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The abnormal behavior of end-users is one of the main causes of abnormal line
loss in distribution networks. The integration of a large amount of distributed
renewable energy into a low-voltage distribution network (LVDN) complicates line
loss analysis. Traceability analysis for abnormal line loss aims to identify the specific
end-user responsible for the anomaly in line loss. This paper proposes, for LVDNs
with incomplete topology and line parameters, a practical traceability analysis
approach using a data-driven power flowmodel. A data-driven power flowmodel
based on a neural network is first established to capture the power flow mapping
relationship without topology and line parameter information. A backpropagation
algorithm is then presented to correct the actual power consumption data
according to the measured voltage data. By comparing actual power
consumption data with measured power data, users with abnormal behavior
can be accurately identified and tracked. Finally, the effectiveness of the
proposed approach is verified by actual data.
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1 Introduction

A low-voltage distribution network (LVDN) is a terminal power grid that serves as a
crucial component in delivering electricity to end-users (Li et al., 2021). With the increasing
integration of distributed renewable energy resources (Xu et al., 2022) such as distributed
photovoltaic energy and wind energy, the traditional consumption model of LVDNs has
changed (Dou et al., 2023). The emergence of “prosumers,” who can both consume and
produce electricity, has transformed the dynamics of power flow in the distribution network
(Zhao et al., 2020). This bidirectional power flow will make distribution network line loss
analysis more complex (Luo et al., 2020).

“Line loss” refers to energy loss during the transmission and distribution of electrical
power (Zhang et al., 2022) and is an important indicator of the economical operation of
LVDN. The management of abnormal line loss is crucial for improving the efficiency and
economy of the power system (Enshaee et al., 2019). Abnormal line loss can result from
factors such as inaccurate metering, power theft, and other user behaviors, leading to energy
wastage and economic loss (Kong et al., 2021). Traceability analysis for abnormal line loss
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aims to identify the users causing these losses. By pinpointing the
sources of line loss anomalies, targeted measures can be
implemented to address and reduce these losses, ultimately
improving the overall economy of power grid operation (Hu
et al., 2022).

At present, analysis methods for abnormal line loss in LVDNs
can be divided into three categories: state estimation, game theory,
and data-driven. The first is based on state estimation (Xiao et al.,
2018; Chen et al., 2019) and uses random matrix theory and other
methods to estimate the LVDN state. It identifies abnormal line loss
by comparing the state estimate results with the measured values.
State estimation relies too much on the topology of the distribution
network and the accuracy of line parameters (Zhang et al., 2020). In
an LVDN, the network topology and line parameters are unknown
due to the lack of intermediate measurement nodes, so the state
estimation method is not applicable (Feng et al., 2022). Moreover,
the actual operation of the distribution network may be nonlinear
and complicated, and the state estimation method cannot fully
reflect that, thus affecting the accuracy of the result (Zhao et al.,
2020). The second category of analysis methods for abnormal line
loss in LVDNs is based on game theory (Amin et al., 2015).
Abnormal line loss is identified through the interaction game
between the user and the power supply enterprise. However,
such methods involve decisions and interactions by multiple
players and can therefore lead to complex mathematical models
and computational processes (Wang et al., 2023). This application of
game theory has not been tested in practice but only through
theoretical analysis (Mohammadi et al., 2019). The third analysis
category is data-driven (Buzau et al., 2019; Lin et al., 2021; Pamir
et al., 2022). XGBoost, LogitBoost, sparse random forest, and other
supervised learning methods are proposed to extract features from
manually labeled electricity datasets to identify abnormal electricity
users. However, data-driven methods cannot provide a direct
explanation of the cause of line loss anomalies and their physical
mechanism.

Consequently, this paper proposes a neural network-based data-
driven power flow model to locate the traceability of abnormal line
losses in LVDN caused by users. The data-driven power flow model
can adapt to LVDN. Because the middle node of the actual LVDN is
not installed with measuring devices, its topology and line
parameters are unknown. The trained data-driven power flow
model calculates the voltage of each end-user directly from their
measured power data without the need for topology and line
parameters. First, a data-driven power flow model is established
to fit the mapping relationship between power and voltage through
the neural network. Second, voltage is calculated by the data-driven
power flow model. The input power is updated by backpropagation.
This process helps the calculated voltage to approximate the
measured voltage. Then, by comparing the difference between the
corrected and measured power of each user, the user causing the
abnormal line loss is found. Finally, the accuracy and effectiveness of
the proposed method are verified by combining the historical data
and simulation of LVDNs.

The rest of the paper is organized as follows: Section 2 analyzes
the feasibility of establishing a data-driven power flow model, and
the data-driven power flow model based on neural networks is
established. Section 3 uses the data-driven power flowmodel to trace
the anomaly and find the user causing the abnormal line loss.

Section 4 and Section 5 verify the validity and superiority of the
proposed method and draw conclusions, respectively.

2 Neural network-based data-driven
power flow model

This section first analyzes the functional relationship of the
variables in the power flow constraint. It establishes that there is a
unique mapping relation between the power flow variables. Then,
the data-driven power flow model is established to fit the
relationship using a neural network.

