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Current understanding of the
molecular mechanisms of
circulating permeability
factor in focal segmental
glomerulosclerosis

Giuseppe Salfi , Federica Casiraghi* and Giuseppe Remuzzi

Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico
(IRCCS), Bergamo, Italy
The pathogenetic mechanisms underlying the onset and the post-transplant

recurrence of primary focal segmental glomerulosclerosis (FSGS) are complex

and remain yet to be fully elucidated. However, a growing body of evidence

emphasizes the pivotal role of the immune system in both initiating and

perpetuating the disease. Extensive investigations, encompassing both

experimental models and patient studies, have implicated T cells, B cells, and

complement as crucial actors in the pathogenesis of primary FSGS, with various

molecules being proposed as potential “circulating factors” contributing to the

disease and its recurrence post kidney-transplantation. In this review, we

critically assessed the existing literature to identify essential pathways for a

comprehensive characterization of the pathogenesis of FSGS. Recent

discoveries have shed further light on the intricate interplay between these

mechanisms. We present an overview of the current understanding of the

engagement of distinct molecules and immune cells in FSGS pathogenesis

while highlighting critical knowledge gaps that require attention. A thorough

characterization of these intricate immune mechanisms holds the potential to

identify noninvasive biomarkers that can accurately identify patients at high risk

of post-transplant recurrence. Such knowledge can pave the way for the

development of targeted and personalized therapeutic approaches in the

management of FSGS.

KEYWORDS

FSGS, immunity, permeability factor, circulating factor, post-transplant recurrence,
idiopathic nephrotic syndrome
1 Introduction

Focal segmental glomerulosclerosis (FSGS) is a histological pattern of kidney injury

characterized by the obliteration of glomerular capillaries affecting only a portion of the

glomerular tuft (segmental) by the deposition of extracellular matrix in some glomeruli

(focal) (1). One of the cardinal features of FSGS is the progression of glomerular scarring,
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with the initial focal and segmental matrix deposition evolving into

a widespread form of glomerulosclerosis in the advanced stages (2).

FSGS represents about 20% of cases of nephrotic syndrome

(NS) in children and 40% in adults, with an annual incidence

between 0.2 and 2.5 per 100,000 individuals. However, sex,

geographical, and racial differences should be considered, since

FSGS has a higher incidence in male adults and Black individuals

(3, 4).

When secondary etiologies of NS cannot be identified, the

clinical presentation is designated as idiopathic nephrotic

syndrome (INS) (5). The common initiation event in INS is

podocyte damage, which ultimately results in podocyte depletion,

proteinuria, and progressive kidney disease. Hence all forms of INS

are considered part of a larger group of diseases called

podocytopathies (6, 7).

Renal biopsy is the foundation of the current classification of

INS, as the histological appearance is closely associated with the

prognosis and treatment response of the patient (8, 9). In most

cases, pathological findings can be classified as either FSGS or

minimal change disease (MCD) (10).

Researchers have argued that MCD and FSGS may represent

opposite ends of a spectrum, with FSGS as the more severe

phenotype associated with a poor prognosis and frequent

progression to renal failure (11–13).
2 Clinical course and treatment of
focal segmental glomerulosclerosis

The age of onset is crucial in determining the clinical course of

the disease. A biopsy is usually performed in all adults before

initiating treatment (14). However, children with INS are promptly

treated with oral prednisolone as the first-line therapy which has a

response rate of over 85%, resulting in complete remission of

proteinuria and normalization of serum albumin levels (15). A

biopsy is only recommended in children with a higher age of onset

(>12 years), atypical clinical or biochemical features indicating a

secondary form of NS, or in all children who fail to respond to

steroid treatment (such cases are defined as steroid-resistant NS or

SRNS) (16).

Primary FSGS is characterized by a presentation of full-blown

NS of sudden onset and diffuse foot process effacement observed

through electron microscopy (17). In contrast, sub-nephrotic or

nephrotic-range proteinuria with normal serum albumin requires a

evaluation to rule out secondary causes of FSGS (18).

Primary FSGS patients may undergo spontaneous remission,

which is very rare and occurs only in less than 5% of the cases (19,

20). Treatment significantly improves patients’ outcomes, as it is

associated with an increased likelihood of achieving remission

(21, 22).

The first-line treatment for primary FSGS is high-dose oral

glucocorticoids (prednisone or prednisolone) (23–25). Some

patients might not tolerate prolonged high-dose glucocorticoids,

especially considering the extended natural history of primary

FSGS. In these cases, the side effects of glucocorticoids could be
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intolerable (26). Calcineurin inhibitors (CNIs) such as cyclosporine

and tacrolimus are effective in reducing or even obviating the need

for glucocorticoid therapy (27–29). As such, CNI use is

recommended for adults with relative contraindications or

intolerance to glucocorticoids (23, 30). The combination of

mycophenolate mofetil (MMF) and low-dose prednisolone has

been studied as an alternative primary therapy for patients with

FSGS and NS. This therapeutic approach has demonstrated

comparable efficacy to the conventional high-dose steroid

treatment (31). Although the evidence is currently limited, it may

be considered as an early treatment option in patients who are more

susceptible to the adverse effects of steroids and CNIs, such as those

with lower eGFR.

Among all forms of INS, FSGS has the lowest response rate to

glucocorticoid therapy (32), with steroid resistance being observed

in 26-80% of patients across various studies (33–36). Notably,

adults tend to respond much less favorably to corticosteroids than

children (37).

Additionally, among the initial steroid-sensitive (SS) patients,

less than 50% can maintain stable remission (19, 21) Relapses are

frequent and if they occur during therapy or within 2 weeks of

discontinuing prednisone or prednisolone, the disease is considered

steroid-dependent (23).

In cases where patients with FSGS exhibit resistance to

glucocorticoid therapy, genetic testing should be considered to

rule out genetic forms of the disease (23).

Numerous secondary therapeutic options are available for

steroid-resistant primary FSGS. Currently, the most robust

evidence supports the use of CNIs for at least six months, rather

than continuing with glucocorticoid monotherapy or stopping

treatment altogether (23, 33, 38–40).

MMF has also demonstrated effectiveness in treating steroid-

resistant FSGS, although the clinical outcomes have shown less

significance compared to CNIs (41, 42).

For patients with either steroid- and CNI-dependent or

resistant FSGS, the usage of chimeric or human anti-CD20

antibodies (i.e. rituximab and ofatumumab) is well established

and guarantees prolonged maintenance of remission status (43, 44).

In an advanced immunosuppressive therapy-resistant setting,

several novel treatments have been trialed with promising results.

These include monoclonal antibodies such as various anti-TNFa
antibodies (such as adalimumab) (45), as well as extracorporeal

plasma therapy (46). Notably, apheresis treatment has also

exhibited promising efficacy in INS patients unresponsive to

immunosuppressive regimens (47).

In addition, sparsentan, which is a dual endothelin and

angiotensin receptor blocker, has also been proposed to reduce

proteinuria in patients with FSGS and nephrotic syndrome (48).

However, it is important to note that sparsentan only serves as a

supportive treatment aimed at reducing proteinuria in FSGS

patients, rather than specifically targeting the underlying

pathogenetic mechanism of the disease.

While it can be argued that these therapies can be effective in

slowing the progression of the disease, there are notable limitations

and areas for improvement. First, the use of multiple drugs can have

a significant impact on patient quality of life due to their side effects
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(49, 50). Another important consideration is that FSGS consistently

worsens over time, regardless of the treatment used, and can result

in end-stage kidney disease (ESKD) in approximately half of the

patients with nephrotic-range proteinuria within 3-8 years (51).
2.1 End-stage kidney disease and
transplantation in focal segmental
glomerulosclerosis

A recent analysis conducted in the United States reveals that

FSGS is the leading cause of primary glomerular disorder resulting

in ESKD, accounting for 3.7% of all cases of ESKD (52). Patients

with ESKD due to primary FSGS are often candidates for renal

transplantation (53).

On the other hand, while transplantation should not be

withheld based solely on a primary FSGS diagnosis, clinicians

must ensure that patients are fully informed of the elevated risk

of disease recurrence after transplantation. Indeed, post-transplant

FSGS recurrence is reported in approximately 30% of transplants,

ranging from 9% to 55% among different studies (54, 55).

The average time for recurrence of FSGS in the transplated

kidney is 2-6 days, but it can sometimes develop even within

minutes to hours after transplantation (56).

Some patients are offered a second kidney transplant, however,

the risk of recurrence in patients with FSGS who have previously

lost a transplant due to recurrent disease is significant, estimated to

be around 80% (57).

Plasmapheresis and rituximab are most commonly frequently

used to treat recurrent FSGS, but their effectiveness is limited to a

small percentage of patients (55).

Prophylactic pre-transplant rituximab might even play a role in

preventing FSGS recurrence (58–60), while results with

plasmapheresis are contrasting in the pre-transplantation setting.
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However, due to inconsistent results and the lack of randomized

controlled trials, the use of pre-transplant therapy to reduce the risk

of disease recurrence is not recommended and should be avoided

(54, 61).

To summarize, treating patients with recurrent FSGS proves to

be complicated, as not a single approach has been consistently

effective. Despite experimental studies providing valuable insights

into the pathophysiology of the disease, treatment options for

affected patients remain largely empirical.

