; the higher the AUC value

(AUC: the area under curve, or the area under the ROC curve), the

better the prediction ability of the method. Compared with other
A B C

FIGURE 8

Mean reflectance spectra (from 365 nm to 970 nm) of the 6 rice varieties after 0-, 5-, 10- and 20-day accelerated ageing (A), mean reflectance spectra
(from 780 nm to 970 nm) (B) and correlation between vigor index of individual seed and spectra (C) ***: significant correlation with p<0.001..
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methods, MsiFormer had a better ROC curve, and higher AUC

value as well. Therefore, MsiFormer is robust in predicting the

germination of seeds individually, and germination rate of a given

variety can be calculated accordingly.
4 Discussion

Rice is a very important food crop. In recent years, rice seed

vigour raises increasing concerns due to the growing application of

hybrid rice and direct sowing, along with environmental

deteriorating and arable land decreasing. However, rice seed

vigour is mainly tested with the aid of conventional methods,

including visual detecting via germination rate and vigor index.

Conventional testing methods require intricate procedures and

skilled staff, which are sample-destructive, labor-intensive and time-

consuming (Baek et al., 2019; Xia et al., 2019). The importance of

developing new technologies for seed vigour determination is

recognized by both the International Seed Testing Association

(ISTA) and Association of Official Seed Analysts (AOSA) (Boelt

et al., 2018). In our study, new testing methods based on computer

vision were proposed, including CIELab-mediated image analysis of

TTC staining and nCDA, and particularly, MsiFormer-based MSI

techniques. Compared with conventional methods, our new

methods can reduce human interference and subjectivity, and

thus, enhancing the automation and accuracy.

Our MSI technique, with the integration of Yolo v5 and

MsiFormer, was developed in our study. Compared with SVM,
Frontiers in Plant Science 10
ANN, etc., our MSI technique can improve automation with little

pretreatment, including manual threshold setting, extraction of

feature spectrum, etc. Based on our MSI technique, ROI

segmentation can be implemented in high efficiency, and then

seeds with no germinating ability can be screened out from the

sound ones. Since conventional testing of rice seed vigour is based

on single seed and adopt the strategy of small sampling representing

the overall batches or bulks of seeds, it is not only tedious and time-

consuming, but also neglects variation among individual seeds.

According to our results, mean coefficient of variation (CV) of vigor

index of individual seed reached 64.87%. Therefore, development of

on-site seed screening to detect the variations among seed lots and

among individual seeds within a seed lot will be in great favor of

improving the accuracy of rice seed vigour testing, and providing

convenience for seed production and processing. Besides ROI

segmentation, our MsiFormer also offers a new prediction model

for germination prediction with good accuracy of 94.17%, which is

better than other deep learning methods. Since our model is to

predict whether rice seeds will germinate or not and seed ageing is a

continuous process, further research on quantitative discrimination

in rice seed vigour is expected.

Most MSI technologies were dependent on prediction

modelling and multispectral images. In our study, CIELab-

mediated image analysis of TTC staining and nCDA were

proposed as other options in case that prediction modelling and

multispectral images are unavailable.

5 Conclusion
Our study further revealed the great demand of automated and

accurate methods in rice seed vigour testing, and offered new

computer vision-based methods accordingly, which can reduce

human interference and subjectivity.
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