2.1 Analysis of variable function relations in
power flow constraint

To build a data-driven power flow model, it is necessary to find
the unique mapping relations among the power flow variables.
Given some known power flow variables, this mapping
relationship is used to derive other unknown power flow
variables (Lyu et al., 2022).

In an LVDN with m nodes, 2m power flow constraint functions
can be established. The relationship between active power P, reactive
power Q, voltage V, and phase angle θ is expressed in polar
coordinates:

f1 � P1 − V1∑
m

k�1
Vk G1k cos θ1k + B1k sin θ1k( ),

..

.

fm � Pm − Vm∑
m

k�1
Vk Gmk cos θmk + Bmk sin θmk( ),

fm+1 � Q1 − V1∑
m

k�1
Vk G1k sin θ1k − B1k cos θ1k( ),

..

.

f2m � Qm − Vm∑
m

k�1
Vk Gmk sin θmk − Bmk cos θmk( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where Vi, Pi, andQi are the voltage, active power, and reactive power
of node i, respectively; Gij and Bij are the conductance and
susceptance between node i and j, respectively; and θij is the
phase angle difference between node i and node j, i,j∈{1,2, . . . ,m}.

Since the Jacobian matrix is invertible, a unique mapping
relationship between the variables P, Q, V, and θ can be obtained
according to the implicit function theorem. However, the value of θ
is difficult to measure. The mapping relationship can be modified by
removing θ:

h V1, P2,/, Pm, Q2,/, Qm( ) � P1, Q1, V2,/, Vm[ ]. (2)

2.2 Data-driven power flow model

Based on the aforementioned discussion, this paper uses a neural
network to fit the complex and nonlinear mapping relationship
between power flow variables. Compared with traditional models,
neural networks can learn and fit nonlinear mapping relationships
between variables better. Additionally, they are capable of processing
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massive data in a short time by training for predictions. An L-layer
neural network model can be divided into the following three layers:

x � g 0( ) � V1, P2,/, Pm, Q2,/Qm[ ],
g l( ) � max 0,W l( )g l−1( ) + b l( )( ) l � 1,/, L,

Y � F x( ) � W L+1( )g L( ) � P1, Q1, V2,/, Vm[ ],

⎧⎪⎨
⎪⎩ (3)

where x is the input of the neural network and the number of input
neurons is 2m-1; Y is the final output result and the number of
output neurons is m+1; g(l) is the hidden layer in the middle; W(l) is
the weight matrix of the lth hidden layer; and b(l) is the bias vector of
the lth hidden layer. The mapping relationship between voltage and
power can be obtained by fitting.

3 Traceability analysis considered
abnormal line loss

3.1 Analysis of the relationship between
abnormal user and power flow constraint

Abnormal users might exhibit instances where the measured
voltage or power diverges from the actual value (Chen et al.,
2023). Traditional analysis methods use the power flow
constraint to identify the characteristic. When an anomaly

occurs with a user, the measured power deviates from the
actual value. Through power flow calculation, the calculated
voltage is compared with the measured voltage. The user’s
abnormality is then determined based on the magnitude of
the deviation. Because the line parameters and topology of
LVDNs are unknown, this method cannot be used.
Consequently, a data-driven power flow model is pursued to
address this challenge.

However, when the abnormal measured power is used as an
input to the data-driven power flow model, multiple voltages will
deviate simultaneously, making the identification of the abnormal
user challenging.

Therefore, this paper consistently uses voltage to correct the
power through backpropagation. The abnormal users are judged by
comparing the corrected power with the measured power.

3.2 Backpropagation to correct the power

To keep the measured voltage constantly close to the calculated
voltage, the power is constantly corrected by backpropagation. In
this paper, FGSM (fast gradient sign method) is used to correct the
power by calculating the difference between the voltage and the
measured voltage without changing the parameters of the neural
network (Duan et al., 2021; Li et al., 2022). The steps are as follows:

1) Select samples to be attacked: Select active and reactive power
from the dataset as samples to be attacked, and these samples will
be modified.

2) Calculate the loss function: Input the active and reactive power
into the data-driven power flow model to calculate the loss
function.

3) Calculate gradient: Calculate the gradient of the loss function
with respect to the input sample.

4) Generate adversarial disturbance: Multiply the calculated
gradient by the learning rate to obtain the disturbance vector
in the direction of the fastest increase in the loss function.

5) Generate adversarial samples: Add the disturbance vector to the
original sample.

The corrected formula is

FIGURE 1
The process of backpropagation.

FIGURE 2
The training process of the neural network.
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xn+1 � xn − γ,
γ � η∇xΓ λ, xn, Vpre,n, Vmea( ),
Γ λ, xn, Vpre,n, Vmea( ) � Vpre,n − Vmea

				 				2,
⎧⎪⎪⎨
⎪⎪⎩ (4)

where n is the number of updates; xn is power after the nth update; γ
is the disturbance value; η is the learning rate; Γ(λ,xn, Vpre, Vmea) is
the loss function; λ is the neural network parameter; Vpre,n is the

voltage value calculated by the data-driven power flowmodel for the
nth time; and Vmea is the measured voltage value.