FSGS remains an intricate disease to provide treatment and

continues to have a devastating and unrelenting impact on the lives

of those affected (Figure 1).
3 Classification of focal segmental
glomerulosclerosis

FSGS classification can be approached through two main

frameworks: etiologic and morphologic, both of which hold

clinical and prognostic significance (62).
3.1 Pathologic classification

The established morphological classification, known as the

Columbia Classification, distinguishes five different types of FSGS

lesions based on their histologic presentation: collapsing, tip,

cellular, perihilar, and not otherwise specified (NOS) (63). The

FSGS NOS variant – defined by the exclusion of all other categories

- is the most common among both the pediatric and adult

populations (64, 65). Interestingly, as previously discussed, lesions

tend to change over time, with other variants evolving into a NOS

phenotype, especially as the kidney approaches ESKD (12, 66).
FIGURE 1

Natural history and treatment of focal segmental glomerulosclerosis. NS, nephrotic syndrome; FSGS, focal segmental glomerulosclerosis; CNIs,
calcineurin inhibitors; ESKD, end-stage kidney disease; TX, transplantation.
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The categorization of the FSGS form according to the Columbia

classification associates with the clinical course of the disease (67,

68). Reports indicate that patients with the collapsing variant of

FSGS have worse outcomes and less frequent remission of

proteinuria, while those with the tip variant respond better and

more frequently to various immunosuppressive treatments (68–70).

However, the Columbia histologic variant does not predict the

risk of FSGS recurrence in renal allografts, and interestingly,

different variants can be seen before and after transplantation in

the same patient (71).
3.2 Etiologic classification of FSGS

Traditionally, FSGS forms have been classified into primary,

genetic, or secondary categories (2, 18).

The term “primary” has often been used interchangeably with

“idiopathic” to describe a condition without a known genetic or

secondary cause (23). However, genetic testing is not routinely

performed in most FSGS cases due to its limited cost-effectiveness

(72, 73). Therefore, it can be argued that FSGS caused by known

genetic mutations could also be classified as primary FSGS,

considering that the effect of the mutation primarily involves

podocyte injury (74).

In addition, a fourth category of “FSGS of undetermined cause”

has been proposed for those cases where no clear etiology can be

identified, and for patients exhibiting proteinuria without NS and

no diffuse foot process effacement on electron microscopy (but of

course, FSGS lesions are seen on light microscopy) (23, 75–77).

As a result, some authors recommended avoiding the term

“idiopathic” to describe any form of FSGS, to prevent confusion (23,

78). Instead, the definition of “primary FSGS” should be limited to

those cases of FSGS where the pathogenesis is presumably associated

with an unknown “circulating” or “permeability factor” (79, 80).

Hence, recent efforts to reclassify FSGS based on its

pathogenesis have identified four different categories: secondary

forms (maladaptive FSGS, drug-induced FSGS, viral-induced FSGS,

and FSGS lesions superimposed on other glomerular diseases),

genetic disorders, permeability factor-related FSGS (i.e., primary

FSGS), and FSGS of undetermined cause (74, 78, 81).

3.2.1 Genetic FSGS
Although the aim of this review is to examine the nature and the

complex mechanisms underlying the pathogenesis of primary FSGS

and its recurrence after transplantation, valuable insights can be

gained from studying the abnormalities associated with genetic

forms of FSGS.

The term “genetic FSGS” encompasses all monogenic etiologies

of FSGS, including primary forms with nephrotic proteinuria, and

secondary forms characterized by renal anomalies such as

congenital developmental anomalies, nephronophthisis, chronic

tubulointerstitial disease, or proximal tubulopathies (82).

Furthermore, monogenic FSGS may present as a kidney-specific

condition or as a syndromic disorder with extrarenal

manifestations, as exemplified by Alport syndrome, Pierson

syndrome, and nail-patella syndrome (83–86).
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While genetic mutations have been identified as the cause of

FSGS in a minority of patients (involving around 20–30% of

individuals with SRNS and FSGS) (87), their prevalence appears

to be higher in those with congenital or infantile-onset disease. A

study found that 100% and 57% of patients with these forms of

FSGS respectively had a genetic cause identified (88).

The prevalence of monogenic forms of FSGS seems to decrease

with an older age of onset (89, 90). In children, mutations in genes

such as NPHS1 and NPHS2, which encode for structural proteins

nephrin and podocin respectively, as well as the WT1 gene, which is

involved in podocyte development, have been identified as the

major genetic causes of FSGS, as detection rates of up to

24% have been reported (1, 9, 91). The prevalence of monogenic

FSGS in adult patients is not well established, as genetic testing is

mainly conducted in individuals with early-onset disease,

immunosuppression-resistant cases, positive family history, or

syndromic manifestations (23, 82). Recent research has shown

rates of genetic diagnoses ranging from 11% to 21.3% among

various cohorts of adult FSGS and/or SRNS patients (92–95).

A wide array of mutations in more than 50 different genes has

been identified in pediatric- and adult-onset familial FSGS. Among

these genetic variations, more than 20 mutations have been detected

in proteins related to slight diaphragm proteins, cytoskeletal

structural and regulatory proteins, nuclear pore complex proteins,

cell membrane-associated proteins, and glomerular basement

membrane proteins genes, and are involved in the development

of renal-limited forms of FSGS. Conversely, 34 mutations have been

linked to FSGS within a systemic/syndromic context (18, 73, 96).

Among individuals with recent African ancestry, the presence

of genetic risk variants in the gene encoding apolipoprotein L1

(APOL1) has been identified as a significant factor associated with

an increased susceptibility to developing FSGS (97). Interestingly,

an APOL1 inhibitor, inaxaplin, has demonstrated efficacy in

reducing proteinuria in FSGS patients carrying two APOL1

variants (98).

Careful clinical assessment and genetic testing are crucial

components of FSGS management, as genetic FSGS has a distinct

clinical course, which typically results in primary resistance to

therapy (18, 99). Moreover, in adults with FSGS who are

undergoing kidney transplantation, genetic testing may offer

valuable prognostic information regarding transplant outcomes

(23). Genetic forms of the disease have shown a significantly

lower rate of FSGS recurrence after transplantation, with some

studies reporting no cases of post-transplant FSGS recurrence

(100, 101).

Apart from one case report describing post-transplant FSGS

recurrence in a young girl carrying a WT1 mutation (102), only

mutations of NPHS2 have been associated with FSGS recurrence

(101, 103).

Despite extensive research on the topic, there is currently a

dearth of data on the impact of genetic mutations associated with

adult-onset FSGS, including but not limited to INF2, ACTN4,

TRPC6, and PAX2, on the risk of disease recurrence post-

transplantation. As such, further investigation is warranted to

elucidate the potential prognostic value of genetic testing in adult

FSGS patients undergoing kidney transplantation. In addition,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1247606
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Salfi et al. 10.3389/fimmu.2023.1247606
assessing the presence of a genetic mutation for FSGS in living-

related donors can be crucial to predicting the risk of post-

transplant disease recurrence, particularly in individuals who may

not exhibit any symptoms during evaluation (23).

Therefore, recognizing patients with genetic FSGS can

significantly enhance personalized clinical management and lead

to improved long-term outcomes.

Furthermore, dissecting the mechanisms underlying the

development of genetic FSGS may play a crucial role in directing

research toward a better understanding of the pathogenesis of non-

genetic primary FSGS forms, including those related to permeability

factor(s).
4 Permeability/circulating
factor-related FSGS

The pathogenesis of those forms of FSGS characterized by a lack

of identifiable secondary causes or genetic mutations has been

attributed to one (or more) molecule(s) with an extra-renal

origin, produced in a systemic context, and located in patients’

serum. These molecules are known as “circulating factors” or

“permeability factors” and are believed to selectively target and

damage the glomerular barrier, particularly the visceral epithelial

cells (i.e. the podocytes), leading to increased permeability and

massive proteinuria, which are hallmarks of FSGS. As previously

discussed, this pathogenic mechanism is also applicable to all forms

of INS, including those with characteristics of MCD on kidney

biopsy (6, 79, 104). As a result, some authors refer to these

conditions as a single “circulating factor disease” (105–107).

The identity of the circulating factor in the blood of idiopathic INS

patients has been a topic of interest in the nephrology community for

several decades now. Despite extensive research efforts, the precise

identity of this factor remains elusive, leaving much to be revealed

about its biological properties and pathological significance.

An important concept that must be highlighted is that currently,

only the forms of FSGS that recur rapidly after a kidney transplant

can be attributed to a circulating permeability factor (23). This

involves an extremely rare population of patients, which explains

the fact that the vast majority of the studies searching for a

pathogenetic circulating factor actually included mostly or only

patients with steroid-resistant FSGS and no history of kidney

transplantation. However, it should be noted that this population

has a 70% probability of disease remission after transplantation is

performed, meaning that they most likely don’t have a circulating

factor disease (54–56). This is the most significant limitation of such

studies and can affect the generalizability of the research findings.
5 Historical background and
proofs of the presence of a
circulating factor in INS

The history of the circulating permeability factor’s theory dates

back to 1954 when Gentili et al. conducted an ethically questionable
Frontiers in Immunology 05
study in which plasma from infants with INS was administered to

healthy individuals, who subsequently developed transient

proteinuria. However, due to the lack of techniques available to

study plasma composition at the time, the authors’ understanding

of the phenomenon was limited. The authors attributed the results

to the presence of abnormally small proteins in the plasma of the

patients, as it was believed to be the most reasonable pathogenetic

model for INS at the time. However, they also went on to propose,

for the first time in literature, a novel theory: the presence of a

serum circulating factor, which they termed a “toxic factor” or

“nephrotoxin”, able to damage the glomerular filter barrier, causing

the disease (108).

