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Current standard therapy for hydrocephalus

Cerebrospinal fluid (CSF) shunting, as exemplified by the ventriculoperitoneal (VP)

shunt, is the gold standard for the treatment of hydrocephalus in both adults and children.

In fact, the SINPHONI and SINPHONI-2 studies demonstrated that shunting for idiopathic

normal pressure hydrocephalus (iNPH) is medically and economically beneficial due to its

therapeutic effect (1, 2). However, the short- and long-term complications of shunt surgery

for hydrocephalus remain unresolved. For example, shunt failure is reported to occur in

up to 40% of cases within the 1st year after surgery (3–6). Shunt infections have not been

completely eliminated, although they are less common than in the past (7–9).

Furthermore, especially pediatric cases, it is indisputable that the long-term psychosocial

burden associated with the shunt system affects the quality of life, as the shunt system is

required for the rest of the patient’s life.

Current status of hydrocephalus treatment research

The VP shunt, the standard treatment for hydrocephalus, is a countermeasure to bring

a progressive and worsening state of hydrocephalus into a state of arrested hydrocephalus.

Shunt surgery is already an established treatment for hydrocephalus, and many outcomes

have been reported for the shunt itself (10–12).

In contrast, because shunt surgery requires permanent implantation of the shunt system,

surgical techniques that do not require permanent implantation, such as endoscopic third

ventriculography (ETV) and choroid plexus coagulation (CPC), have been developed.

Some reports have compared the therapeutic efficacy of these techniques with that of

shunting (13–16). Simply stated, ETV is more effective for obstructive hydrocephalus than

non-obstructive hydrocephalus, and has a therapeutic effect for obstructive hydrocephalus

comparable to shunting. In addition, the combination of ETV and CPC has been tried in

non-obstructive hydrocephalus, but the results have not been satisfactory, while shunting is

effective in both non-obstructive and obstructive hydrocephalus. Therefore, the combination

of ETV and CPC is not a common treatment option at this time.

Failure to control progressive neurologic deterioration and ventricular enlargement

on imaging requires shunt placement. However, there is insufficient research to

develop histopathology-based treatments that prevent progressive deterioration and avoid

shunt surgery.

In routine practice, a number of patients have enlarged ventricles on imaging but no

obvious symptoms of hydrocephalus. Furthermore, before closure of the anterior fontanel

in infants, intracranial hypertension may, for some time, be compensated for by an increase

in head circumference, even with ventricular enlargement (17).
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Although basic and translational histopathology-based

research for central nervous system (CNS) diseases such as stroke

and Parkinson’s disease has been well-established for future

clinical application (18–21), histopathology-based treatments for

hydrocephalus have not been adequately explored.

If restoring the microenvironment in the brain could prevent

the progression of hydrocephalus to a condition requiring surgery,

it would mark the beginning of a new era in the treatment

of infantile extrinsic hydrocephalus, such as post-hemorrhagic

hydrocephalus from shunt surgery to shunt avoidance.

Importance of proper discharge and
removal of hazardous materials

To maintain neurological activity, waste products and other

toxic substances must be properly eliminated from the brain.

Lymphatic vessels play this role in other organs, but a similar

system in the CNS had not been identified. In 2012, the glymphatic

system was proposed as a pathway to transport and drain

substances into the subarachnoid space of the brain via astrocytes.

This pathway was found to be dependent on aquaporin-4 (AQP4),

a water channel protein in astrocytes (22).

It has now been established that the glymphatic system in the

brain plays a role analogous to that of the lymphatic system in the

body, efficiently removing waste products to the outside of the brain

by generating extracellular flow.

In recent years, we have gained new information about the

physiology of the cerebrospinal fluid, including the glymphatic

system, the paravascular space, and the interstitial fluid (22–

26), and we believe that this is a good time to develop new

treatment and management methods for hydrocephalus based on

this new knowledge.

Development of a new treatment
incorporating the glymphatic system
theory: Alzheimer’s disease

Recently, it was reported in a mouse model that when the

removal of extracellular tau protein by the glymphatic system

is inhibited, the amount of tau in the brain increases, affecting

neurodegeneration. AQP4 is involved in this clearance process,

and mice lacking AQP4 showed increased tau accumulation and

neuronal cell death (27).

In addition, the greater the dysfunction of the glymphatic

system, the less amyloid-β is found in the CSF; similarly, the more

that amyloid-β is unable to be cleared from the CSF, the greater the

deposition of amyloid-β in the brain (28).

Thus, delayed clearance of Alzheimer-related proteins

due to dysfunction of the glymphatic system has been

reported to contribute, at least in part, to the development of

Alzheimer’s disease.