The power is constantly corrected by continuous
backpropagation. The power of abnormal users exhibits the most
conspicuous changes during the initial iterations. Concurrently, the
power of the remaining users exhibits minimal variation during the
iteration process. Therefore, abnormal users can be detected by

TABLE 1 Method comparison.

Data-driven power flow model Ordinary power flow method

αTPR 0.961 0.963

αFPR 0.001 0.001

FIGURE 3
Comparison of various methods.

FIGURE 4
Multi-target detection capability.
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examining the disparity between the corrected power and the
measured power following iteration.

The process of backpropagation is shown in Figure 1.

3.3 Line loss abnormal user detection
standard

Use the average correction distance to find the abnormal user:

dt,i � Pt,i
cor − Pt,i

mea

∣∣∣∣ ∣∣∣∣ + Qt,i
cor − Qt,i

mea

∣∣∣∣ ∣∣∣∣,

di �
∑T
t�1
dt,i

T
,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(5)

where: Pt,i cor and Pt,i mea are the corrected active power and
measured active power of the ith user at time t, respectively; Qt,i cor
and Qt,i mea are the corrected and measured reactive powers of the
ith user at time t, respectively; dt,i is the corrected distance of the ith
user at time t; and di is the average corrected distance of the ith user.

The calculated average correction distance of each user is
compared with δ. If di>δ, it indicates that the ith user is the
abnormal user.

4 Case studies

In this paper, data of an LVDN with clear ledger information in
Zhejiang Province were selected. Some historical active power,
reactive power, and voltage amplitude data were selected to train
the model, 70% of which were training-set data and 30% of which
were test-set data. Each sample includes active and reactive power
injected by 32 user nodes and voltage amplitudes from distribution
transformer nodes (1 × 65-dimensional vector). Each label includes
voltage amplitudes for 32 user nodes and active and reactive power
injected by distribution transformer nodes (1 × 34-dimensional
vector). There are four layers in the neural network and 165 neurons
in the hidden layer.

We also propose two evaluation indicators to verify the
effectiveness of the proposed method. These are

αTPR � PTP

PTP + PFN
,

αFPR � PFP

PFP + PTN
,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(6)

where PTP is the number of abnormal users detected as abnormal;
PFN is the number of abnormal users detected as normal; PFP is the
number of normal users detected as abnormal; PTN is the number of
normal users detected as normal; αTPR is the precision of the
method, representing the detection rate of abnormal users; and
αFPR is the false-positive rate of the method, representing the false
detection rate of normal users.

The training process of the neural network used in this paper is
shown in Figure 2.

Figure 2 shows the relationship between the mean voltage fitting
error and the training time of the neural network used in this paper
during the training process. It can be seen that the neural network

rapidly converges after 300 s, and the mean relative error between
the neural network and the actual voltage measurement value drops
to 0.165%, and that it takes 410 s to complete the training.

The traceability results of the data-driven power flow model in
an LVDN with unknown constitutive parameters and the
traceability results of the ordinary power flow method in the
network with known parameters are shown in Table 1.

From Table 1, the data-driven power flow model proposed in
this paper is similar to the calculation results obtained by the
ordinary power flow method, which proves the feasibility of the
method used in this paper.

Under different data missing rates, the proposed indicators are
used to compare the effectiveness of the proposedmethod with other
methods.

From Figure 3, under different data missing rates, the detection
rate and false-positive rate of the method used in this paper are
superior to other methods, reflecting its effectiveness. When the
missing data rate rises, its accuracy declines accordingly. When the
missing data rate is 10% or less, the methodmaintains high accuracy.

To test the detection ability of the method for multiple abnormal
users, this method is used to detect an LVDN with a different
number of users and abnormal users.

From Figure 4, regardless of the number of users, this method
accurately detects anomalies in an LVDN containing four abnormal
users. Furthermore, the method achieves a zero false-positive rate. In
the LVDN with five or six abnormal users, most of the abnormal
users are detected by this method. The false-positive rate is also low.
However, the precision and false-positive rate of this method are
poor for seven abnormal users.

5 Conclusion

Given that it is currently difficult to obtain topology
information and line parameters accurately and in a timely
manner in LVDN, this paper proposes a data-driven
traceability analysis approach to identify the specific end-user
responsible for the anomaly in line loss. The proposed approach
integrates the advantages of state estimation and data-driven
methods. The main contributions of this paper are:

1) A practical traceability analysis approach is proposed to identify
the specific end-user responsible for the anomaly in line loss for
LVDN with incomplete topology and line parameters.

2) A data-driven power flow model based on a neural network is
established to capture the power flow mapping relationship
without topology and line parameter information.

3) A backpropagation algorithm is presented to correct the actual
power consumption data according to the measured voltage data.
By comparing the actual power consumption data with the
measured power data, users with abnormal behavior can be
accurately identified and tracked.

This method is suitable for anomaly tracing in most LVDNs.
However, in cases where there are too many abnormal users in one
LVDN, it is not able to accurately identify them and needs further
improvement.
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