Nowadays, researchers agree that the strongest evidence for the

existence of extra-renal circulating permeability factors and their

role in chronic primary glomerulopathies comes from the clinical

observations of the recurrence of FSGS after kidney transplantation

(109, 110). This phenomenon was first reported in 1972, in a case

involving two children and a young adult with INS and MCD on

initial kidney biopsy. The conditions of the patients worsened over

time despite the administration of high-dose corticosteroids in

combination with other immunosuppressive agents. ESKD

manifested within 2-6 years. Subsequent transplantation resulted

in the patients exhibiting disease recurrence within 1-5 months,

characterized by the development of nephrotic-range proteinuria.

Histological examination of their kidney graft biopsies revealed a

pattern consistent with the diagnosis of FSGS, without any

indications of graft rejection (111).

In 1974, Robert J. Shalhoub introduced a seminal theory

known as “Shalhoub’s hypothesis”, which postulated an immune

system abnormality as a potential underlying cause of FSGS.

According to Shalhoub, this abnormality primarily affected the

functionality of T cells. He suggested the existence of a

“circulating chemical mediator” as the culprit for damaging the

glomerular basement membrane. Shalhoub’s hypothesis was

supported by several observations, including the absence of

antibody deposits in FSGS patients’ glomeruli, the effectiveness of

steroids and immunosuppressive drugs in inducing remission, and

the co-occurrence of FSGS and NS in some cases of Hodgkin’s

lymphoma (112). The presence of a proteinuria-inducing factor in

the serum of FSGS patients was confirmed by Zimmerman SW et al.

in 1984. Serum collected from a patient who experienced NS and

FSGS recurrence following two cadaveric renal transplants was

infused into rats inducing a significant increase in protein and rat

albumin excretion (113). A decade later, reports about

plasmapheresis performed in recurrent FSGS patients were first

published. They showed a transient decrease or abolishment in

patients’ proteinuria, resulting in partial or complete remission,

hence providing further evidence of a pathogenetic factor

circulating in that group of patients (114, 115).

In 1996, Savin VJ et al. introduced an in vitromodel to measure

the effect of the FSGS permeability factor on the permeability of the

glomerular barrier. The model relied on the usage of isolated rat

glomeruli that were incubated in isotonic bovine serum albumin.

Exposure of the isolated rat glomeruli to the serum of patients with

recurrent FSGS resulted in reduced glomerular swelling, due to

increased glomerular permeability and dissipation of the oncotic
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gradient. The exposure of the glomeruli to the sera of patients who

experienced FSGS post-transplant recurrence increased glomerular

permeability to albumin (Palb) significantly more than the sera of

patients with non-recurrent FSGS. A Palb cut-off of 0.50 predicted

recurrence with a sensitivity of 60% and specificity of 95% (116).

This model supported the causative role of a circulating factor in

FSGS patients and has been used since then to make well-

established hypotheses about its nature. However, its low

replicability and lack of application in recent FSGS research

should be noted. Most of the findings that resulted from its

application were obtained by the same group that developed it,

and little information can be found about its usage in the literature.

Finally, all findings from the model should be subjected to in vivo

evaluation due to their in vitro nature.

The most impactful evidence of the fact that the pathogenetic

factor of primary FSGS is circulating and extra-renal was provided

in 2012 by the groundbreaking work of Gallon L et al. (117). In their

study, a 27-year-old man with ESKD caused by primary FSGS

received a kidney transplant from his healthy sister. Despite

undergoing seven plasmapheresis sessions and receiving standard

immunosuppressive therapy, the patient exhibited a significant

increase in proteinuria on the second day after transplantation.

Histological analysis of the kidney biopsy confirmed the recurrence

of FSGS. Subsequently, due to the persistent disease and associated

complications, the renal allograft was removed. In a pioneering and

brave decision, the authors sought consultation with the hospital

ethics committee and obtained informed consent from the initial

recipient to donate the kidney transplant to another willing patient

on the transplant waiting list. This kidney transplant was

successfully performed on a 66-year-old patient with ESKD

resulting from type 2 diabetes mellitus, utilizing the failing

allograft from the previous patient who had experienced early

post-transplant FSGS recurrence. Remarkably, following the

retransplantation, the allograft rapidly regained full functionality,

with serum creatinine and proteinuria levels returning to within the

normal range values. This groundbreaking trial unequivocally

confirmed the presence of a distinct extrarenal circulating

permeability factor exclusive to patients with recurrent FSGS.

The trial was later replicated by Kienzl-Wagner et al., as

described in a study published in 2018, strengthening its scientific

significance. In this most recent trial, after a 5-year-old boy

experienced an immediate and fulminant recurrence of FSGS on

a deceased donor renal graft, the allograft was retrieved from him 27

days after the transplant and implanted into a 52-year-old second

recipient with vascular nephropathy. After retransplantation, the

allograft regained perfect functioning, which persisted for 3 years

after transplantation (118).

In summary, the concept of a circulating permeability factor

affecting podocyte shape and function is believed to be the cause of

primary FSGS. This concept is supported by several observations,

the most relevant ones include: 1) after kidney transplantation,

around 30% of patients with FSGS develop massive proteinuria

within hours to days after transplantation, followed later on by

typical FSGS histological lesions (54–56); 2) pre-emptive

plasmapheresis reduces the risk of FSGS recurrence after

transplantation (119); 3) the perfusion of rat glomeruli with the
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plasma of patients with FSGS induces an increased glomerular

permeability to albumin (116); 4) a kidney graft removed from a

primary FSGS patient can be successfully transplanted in a patient

with different kidney disease with normalization of proteinuria and

glomerular filtration rate (GFR) (117, 118).

Studies on the pathogenesis of INS have indicated several

different molecules as possible permeability factors. However, the

effect of such molecules on the pathogenesis of INS and primary

FSGS remains elusive.

Subsequently, this review delves into a comprehensive analysis

of the evidence that underpins the main circulating factors and

immunological mechanisms proposed to contribute to the

pathogenesis of primary and post-transplant recurrent FSGS.

Through a thorough examination of these factors, this review

aims to shed light on their potential role in the development and

progression of these conditions.
6 T cells and related cytokines

Since the publication of Shalhoub’s seminal paper in 1974 until

recently, INS has been predominantly attributed to a T-cell

disorder. Shalhoub’s hypothesis was initially supported by

numerous distinct observations: the remission of INS following

measles infection, the absence of evidence for a humoral antibody

response in INS, the rapid resolution of proteinuria with

immunosuppressive drug therapy, the occurrence of MCD in

Hodgkin’s disease patients, and the increased susceptibility of

untreated patients to pneumococcal infections (112).

However, it is essential to acknowledge that those initial lines of

evidence supporting the notion of T-cell dysfunction (and thymus

malfunction, as suggested by Shalhoub) as fundamental factors in

the pathogenesis of FSGS are now considered outdated. The

interpretation of the same findings has evolved, as they could also

support the hypothesis of alternative mechanisms in the

pathogenesis of FSGS, including the possibility of a B-cell-

mediated disease. Therefore, it is imperative to reevaluate the role

of T cells in the disease, taking into account recent insights and

advancements (120).

Building upon Shalhoub’s hypothesis, extensive research has

been completed to investigate this phenomenon. Subsequent studies

showed that T cells from patients with MCD could secrete a

glomerular permeability factor, but this factor was not

conclusively identified (121, 122).

Untreated NS exhibited higher absolute T cells and T-cytotoxic

(CD8+) lymphocytes compared to healthy controls (123). Further

studies revealed that CD8+ T cells from steroid-resistant nephrotic

syndrome (SRNS) patients are clonally expanded (124).