In addition to hydrocephalus, at least some cases of chronic

fatigue syndrome have been reported to benefit from CSF drainage,

leading to speculation that accumulation of toxic substances in the

CNS due to glymphatic dysfunction may be involved (29).

Improvement of hydrocephalus is
expected by improving inflammatory
findings in the ventricular and
paraventricular microenvironment

Intraventricular hemorrhage in preterm babies is caused by

perforation of the ventricle in neonates with germinal matrix

layer hemorrhage, and neuroinflammation in the paraventricular

tissue is reportedly involved in the pathogenesis of this condition.

This inflammatory milieu generates free radicals and pro-

inflammatory cytokines such as interleukin (IL)-6, IL-4, tumor

necrosis factor-α (TNFα), and transforming growth factor-β1

(TGFβ1), which contribute to the development and progression of

hydrocephalus (30).

According to the osmotic gradient theory, brain diseases with

excess macromolecules in the intracerebroventricular spinal fluid

alter the osmotic gradient and cause hydrocephalus. In other words,

hydrocephalus can be considered a macromolecular clearance

disorder rather than a circulatory disorder (23).

AQPs, known water transport proteins, are transmembrane

water channel, and the direction of water transport by AQP follows

only an osmotic gradient; that is, AQPs are passive water transport

proteins (25).

Although the relationship between the CSF in the ventricles and

the glymphatic system is not well-understood, effective removal

of the toxic macromolecular proteins underlying the pathogenesis

of hydrocephalus may prevent glymphatic dysfunction, prevent

neurological deterioration, ventricular enlargement, and ultimately

shunting. Furthermore, based on the osmotic gradient theory,

effective removal of the toxic macromolecular proteins underlying

the pathogenesis of hydrocephalus may prevent progressive

neurological deterioration and ventricular enlargement on imaging

thus avoiding shunt surgery. Regardless of whether it follows the

osmotic gradient theory or the glymphatic system theory, AQP is

considered to play a key role.

Development of new treatment and
management methods for
hydrocephalus

To develop a new treatment andmanagement of hydrocephalus

that prevents the transition to hydrocephalus requiring a shunt,

it is necessary to improve the inflammatory environment through

efficient removal of toxic macromolecular proteins and to improve

the ventricular and paraventricular microenvironment.

The question is how to effectively remove toxicmacromolecular

proteins. There is a history of developing new treatments for CNS

diseases in terms of scavenging free radicals and improving the

microenvironment. For example, edaravone was initially approved

for cerebral infarction but the indication was later expanded to

include amyotrophic lateral sclerosis (ALS) (31).

In the human brain, neurogenesis has been observed in the

subventricular zone and the hippocampus. Given the background

pathology of hydrocephalus, improving the ventricular and

paraventricular microenvironment is expected to be effective in
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preserving the function of neurogenesis, which is thought to be

innate in the human brain (32). If microenvironmental repair

can prevent hydrocephalus from progressing to the state where it

requires surgery, it will usher in a new era in infantile extrinsic

hydrocephalus management, from surgery to prevention.

The glucagon-like peptide-1 (GLP-1) receptor drug liraglutide

(33, 34) and erythropoietin (EPO) (35, 36) have been shown to

promote neurogenesis and to have anti-inflammatory properties.

GLP-1 receptor agonists are drugs used to treat patients with

diabetes without the risk of hypoglycemic events, and their

ability to enhance neurogenesis and anti-inflammatory effects is

attractive for application in the treatment of hydrocephalus (37).

In addition, although EPO has a side effect of polycythemia,

carbamoylated erythropoietin (CEPO), a neuroprotective agent

without the risk of polycythemia, has been developed, and its

ability to enhance neurogenesis and anti-inflammatory effects is

attractive when considering its application in the treatment of

hydrocephalus (38–41).

In terms of the osmotic gradient and glymphatic system

theories, AQP4 has been shown to play an important role in the

efficient removal of toxic macromolecular proteins; moreover, EPO

upregulates AQP4 expression and improves the clearance of excess

water via AQP4 (42). Moreover, exenatide, a GLP-1 passive agonist

similar to liraglutide, has been reported to restore reduced AQP4

levels in the hippocampus of diabetic rats (43).

In this context, cocktail therapy with edaravone, liraglutide and

EPO is expected to prevent progressive neurological deterioration

and ventricular enlargement, thus avoiding shunt surgery.

In addition, if enhanced neurogenesis leads to recovery of

neurological function, it is expected to lead to a new treatment that

improves the functional prognosis of even surgically treated cases

of hydrocephalus.
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