Cytokines secreted by T cells have been therefore proposed as

potential permeability factors in INS.
6.1 Interleukin-13

Various studies suggested a putative role for T-helper 2 (Th2)

cytokines, mainly interleukin-13 (IL-13), in the pathogenesis of
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INS. T cells from patients with INS have been observed to exhibit

spontaneous production of IL-13, whereas B cells express the IL-13

receptor (125). Notably, Yap et al. demonstrated upregulated IL-13

gene expression in both CD4+ and CD8+ T cells in children with

SSNS during relapses (126). The putative involvement of IL-13 in

the pathogenesis of INS was further highlighted by the finding that

rats overexpressing IL-13 developed nephrotic proteinuria and

podocyte foot process fusion, closely resembling key features of

human MCD (127). In addition, significantly increased levels of

Th2 cytokines (IL-4, IL-5, IL-10, IL-13) were found in the urine

samples of MCD patients with frequent relapses (128). However, it

should be noted that increased levels of IL-13 in other pathological

conditions, such as asthma, psoriasis, and allergic dermatitis, do not

typically result in proteinuria. Finally, some studies conducted on

humans did not show the same findings (129).
6.2 Tumor necrosis factor-alpha

Some Th1 cytokines have also been implicated in the

pathogenesis of INS. Among them, tumor necrosis factor-alpha

(TNF-a) holds a special interest.
The upregulated expression of TNF-a in podocytes following

treatment with sera from FSGS patients revealed the presence of

serum biomarkers, still unknown, that can induce podocyte injury

through the activation of the TNF-a pathway (130). Comparative

analysis demonstrated elevated TNF-a serum levels in NS patients

compared to normal controls, with higher levels observed in patients

with SRNS compared to those with SSNS (131). The role of TNF-a in

the pathogenesis of SRNS has therefore been investigated in clinical

studies with the chimeric or humanized anti-TNFa antibodies (i.e.

infliximab, etanercept, and adalimumab). Initially, a few case reports

demonstrated remission of severe refractory SRNS in native kidneys

and SRNS relapse after kidney transplantation following the

administration of anti-TNF-a antibodies (132, 133). Subsequent

investigation revealed the activation of the TNF pathway in

cultured podocytes exposed to serum from FSGS patients in just

21% of the cases (134). These findings were consistent with the results

of a phase 1 clinical trial conducted among FSGS patients, using

adalimumab. Although it was not the primary goal, proteinuria was

observed to be significantly reduced by treatment in 40% of patients,

thus proving that TNF-a may play a crucial role in the disease in a

subgroup of FSGS patients (135). Finally, recent observations from

the NEPTUNE network investigators suggest that patients with

activation of the TNF pathway might be at higher risk for rapid

renal function deterioration (136).
6.3 T-regulatory and T-helper 17 cells

The involvement of T-helper 17 (Th17) cells and the

dysregulation of T-regulatory (Treg) cell function are additional

elements implicated in the pathogenesis of INS.

In patients with relapsing idiopathic MCD, Treg exhibited

impaired suppressive capacity on conventional T cell proliferation

(137). Moreover, higher Treg levels have been observed in patients
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with SSNS compared to SRNS (138), and lower baseline levels of

Treg were associated with an increased risk of early relapse (i.e.,

within 1 year) in SRNS patients treated with rituximab (139).

Specifically, CD45RO+ memory Tregs were shown to be lower in

steroid-dependent/frequently-relapsing NS patients who

experienced relapse after treatment with rituximab (140).

Another study showed that MCD patients with NS have a

higher Th17/Treg ratio, which correlated with increased proteinuria

and decreased albumin levels. Notably, patients showed a reduction

of the Th17/Treg ratio after successful treatment (141). In vitro

studies further revealed that treatment of podocyte cultures with

Th17 cell supernatants from healthy donors and plasma from NS

patients led to increased podocyte motility via the c-Jun N-terminal

kinases (JNK) pathways (142).

Furthermore, the development of NS and MCD or FSGS within

the context of Immune Dysregulation Polyendocrinopathy,

Enteropathy, and X-linked (IPEX) syndrome strengthens the

notion of a potential involvement of deficient Tregs in the

pathogenesis of INS. IPEX syndrome occurs due to mutations in

the forkhead box P3 (FoxP3) gene, resulting in impaired Treg

maturation (143, 144).

Interestingly, IL2 up-regulates the activity of Tregs and has been

trialed as a potential therapeutic agent in INS resistant to multiple

treatment lines. Nevertheless, clinical trials did not demonstrate

significant clinical benefits from its use (145).

The accumulated evidence proves the critical involvement of T

cells in FSGS and INS pathogenesis. While it remains unclear if T

cells are directly responsible for the production of the pathogenetic

circulating factor(s), the literature clearly highlights their crucial

role as potential sources or essential mediators of the disease.
7 Cardiotrophin-like cytokine factor-1

A prominent candidate molecule in the pathogenesis of FSGS is

Cardiotrophin-Like Cytokine Factor-1 (CLCF-1). CLCF-1 is a

member of the IL-6 family of cytokines and shares significant

structural similarities with cardiotrophin-1 and ciliary

neurotrophic factor. The mature form of CLCF-1 is estimated to

have a molecular weight of 22 kDa. The discovery of CLCF-1 dates

back to 1999. Several alternative names have been attributed to this

protein, including cardiotrophin-like cytokine 1 (CLC-1), B cell

stimulatory factor-3 (BSF3), and novel neurotrophin-1 (NNT-1). It

is expressed in various tissues, including lymph nodes, spleen, bone

marrow, peripheral blood lymphocytes, ovary, placenta, kidney,

pituitary, and fetal liver, among others (146–148).

CLCF-1 exhibits a broad range of functional involvement

beyond renal processes. Studies have demonstrated its significance

in neural differentiation and survival, potentially acting as a ligand

for CNTFRa to support neural growth (149). Furthermore, it has

been implicated in protecting against osteoporosis (150, 151).

Notably, researchers have also suggested its potential as a

biomarker in blood and solid cancers (152, 153).

Interestingly, CLCF-1 may be obtained from activated T cells in

vitro and is able to stimulate B cell proliferation and IgG

production (154).
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The recognition of CLCF-1 as a plausible permeability factor in

primary FSGS is the culmination of over two decades of research

conducted by Virginia J. Savin’s team. As previously documented,

their investigation began with an initial study where isolated rat

glomeruli were subjected to FSGS plasma or serum. The findings

revealed an augmented permeability to albumin in rat glomeruli

exposed to FSGS samples when compared to those treated with

control samples, specifically in response to an oncotic albumin

gradient (116). Through systematic investigation of the biochemical

characteristics of the active fraction of FSGS plasma, Savin’s research

team identified the permeability factor through the implementation of

galactose affinity chromatography and mass spectrometry techniques.

This investigative process revealed the potential involvement of a

small protein with an estimated molecular weight < 30kDa, exhibiting

a strong affinity for galactose, which likely contributes to the observed

increase in permeability. Finally, CLCF-1 was identified within the

active fraction isolated via galactose chromatography in plasma

samples obtained from individuals with recurrent FSGS (79, 155).

Using the previously described in vitro model, the same group

showed that recombinant CLCF-1 exhibited a dose-dependent

ability to heighten Palb. Conversely, the introduction of an anti-

CLCF-1 monoclonal antibody effectively prevented the Palb

increase induced by CLCF-1 (156).
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The authors showed that CLCF-1 acts at the glomerular level via

the activation of the Janus kinase/Signal transducer and activator of

transcription (JAK/STAT) pathway. Podocytes, indeed, particularly

express JAK2 and STAT3, which are activated through tyrosine

phosphorylation by CLCF-1. This was evidenced by the fact that

preincubation with JAK2 or STAT3 inhibitors impeded the effects

of CLCF-1 and FSGS serum on increasing Palb. Notably, incubation

of cultured murine podocytes with CLCF-1 led to alterations in the

cytoskeleton configuration, characterized by filopodia retraction

and attenuation of basal parallel actin filaments (156,

157) (Figure 2).

Furthermore, the study revealed a significant increase in urine

albumin/creatinine ratio upon CLCF-1 injection in mice, thereby

confirming its ability to induce proteinuria independently.

However, it is important to note that this finding is subject to

certain limitations. The degree of albuminuria/proteinuria observed

in the mice was lower than that typically seen in classical human

FSGS. The authors hypothesized that this discrepancy may be due

to mice exhibiting resistance to developing proteinuria and/or

differences in the activated pathways between mice and humans

in renal disease. They further suggested that additional plasma

components might be required to induce maximal proteinuria and

accurately replicate renal disease resembling human FSGS.
FIGURE 2

Molecular mechanisms of Cardiotrophin-Like Cytokine Factor-1 in the pathogenesis of focal segmental glomerulosclerosis. CLCF-1, Cardiotrophin-
Like Cytokine Factor-1; JAK2, Janus kinase 2; STAT3, Signal transducer and activator of transcription 3.
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A 2010 literature review (79) reports that comparative studies

have been conducted between patients with recurrent FSGS and

healthy control subjects regarding the levels of CLCF-1. According

to the authors, the analysis revealed a remarkable elevation in

CLCF-1 concentrations in the former group, reaching

approximately 100 times higher levels.

Moreover, a recent study conducted by Chebotareva et al.

investigated the levels of CLCF-1 in sera obtained from patients

diagnosed with various chronic glomerulopathies, reporting no

significant variation in CLCF-1 levels between NS patients and those

with other glomerulopathies. Serum CLCF-1 levels correlate with

proteinuria and serum lipids in patients with NS. Furthermore, the

study observed that CLCF-1 levels remained unaffected by the

temporal relationship with immunosuppressive treatments, as similar

levels were observed in samples obtained before and after treatment.

However, it is important to acknowledge that a significant limitation of

this study is the lack of a healthy subject control group. As a result,

drawing conclusions regarding the normal values of CLCF-1 in healthy

subjects and the relative differences compared to the examined patients

is not feasible based on this study alone. To obtain a comprehensive

understanding of CLCF-1 role and its levels in both healthy individuals

and patients with glomerulopathies, further research incorporating a

healthy control group is necessary (158).

Building upon the emerging evidence, multiple research groups

have sought to target this presumed circulating factor in a human

patient setting.

In a study conducted by Savin et al. in 2008, it was

demonstrated that galactose exhibited a high affinity for the

permeability factor (later identified as CLCF-1) and effectively

inactivated its activity in vitro. The proposed rationale for

galactose therapy in FSGS patients involves the presence of

galactose-binding sites on the permeability factor which interact

with galactose of the glomerular glycocalyx, ultimately leading to

proteinuria. Supplementation with galactose may therefore block

the permeability factor’s binding sites, turning the factor inactive,

and promoting clearance of the permeability factor–galactose

complex through the liver metabolism (155).

However, when tested on a patient with post-transplant FSGS

recurrence, galactose supplementation did not result in an

improvement in proteinuria. The authors justified this by

suspecting the presence of already established irreversible

glomerular injury. Two subsequent case studies reported complete

or partial remission of NS with galactose therapy (159, 160).

In an attempt to replicate those findings, Sgambat K et al.

conducted a prospective clinical trial to investigate the effect of oral

galactose on circulating factor activity and proteinuria in seven

children with idiopathic SRNS (including two patients with post-

transplant FSGS recurrence). Unfortunately, while galactose

administration decreased the permeability factor activity, it failed

to improve proteinuria in any of the patients (161).

In another study conducted in 2015, it was found that among

seven patients with immunosuppressive-resistant FSGS who

received galactose treatment, only two individuals achieved the

primary endpoint of a 50% reduction in proteinuria without a

decline in estimated glomerular filtration rate (eGFR) (45).
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It has been argued that this lack of response might have been

due to the already established advanced-stage FSGS lesions at the

time of treatment and that further studies are required in the early

phase of the disease.

Taken together, the identification of CLCF-1 as a potential

circulating permeability factor is still a disputed matter.

Nevertheless, it is crucial to validate its pathophysiological role in

meticulously characterized patient cohorts and through

independent investigations conducted by various research groups.
8 B cells and autoantibodies

As previously discussed, extensive research has been dedicated

to investigating the pathogenesis of INS, with a focus on identifying

potential permeability factors produced by T cells, following the

publication of Shalhoub’s influential paper (112). However, in the

past decades, compelling evidence has emerged suggesting the

implication of a dysregulated B cell function in the genesis and

maintenance of the disease.

In a brilliant 2017 paper, Dossier et al. provided a point-to-

point rebuttal of the main pieces of evidence that supported

Shalhoub’s hypothesis, ultimately proposing INS as a primary B

cell disease. First of all, the authors highlighted that measles

infection can lead to remission of INS as a result of impaired

synthesis of immunoglobulins. Additionally, the therapeutic efficacy

of steroids and cyclophosphamide can be attributed to their ability

to induce apoptosis in mature B-cells. Furthermore, Reed Sternberg

cells observed in Hodgkin’s disease display VDJ rearrangements in

the immunoglobulin locus and express numerous B-cell surface

markers. Lastly, they underscored that the antibody response to

polysaccharide pneumococcal antigens relies on the B cell receptor

(BCR) rather than being T cell-dependent (120).

Moreover, as opposed to Shalhoub’s and many others’

perceptions of a lack of humoral immunity involvement, recent

studies have identified several autoantibodies as potential mediators

of podocyte injury in INS. For instance, anti-ubiquitin C-terminal

hydrolase L1 (UCHL1) IgG, an autoantibody targeting podocytes,

has been recognized in a subgroup of INS patients (162). Watts et al.

recently discovered circulating anti-nephrin antibodies in 29% of

patients with MCD, which showed a significant reduction following

treatment response. The presence of these autoantibodies correlated

with positive podocyte-associated IgG staining in renal biopsies

(163). Furthermore, the development of a panel consisting of seven

circulating antibodies has demonstrated an impressive 92%

accuracy in predicting post-transplant FSGS recurrence among a

cohort of 64 patients (164). In a similar experiment, Ye et al.

demonstrated that 66% of children with INS exhibited circulating

podocyte autoantibodies, which correlates with higher 24-h

proteinuria levels (165).

Nowadays, the main proof supporting the involvement of B

cells in the pathogenesis of INS is provided by the demonstrated

effectiveness of the treatment with rituximab, an anti-CD20

monoclonal antibody that selectively depletes B cells, in patients

with steroid-dependent or frequently relapsing INS (166).
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Providing additional support for the involvement of B cell

activation in INS, it is widely recognized that mesangial deposits

of low or moderate levels of IgM are frequently observed in patients

with FSGS (167, 168). Furthermore, elevated CD19+ and CD20+ B

cell counts have been observed during relapses of NS in patients

with steroid-sensitive forms of the disease, followed by subsequent

reductions upon achieving remission (169). However, conflicting

data exist regarding this matter (170).
8.1 B cell immunophenotypes

Recen t s t ud i e s f o cu s ed on id en t i f y i n g sp e c ifi c

immunophenotypes of B cells involved in the pathogenesis of INS.

Studies conducted on pediatric patients have revealed

significant differences in the composition of B cell subsets

between SSNS and SRNS patients, as well as healthy volunteers,

during the initial onset and relapse stages. Specifically, during

relapses of SSNS, there was a notable increase in memory B-cells

(CD27+), primarily driven by elevated proportions of IgM-memory

B-cells (CD27+IgD+IgM+) and switched-memory B-cells

(CD27+IgD- IgM- ) . In cont ra s t , t r ans i t i ona l B-ce l l s

(CD19+CD24hiCD38hi) were significantly elevated in SSNS

compared to SRNS patients. Notably, the proportion of

transitional B-cells proved effective as a biomarker for predicting

the response to prednisone therapy, with a cutoff value of 2.05 (% of

total lymphocytes) enabling the differentiation of SSNS from SRNS

with a sensitivity of 79.1% and a specificity of 90.9% (171). The

same group demonstrated that a lower transitional B-cell

proportion and a higher memory B-cell proportion were

associated with an increased risk of disease relapse during a one-

year follow-up in SSNS patients who had a stable response to steroid

treatment. They, therefore, proposed a low transitional B-cell to

memory B-cell ratio as an independent risk factor for recurrence-

free survival in SSNS patients (172).

Similarly, Colucci et al. documented significantly higher values

of total memory B-cells and switched memory B-cells (but not IgM-

memory B-cells) during relapse compared to control onset and

remission values, in pediatric patients with SSNS (173).

Moreover, switched memory B-cell recovery after rituximab

treatment was significantly delayed in non-relapsing pediatric INS

patients compared to the relapsing group, proving to be a valuable

predictor of treatment response (174).

Additional investigations conducted by Fribourg et al., utilizing

Time-of-flight mass cytometry analysis, confirmed that switched

memory B-cells constitute the primary lymphocyte subset

associated with disease relapse in children suffering from steroid-

dependent INS (175).

Limited evidence is available about B cell profile alterations in

adult patients with NS. Among 22 adult patients with active MCD

and NS, plasmablasts (CD24-CD38highCD27high) were the only B

cell subset found at a significantly higher level compared to patients

in remission, patients with idiopathic membranous nephropathy,

and healthy controls. Plasmablasts levels positively correlated with

lower albumin and higher proteinuria levels. Moreover, increased

levels of IL-21, IL-6, and B-cell activating factor (BAFF) in the
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serum of relapsing patients were significantly correlated with the

percentage of plasmablasts (176). In a recent study conducted by

Casiraghi et al., an elevation in the memory B-cell population was

observed in adult patients with steroid-dependent/frequently

relapsing NS (SDNS/FRNS) and SRNS compared to healthy

volunteers. SDNS/FRNS patients predominantly exhibited a

CD38-negative phenotype, while SRNS patients were

characterized by a switched phenotype (140).

In the past decade, an intriguing hypothesis linking chronic

viral infections to the immunopathogenesis of INS has gained

attention. One prominent aspect of this hypothesis focuses on the

potential role of EBV latency in memory B-cells. Specifically, it is

hypothesized that anti-Epstein-Barr nuclear antigen 1 (EBNA1)

antibodies may exhibit cross-reactivity with major podocyte

proteins following their internalization through the neonatal Fc

receptor. Consequently, this process is suggested to contribute to

the development of the histological and clinical characteristics

associated with INS (120).

Interestingly, Colucci et al. observed the production of hypo-

sialylated IgM antibodies that bind to T cell surfaces in pediatric

patients with INS and poor response to therapies, suggesting a

potential mechanism for steroid dependence in the disease. This

finding implies the existence of a pathogenic connection between B

cells and T cells in MCD and FSGS (177). Finally, IgM has been

shown to activate the classical pathway of complement in the

glomeruli of INS patients, contributing to the damage (178).

These findings shed light on the intricate involvement of

dysregulated B cell function and the presence of autoantibodies in

the pathogenesis of INS. However, further investigations are

required to elucidate the specific mechanisms by which B cells

contribute to the disease and their interaction with T cells and

complement activity.
9 B-cell activating factor in circulating
factor disease

The B-Cell activating factor (BAFF), also known as tumor

necrosis factor ligand superfamily member 13B (TNFSF13B) or B

Lymphocyte Stimulator (BLyS), is a homeostatic cytokine belonging

to the TNF family. BAFF is expressed by various cell types in the

immune system, such as monocytes, activated neutrophils, T cells,

and dendritic cells. Initially expressed as a membrane protein, BAFF

can be released into circulation after processing and cleavage. Its

expression and secretion are upregulated during inflammation in

response to different stimuli, including IL-2, TNF-a, and

interferon- g (IFN-g) (179).
BAFF interacts with three distinct receptors, mainly expressed

by B lymphocytes: BLyS receptor 3 (BR3) or BAFF-R,

transmembrane activator–1 and calcium modulator and

cyclophilin ligand–interactor (TACI), and B-cell maturation

antigen (BCMA). These interactions play a critical role in the

selection, survival, and maturation of B cells. Specifically, the

interaction between BLyS and its receptor, BR3, is essential for

the viability of newly formed and mature primary B cells. This

interaction provides vital and nonredundant survival signals
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necessary for their continued existence (180). Interestingly, BAFF

actively participates in supporting B-cell survival during the early

stages of B-cell maturation and the differentiation of B cells into

antibody-producing plasma cells, whereas the levels and function of

memory B cells are independent of BAFF (181).

BAFF activity specifically plays a crucial role during the

transitional stages of B cell differentiation. This differentiative

stage is the major peripheral checkpoint for the elimination of

potentially autoreactive B cells before their maturation. An

excessive amount of BAFF can disrupt this process, allowing less

avid self-reactive clones to evade anergy and be rescued, thereby

leading to a breakdown in B-cell tolerance and the development of

autoimmunity (179, 182).

Elevated levels of BAFF have been observed in the serum of

patients with various autoimmune diseases, such as rheumatoid

arthritis (183), Sjögren’s syndrome (184), or systemic lupus

erythematosus (SLE) and lupus nephritis (179). A variant in the

TNFSF13B gene, which encodes for BAFF, has been associated with

increased serum levels of this cytokine and has been linked to

multiple sclerosis and SLE (185).

In the kidney, studies have reported higher levels of BAFF in

direct relation to the activity of IgA nephropathy (186), while

limited information is currently available regarding the

association between BAFF and INS, particularly in FSGS patients.

BAFF expression on kidney biopsy was associated with a more

rapid decline in GFR and overall lower GFR values in a cohort of 33

pediatric patients with MCD or FSGS and NS. Podocytes and

interstitial inflammatory infiltrates were found to express BAFF in

18.2% and 36.4% of the biopsy samples, respectively (187).

Belimumab, a monoclonal antibody targeting BAFF, has shown

efficacy in the treatment of various autoimmune conditions and it is

approved for the treatment of refractory SLE, including lupus

nephritis (188). Belimumab has also demonstrated promising

results in reducing anti-HLA antibody titers in kidney transplant

humoral rejection (189) and in reducing anti-phospholipase A2

receptor autoantibodies (PLA2R-Ab) and proteinuria (both

important hallmarks of the disease) in primary adult

membranous nephropathy (190).

In a recent phase two trial, treatment with belimumab in ten

frequently-relapsing NS pediatric patients was evaluated. Although

the treatment was well-tolerated, the study was terminated after the

interim evaluation as researchers did not find clear improvements

in the mean number of relapses and mean prednisone dose, in a six-

month period of observation. It is important to note that the small

number of patients and the short follow-up period limited the

ability to draw definitive conclusions regarding efficacy.

Nonetheless, it is important to consider the burden of monthly

in-hospital intravenous infusions in this therapeutic scheme, as it

can outweigh the potential benefits. Notably, belimumab therapy

was associated with a decrease in transitional and mature-naive B-

cells, while memory B-cells were not significantly affected,

supporting their potential role in the pathogenesis of the

disease (191).

To sum up, the role of BAFF in the pathogenesis of INS and

permeability factor-related FSGS is still not fully understood. As it

holds promising potential, further studies are needed to unravel its
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precise contribution to the development of the disease and its

recurrence after kidney transplantation.
10 Role of the complement system in
circulating factor disease

Segmental deposition of C3 in the sclerotic portion of the

glomerular tuft, as well as occasionally in the adjacent mesangium

and unaffected glomeruli, represents well-established features

present in a significant percentage of FSGS patients (168, 192)

The significance of these deposits, frequently associated with IgM

deposits, is uncertain.

Studies in rodent models of FSGS, such as adriamycin

nephropathy, observed increased deposition of the terminal

complement complex C5b-9 within the kidney, particularly on

the apical surface of proximal tubular cells and in the peritubular

region. Adriamycin-treated C6-deficient rats, which cannot form

C5b-9, demonstrated reduced interstitial extracellular matrix

deposition, less tubule-interstitial injury, minor peritubular

myofibroblast accumulation, and reduced interstitial monocyte

infiltration compared to C6-sufficient rats (193), supporting the

role of the terminal complement activation in disease progression.

Furthermore, in the same model of FSGS, promising results

have been observed by inhibiting decay-accelerating factor (DAF)

cleavage on podocytes, a key complement regulator, through both

genetic and pharmacological approaches. These interventions have

shown potential in preventing the onset and progression of

FSGS (194).

In a different mouse model of NS, induced by the protein-

overload, abnormal fixation of ultrafiltered C3 was detected in

tubu l i and podocy te s showing s igns o f in jury and

dedifferentiation during the early stage of the disease. Moreover,

C3-deficient mice with protein overload were protected against

podocyte structural damage and sclerosis, indicating that

complement activation might increase susceptibility to injury (195).

Interestingly, mutations in factors H and C3 have been

described in literature cases of biopsy-proven FSGS (196).

Moreover, in a cohort of 19 patients with FSGS, plasma and urine

levels of complement activation components Ba, C4a, and sC5b-9

were significantly higher than in control patients with CKD, ANCA

vasculitis, lupus nephritis, or in healthy controls. These findings

suggest a potential pathogenetic role of complement activation in

the development of FSGS. Notably, plasma Ba levels exhibited an

inverse correlation with the eGFR at the time of diagnosis and the

end of the study. Additionally, plasma and urine Ba levels at the end

of the study showed a positive correlation with the level of

proteinuria, which was the primary outcome of the study (197).

In a similar study by Huang et al., the authors demonstrated

elevated levels of C3a, C5a, and C5b-9 in both the plasma and

urine of FSGS patients compared to normal controls. The levels of

plasma and urinary C5b-9 were positively correlated with urinary

protein, renal dysfunction, and interstitial fibrosis. Furthermore,

plasma C5a levels showed a positive correlation with the proportion

of segmental sclerotic glomeruli (198). Recently, among a cohort of

112 autoimmune glomerulonephritis patients, urines from patients
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with either MCD or FSGS showed significantly increased levels of

C5a, which directly correlated with the severity of proteinuria (199).
11 Crosstalk between complement
and adaptive immunity

The association between complement system and adaptive

immunity in the pathogenesis of FSGS has been extensively

demonstrated in numerous studies.

For instance, when BALB/c mice deficient in DAF were injected

with sheep anti-mouse podocyte antibodies, they exhibited

histological and ultrastructural characteristics of FSGS, marked

albuminuria, periglomerular monocytic and T cell infiltration,

and heightened T cell reactivity to sheep IgG. Notably, depleting

CD4+ T cells from DAF-deficient mice led to a substantial reduction

in all of these observed features, suggesting that signals derived from

the complement system may influence T cell response and

contribute to the development of FSGS (200).

Furthermore, recent research has shown an emerging interest in

understanding the interplay between the complement system and B

cell immunity in primary FSGS. This relationship has been initially

established in the rodent adriamycin nephropathy model of FSGS.

In this model, complement activation within the glomerulus was

mediated by IgM and contributed to disease progression (201).

Confirming those pre-clinical studies, Trachtman et al.

demonstrated elevated levels of C4a and C5b-9, along with

increased levels of self-reactive IgM, in the plasma of patients

with INS compared to healthy control subjects. Similarly, they

observed co-localization of IgM with activated complement

fragments C4d, iC3b/C3d, and C9neo within certain glomeruli of

individuals with FSGS. Based on these results, they suggested that

IgM activates the complement system in the glomeruli of some

patients with INS, contributing to injury (178).

Furthermore, anaphylatoxins C3a and C5a may be important

mediators of the complement system-B cell immunity crosstalk.

Anaphylatoxins are potent chemotactic factors generated in the

complement activation cascade through the enzymatic cleavage of

C3 and C5 by convertase enzymes (202). They serve as a powerful

chemoattractant, guiding the directed migration of various immune

cells. Among these cells, neutrophils and macrophages are

particularly responsive to anaphylatoxins, which trigger the

synthesis and release of inflammatory mediators such as TNF, IL-

1, IL-6, CC chemokines, and CXC chemokines, perpetuating the

inflammatory cascade (203).

Recent literature has highlighted an interesting novel role of

BAFF in the interplay between the complement system and B cells

in the adaptive immune system activity. This crosstalk is mediated

by the activity of the neutrophils, which express complement

receptors and can release BAFF upon activation (204). A

noteworthy 2023 study by Cumpelik et al. demonstrated the

existence of a T cell-independent B cell response that involves

alternative pathway complement activation and the presence of

neutrophil-expressed C3a and C5a receptors (C3aR1/C5aR1).

These receptors promote BAFF-dependent expansion of B1-cells

and T cell-independent antibody production. Notably, the
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conditional absence of C3aR1/C5aR1 on neutrophils resulted in

lowered serum BAFF levels. These findings indicate that sequential

complement activation on neutrophils critically supports humoral

T cell-independent responses by upregulating neutrophil

production of BAFF (205). Given the solid evidence supporting

the role of both the complement and B cells, pathogenetic

mechanisms of post-transplant FSGS recurrence may involve

primary complement system activation, which stimulates

excessive BAFF secretion by neutrophils, resulting in a B cell-

mediated damage to the glomerular barrier.

Additionally, Paiano et al. (206) uncovered further insights into

the involvement of complement in B2-cell responses. Their

experiments revealed that signaling through C3aR1/C5aR1 is

necessary for B2-cell responsiveness to BAFF and for multiple

stages of B2-cell activation essential for class switch

recombination and affinity maturation. These findings highlight

the complexity of the role of anaphylatoxins in both B1-cell and B2-

cell responses, underscoring the importance of complement-

mediated signaling in the control of adaptive immune processes.

Altogether, the data described in this section support the

hypothesis that the complement system plays a significant role in

the pathogenesis of podocyte injury and loss in FSGS. This

involvement may occur through its direct damaging effects on

podocytes but there is a raising interest concerning its

mechanisms of interaction with the adaptive immune system

(Figure 3). These interactions may help elucidate the complex

involvement of all these components in the development and

post-transplant recurrence of FSGS.
12 Other (potential) circulating factors

Several other molecules have been implicated in the

pathogenesis of FSGS and INS. Among these molecules, the roles

of hemopexin and soluble urokinase plasminogen activator receptor

(suPAR) have been extensively debated in the literature, but not

conclusively confirmed. In more recent literature, other potential

circulating factors have been described, including cMaf-inducing

protein (cMip), CD40L, and Angiopoietin-like-4 (Angptl4).
12.1 Hemopexin

Hemopexin, a b1 plasma glycoprotein with a high affinity for

heme, is mainly expressed in the liver and belongs to the family of

acute-phase proteins, whose synthesis is induced following an

inflammatory event (207).

Experimental studies in rats have shown that the injection of

hemopexin triggers proteinuria and promotes the effacement of

glomerular foot processes (208). This effect is believed to be

mediated by hemopexin’s ability to induce nephrin-dependent

reorganization of the actin cytoskeleton, leading to alterations in

glomerular permeability (209). Further in-vitro experiments

showed that glomerular mesangial cells derived from healthy

individuals can produce hemopexin after prior incubation with

TNF-a (210). After an almost two decades long gap in research on
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this topic, a study by Pukajło-Marczyk et al. in 2021 reported

significantly higher serum and urine levels of hemopexin in

children with INS compared to healthy controls (211).

Furthermore, Agrawal et al. developed a biomarker panel able to

predict SRNS at the time of disease presentation, through proteomic

analysis of pediatric NS patient plasma samples. This panel

included hemopexin along with 13 other biomarkers (212).

Additionally, a 2022 study by Chebotareva et al. analyzed the

urinary proteome profile of patients with INS using mass

spectrometry. They found elevated expression of hemopexin in

patients with severe progressive FSGS, compared to those with mild

FSGS forms or MCD (213).

Further research is therefore needed to provide more definitive

evidence regarding the role of hemopexin as a mediator or

prognostic marker in FSGS.
12.2 Soluble urokinase plasminogen
activator receptor

The role of soluble urokinase plasminogen activator receptor

(suPAR) in human FSGS has been the center of a complex debate

between scientists for many years and continues to be so.

suPAR refers to the soluble form of the urokinase-type

plasminogen activator receptor (uPAR), which is a membrane

protein linked to glycosyl-phosphatidylinositol found on various

immunologically active cells. uPAR plays a role in the regulation of

cell adhesion and migration by binding urokinase-type

plasminogen activator, vitronectin, and integrins. suPAR

originates from cleavage and release of the membrane-bound

uPAR, and its levels in the serum are directly proportional to the

activation of the immune system. Elevated levels of suPAR have

been observed in various clinical conditions, including systemic

inflammation and malignant diseases (214).
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In the context of glomerular diseases, a seminal study by Wei

et al., in 2008, demonstrated in mice lacking uPAR that treatment

with suPAR or its overexpression led to increased signaling of avb3
integrin in podocytes, resulting in foot-process effacement and

proteinuria (215). The same group subsequently conducted a

significant study revealing elevated serum levels of suPAR in two-

thirds of individuals with primary FSGS, but not in those with other

glomerular diseases. They further established that higher pre-

transplant suPAR concentrations were associated with an

increased risk of FSGS recurrence post-transplantation. During

their study, the authors established a cutoff value of 3000 pg/mL,

indicating a high probability of diagnosing FSGS (216).

The discovery of the possible involvement of suPAR in the

pathogenesis of FSGS sparked numerous preclinical and clinical

studies, yielding conflicting results and raising doubts about the

specificity of the correlation between suPAR and the disease (217).

Conflicting research findings have revealed that suPAR levels do

not possess the capability to differentiate between patients

diagnosed with FSGS and those affected by other glomerular

diseases, including MCD, membranous nephropathy, IgA

nephropathy, lupus nephritis, or non-chronic kidney disease

(218–221). This suggests that suPAR might serve merely as a

nonspecific marker of glomerular distress. Additionally, some

studies have indicated that suPAR levels and eGFR held an

inverse correlation in different patient cohorts, including those

with chronic glomerular diseases, idiopathic nephrotic syndrome

(INS), and particularly FSGS patients. This correlation is thought to

be associated with impaired renal excretion rather than suPAR’s

role as a disease biomarker (219, 222). Multiple other studies

showed that serum suPAR was not useful either as a diagnostic or

treatment response marker in MCD patients (223, 224).

It should be highlighted, however, that some authors supported

the potential value of serum suPAR as a predictor for post-

transplant FSGS recurrence (225, 226). Even in this context, the
FIGURE 3

Summary of the interplay between molecular mechanisms underlying the pathogenesis of focal segmental glomerulosclerosis. C5aR1, complement
5a receptor 1; C3aR1, complement 3a receptor 1; BAFF, B cell activating factor; CLCF-1, Cardiotrophin-Like Cytokine Factor-1; Ab, antibodies;
suPAR, soluble urokinase plasminogen activator receptor.
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evidence is low and further research would be needed to define a

correlation between serum suPAR and post-transplant recurrence

of FSGS.

Therefore, the role of suPAR or any of its specific glycosylated

cleavage products as a specific marker of FSGS or potential

mediator of the disease has yet to be established.
12.3 Others

Various other molecules that could act as circulating factors and

contribute to the pathogenesis of circulating factor disease have

been proposed in the last decade. However, their roles in the disease

are yet to be established.

In 2010, Zhang et al. reported elevated expression of Cmaf-

inducing protein (cMip) in the podocytes of patients with INS.

They also observed that transgenic mice overproducing cMip in

podocytes developed proteinuria without visible pathologic

alterations. The researchers demonstrated that cMip interacts with

the Src kinase Fyn, leading to the inhibition of nephrin and N-WASP

phosphorylation, resulting in cytoskeleton disorganization (227).

Recent findings suggest that cMip may induce proteinuria in

podocytopathies by downregulating Wilms tumor 1 (WT1) at the

mRNA and protein levels, as WT1 is essential for podocyte

integrity (228).

Angiopoietin-like-4 (Angptl4), a glycoprotein highly expressed

in the liver and adipose tissue, was first shown by Clement et al. in

2011 to be glucocorticoid-sensitive and highly upregulated in the

serum and podocytes of experimental models of MCD and human

disease. In a transgenic mouse model, Angptl4 secreted specifically

by podocytes was responsible for inducing nephrotic-range

proteinuria, loss of glomerular basement membrane charge, and

foot process effacement – all hallmarks of MCD (229). Further

studies from the same group supported a potential role for Angptl4

in proteinuria development in MCD patients (230, 231). However, a

larger study by Cara-Fuentes et al. in 2017, which included 60 MCD

and 52 FSGS patients, did not confirm these findings and found

lower serum Angptl4 levels in patients with MCD, FSGS, and

membranous nephropathy during relapse compared to controls.

The study did find increased urinary Angptl4 levels in MCD

patients, but they were similar to those observed in patients with

massive proteinuria due to other glomerular diseases (232).

CD40, along with its ligand, CD40L, belongs to the tumor

necrosis factor receptor (TNFR) superfamily and plays a role in the

maturation and activation processes of multiple immune cell lines,

exerting pro-inflammatory effects (233). At the kidney level,

glomerular epithelial cells constitutively express CD40. Blocking

the CD40-CD40L interaction has shown protective effects in animal

models of FSGS (78, 234). A soluble form of CD40L (sCD40L),

resulting from proteolytic cleavage of CD40L, has been detected in

circulation and associated with a potential pathogenetic role in

primary FSGS. Doublier et al. demonstrated that sCD40L could

bind to CD40 on the membrane of glomerular epithelial cells,

leading to an alteration of nephrin and podocin distribution both in

vivo and in vitro. Inhibition of CD40-CD40L interaction in vitro

prevented these effects. Furthermore, the study found significantly
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elevated levels of sCD40L in the sera of adult patients with biopsy-

proven FSGS compared to healthy subjects (235). It is worth

mentioning that the previously mentioned study by Delville et al.

also detected anti-CD40 antibodies in the serum of patients with

recurrent FSGS, which alone predicted post-transplant recurrence

with 78% accuracy (164).

In conclusion, although these findings hold promise, further

research is needed to definitively confirm or exclude the role of

these molecules in the pathogenesis of primary FSGS.
13 Animal models of FSGS

Several animal models resembling FSGS have been developed in

the last decades. All these models induced podocyte injury that was

caused by toxic agents or nephron reduction, by a combination of

genetic mutation and toxins or by specific podocyte

gene disruption.

Adriamycin (236–241) and puromycin aminonucleoside (242–

248) are the podocyte toxin drugs most used to induce FSGS. When

administered to susceptible rodent strains, they induced progressive

glomerular disease, proteinuria, and development of histologic

FSGS within few months.

Models of inducible FSGS have been also created to allow

controlling the onset and severity of podocyte-specific injury. The

Thy-1.1 model was generated by inducing podocyte expression of a

hybrid human-mouse Thy-1.1 antigen. Ectopic expression of Thy-

1.1 induced per se spontaneous development of proteinuria and

histological lesions of FSGS in some glomeruli within 6 months of

age (249). Injection of anti Thy-1.1 antigen antibody induced acute

proteinuria and accelerated the development of FSGS (250, 251).

Similarly, transgenic expression of the diphtheria toxin receptor

(252) or of human CD25 (253) in podocytes allowed inducing

defined levels of podocyte depletion by titrating the administration

of diphtheria toxin in rats (252) or the LMB2 immunotoxin with

specific binding to human CD25 in NEP25 mice (253,

254), respectively.

These models have been fundamental to demonstrate that

podocyte injury caused FSGS in a dose-dependent manner,

however they do not address the cause of primary FSGS.

To dissect the role of specific podocyte proteins whose mutations

have been identify as a monogenetic cause of nephrotic syndrome,

several knock-out and knock-in murine transgenic models have been

created. So far murine models transgenic for slit diaphragm and

cytoskeleton of the foot process protein genes, such as NPHS1 (255,

256), NPHS2 (257, 258), aACT4 (259, 260), CD2AP (261), TRPC6

(262), PODXL (263) are available and provided invaluable insights

into the function of the single protein and the role of its abnormality

in the pathogenesis of proteinuria and FSGS development in the

genetic forms of the disease.

All the above models utilizing either chemical or genetic

podocyte depletion strategies led to important gain of knowledge

of the complex pathophysiology of FSGS but do neither involve a

circulating factor nor replicate the underlying immunologic

abnormalities. Therefore, these models are not suitable for

studying the pathologic process of human primary FSGS.
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The model of spontaneous FSGS in Buffalo/Mna rat might be

considered a primary FSGS-like disease induced by a circulating

factor based on proteinuria recurrence on the transplanted healthy

kidney in these rats (264, 265). The development of nephrotic

syndrome in Buffalo/MWF is preceded by kidney infiltration of

activated macrophages and T cells and by Th2 polarization (266),

suggesting that primary FSGS in this model could be an immune-

mediated disorder. Nevertheless, the slower pace of kidney

deterioration has hampered the use of this model in FSGS research.

In an effort to create an in vivo model to detect the presence of

circulating permeability factor in FSGS patient blood samples, den

Braanker at al (267)., backcrossed the Thy-1.1 transgene across five

mouse strains and identified Balb/cThy-1.1 and C57BL/6 Thy-1.1

mice as FSGS-prone models suitable for testing circulating

permeability factor. Injection of plasmapheresis effluent from FSGS

patients, at a dose that did not induce protein overload, accelerated

albuminuria development in these FSGS-prone mice. However, the

injection of serum and plasma samples from the same patients failed

to induce proteinuria, limiting the applicability of this model for

diagnostic purpose as well as its value as research model.

Recent studies highlight the potential of the recently developed

humanized mouse models as a tool to investigate the immunologic

abnormalities in FSGS. In a study of Sellier-Leclerc et al. (268), the

injection of immature CD34+ cells isolated from blood of patients

with MCD and FSGS - but not the injection of CD34- cells or cells

isolated form healthy volunteers - into humanized NOD/SCID mice

induced proteinuria and typical FSGS renal lesion at electron

microscopy. The engraftment of CD34+ cells from NS patients in

humanized mice paralleled the increase in albuminuria, whereas

injection of mature T cells from the same subjects did not induce

any changes in urinary albumin-to-creatinine ratio. The authors

suggested that the cells responsible of glomerular injury were

immature cells undergoing differentiation (268). A more recent

study implicated BM-derived immature myeloid cells as cells

responsible for the development of proteinuric kidney diseases,

including FSGS (269). Through bone marrow transplantation

studies in uPAR deficient and sufficient mice, the authors identify

Gr-1low immature myeloid cells as the source of elevated levels of

suPAR in proteinuric animals. These cells were able to induce

proteinuria when injected into healthy mice. Injection of whole

PBMC – but not CD34-depleted PBMC – derived from patients

with recurrent FSGS into humanized NSG mice resulted in Gr-1low

myeloid cell expansion in the BM, higher suPAR levels and

development of proteinuria, suggesting that FSGS might be

considered a hematopoietic stem cell disorder.

These humanized mice models are promising useful tools to

study the involvement of stem and immune cells in FSGS

pathogenesis and will be instrumental for future studies aimed at

identifying the cellular source of the circulating permeability factor.

Overall, the lack of animal models resembling primary FSGS

has represented a main obstacle in the research and is still

hampering our ability to get insight into the disease pathogenesis

and treatment. However, important advances through new

technologies, such as humanized mice (268, 269), zebrafish model

system (270), in vitro kidney organoid and 3D coculture (271) are

expected in the coming decade.
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14 Discussion and future directions
In conclusion, the pathogenesis of post-transplant disease

recurrence in patients with primary FSGS remains a complex and

incompletely understood process. Various authors agree that

circulating factor disease may encompass a wide spectrum of

disorders, each characterized by distinct pathologic mechanisms. In

each subtype, multiple specific mechanisms may contribute to the

podocyte dysfunction and abnormal glomerular permeability observed,

as well as their recurrence following kidney transplantation (104).

A critical limitation of current studies on circulating factor-

related FSGS is the inclusion of patients without prior

transplantation, whereas it is only the forms of FSGS that rapidly

recur after kidney transplantation that can be confidently attributed

to a circulat ing permeabil i ty factor . To val idate the

pathophysiological role of specific molecules in FSGS, it is

imperative to establish well-characterized patient cohorts,

particularly focusing on smaller cohorts consisting exclusively of

post-transplant recurrent FSGS patients. Thus, to enhance the

significance and scientific validity of studies on the pathogenesis

of primary FSGS, the establishment of international biobanks

should be encouraged, aimed at increasing the sample size of

studies that adopt this more precise patient inclusion criterion.

The existing hypotheses only offer partial explanations for the

pathogenesis of primary FSGS. It is proposed that the pathogenesis

may involve a multi-hit process, wherein the various molecules

proposed as potential unique circulating factors interact with one

another and with other unidentified factors, inducing the first

manifestation of proteinuria and triggering a self-perpetuating

mechanism (110). Furthermore, it is possible that a missing

circulating molecule, rather than an excess of one, is involved in

the pathogenesis of FSGS.

Each candidate molecule and pathogenetic mechanism may not

exclude the complementary pathogenic role of others, including

those that are yet unknown. Therefore, further research should

adopt a modified approach by focusing on better-characterized

smaller patient cohorts, as mentioned above, and incorporating

high-throughput hypothesis-generating techniques such as -omics

technologies. This approach holds great promise for unraveling the

intricate complexity of immune response and imbalances

underlying circulating factor-related diseases, aiming to uncover

their intersections and develop a comprehensive analysis of primary

FSGS alterations, leading to a global understanding of the disease.

Furthermore, a notable challenge that demands attention is the

absence of an in vivo preclinical model that demonstrates a

pathological response upon exposure to serum or plasma from

primary FSGS patients. The development of such a model would

be of paramount importance, as it would be crucial for validating the

pathogenetic role of candidate circulating factors and would pave the

way for studies aiming to identify the active fraction of plasma from

primary FSGS patients, similar to Savin’s in-vitro research (155).

Adopting this comprehensive top-down and bottom-up

approach, encompassing both hypothesis testing and hypothesis

generation, would be crucial in definitively identifying the

underlying cause of the disease.
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15 Conclusions

In summary, the pathogenesis of post-transplant disease

recurrence in primary FSGS requires further investigation and

understanding. Establishing well-characterized patient cohorts,

specifically focusing only on post-transplant recurrent FSGS

patients, will contribute to validating the role of specific

molecules in the disease. The convergence of hypotheses and the

implementation of high-throughput techniques, including single-

cell-based approaches, offer promising avenues for comprehending

the complex immune response and imbalances underlying

circulating factor-related FSGS. Additionally, the development of

an in vivo preclinical model would be crucial in assessing the

pathogenicity of serum or plasma from FSGS patients, ultimately

advancing our knowledge of this challenging condition.
Author contributions

GS and FC wrote the manuscript. FC and GR played a key role in

editing and revising the manuscript for clarity and coherence. All

authors contributed to the article and approved the submitted version.
Frontiers in Immunology 16
Acknowledgments

The authors are very grateful to the Medici di Marignano

family; their generosity has been invaluable in enabling us to

carry out our research work.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Fogo AB. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat Rev
Nephrol (2015) 11:76–87. doi: 10.1038/nrneph.2014.216

2. D’Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis. New Engl J
Med (2011) 365:2398–411. doi: 10.1056/NEJMra1106556

3. Kitiyakara C, Kopp JB, Eggers P. Trends in the epidemiology of focal segmental
glomerulosclerosis. Semin Nephrol (2003) 23:172–82. doi: 10.1053/snep.2003.50025

4. Shabaka A, Tato Ribera A, Fernández-Juárez G. Focal segmental
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