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The contribution of matrix
metalloproteinases and their
inhibitors to the development,
progression, and rupture of
abdominal aortic aneurysms
Georgia Atkinson, Rosaria Bianco, Karina Di Gregoli and
Jason L. Johnson*

Laboratory of Cardiovascular Pathology, Department of Translational Health Sciences, Bristol Medical
School, University of Bristol, Bristol, United Kingdom

Abdominal aortic aneurysms (AAAs) account for up to 8% of deaths in men aged
65 years and over and 2.2% of women. Patients with AAAs often have
atherosclerosis, and intimal atherosclerosis is generally present in AAAs.
Accordingly, AAAs are considered a form of atherosclerosis and are frequently
referred to as atherosclerotic aneurysms. Pathological observations advocate
inflammatory cell infiltration alongside adverse extracellular matrix degradation
as key contributing factors to the formation of human atherosclerotic AAAs.
Therefore, macrophage production of proteolytic enzymes is deemed
responsible for the damaging loss of ECM proteins, especially elastin and fibrillar
collagens, which characterise AAA progression and rupture. Matrix
metalloproteinases (MMPs) and their regulation by tissue inhibitors
metalloproteinases (TIMPs) can orchestrate not only ECM remodelling, but also
moderate the proliferation, migration, and apoptosis of resident aortic cells,
alongside the recruitment and subsequent behaviour of inflammatory cells.
Accordingly, MMPs are thought to play a central regulatory role in the
development, progression, and eventual rupture of abdominal aortic aneurysms
(AAAs). Together, clinical and animal studies have shed light on the complex and
often diverse effects MMPs and TIMPs impart during the development of AAAs.
This dichotomy is underlined from evidence utilising broad-spectrum MMP
inhibition in animal models and clinical trials which have failed to provide
consistent protection from AAA progression, although more encouraging results
have been observed through deployment of selective inhibitors. This review
provides a summary of the supporting evidence connecting the contribution of
individual MMPs to AAA development, progression, and eventual rupture. Topics
discussed include structural, functional, and cell-specific diversity of MMP
members; evidence from animal models of AAA and comparisons with findings
in humans; the dual role of MMPs and the requirement to selectively target
individual MMPs; and the advances in identifying aberrant MMP activity. As
evidenced, our developing understanding of the multifaceted roles individual
MMPs perform during the progression and rupture of AAAs, should motivate
clinical trials assessing the therapeutic potential of selective MMP inhibitors,
which could restrict AAA-related morbidity and mortality worldwide.
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Introduction

Abdominal aortic aneurysms (AAA) demonstrate a major, life-

threatening cardiovascular condition as demonstrated through

mortality rates associated with ruptured AAAs estimated at 90%

(1). Progress has been made in elucidating the multifactorial

process of AAA pathogenesis, in particular the components of

chronic inflammation which has led to promising candidates for

conservative treatments currently being tested in several

prospective clinical trials. Yet to date, surgical repair remains the

only curative approach, but is associated with considerable

morbidity and mortality rates.

Matrix metalloproteinases (MMPs) are a family of enzymes

which degrade major components of the vessel wall.

Additionally, resident and recruited cells can utilise MMPs

directly and indirectly to facilitate their behaviour, including

proliferation, migration, and survival. As a result, MMPs

intimately contribute to the development and progression of

multiple cardiovascular diseases, including AAA. An imbalance

in the ratio between MMPs and the endogenous tissue inhibitors

of MMPs (TIMPs) is believed to be a critical part of the

dysregulated extracellular matrix degradation seen in AAAs, with

numerous studies observing increased MMP activity in AAA

patients (2). This review provides an overview of the role of

MMPs and TIMPs in AAA development, progression, and rupture.
Abdominal aortic aneurysm

Anatomical sites of aneurysm

Aortic aneurysms are principally found within the abdominal

and thoracic aorta and are respectively referred to as AAA and

TAA. AAAs are the most common as data revealed a prevalence

of 5%–6% for men and 1%–2% for women, in people older than

65 years, in comparison to a prevalence of five-fold lower for

TAA (3). TAAs can be observed in different aortic segments

including the aortic root, ascending aorta, aortic arch, or

descending aorta. Sixty percent of TAAs develop in the aortic

root and ascending aorta, forty percent are attributed to the

descending aorta, whereas only ten percent involve the arch and

the thoracic-abdominal area (4). AAAs are characterised as

suprarenal when located within the suprarenal region of the

abdominal aorta where the visceral arteries are involved. They

are defined as juxtarenal (also termed pararenal) if the aneurysm

extends up to but does not involve the renal arteries, or as

infrarenal if they begin 10 mm below the renal arteries (5, 6).

The pathogenesis of AAAs and TAAs is distinct.
Aetiology and clinical complications

AAAs have a complex multifactorial pathogenesis in which

genetic and environmental risk factors play a prominent role (5).

Clinically, there is no universal definition of AAA, however, it is

widely accepted to be a maximum infrarenal abdominal aortic
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diameter of >30 mm, measured using ultrasonography or

computed tomography angiogram (CTA). Although the exact

cause of AAAs is unknown, several factors are considered to

contribute to the focal weakening of the aortic wall, increasing

an individual’s risk of developing an aneurysm.

Males are around four-times more likely to be diagnosed with

an aneurysm during their lifetime compared to females, with this

risk further increased by 40% every five years after the age of 65

(7). Moreover, AAA incidence is higher among the Caucasian

population compared to those of African-American, Asian and

Hispanic descent (8). Smoking has been highlighted as a major

risk factor for aneurysm initiation and progression (9). The

deleterious effects of smoking have been attributed to alterations

in the inflammatory response of the aortic wall, alongside

increased matrix degradation due to an imbalance between

proteases (such as matrix metalloproteinases) and protease

inhibitors. Moreover, there is an association between smoking

duration and number of cigarettes smoked with AAA risk. Other

risk factors include a family history of aneurysms. In particular,

it has been shown that individuals with a first-degree relative

with an AAA have a 30% higher risk of developing an AAA

themselves as well as a higher risk of aneurysm rupture and

increased likelihood of developing an aneurysm at a younger age

(10). Another study revealed that the growth rate of aneurysms is

doubled in patients with familial history when compared to

patients with no evidence of previous familial disease (11).

AAAs often grow slowly and are typically asymptomatic until

they rupture, making them difficult to detect. This is the main

complication of AAAs and underlies their high mortality rates of

approximately 60%–80%. However, when symptoms do arise,

these usually display as constant abdominal or back tenderness

or pain, which can last for hours up to days. Some patients

report a palpable abdominal mass. At times, AAAs may cause

symptoms because of local compression, leading to early satiety,

nausea, vomiting, urinary symptoms, or venous thrombosis due

to venous compression. Aneurysms that produce symptoms are

at an increased risk for rupture, leading to further increased

mortality rates. Due to the asymptomatic nature of most AAAs,

diagnosis commonly results from incidental abdominal screening

or during a routine examination involving abdominal palpation

(12). Nationwide screening programmes have been implemented

in several countries with the aim to alleviate AAA-specific

mortality. Ultrasonography and computed tomography

angiography are first-line imaging tools to identify and manage

AAAs (13). An ultrasound scan is an accurate method to

measure aneurysm size, with the benefit of being inexpensive and

non-invasive. Unfortunately, many AAAs remain undetected and

a ruptured aortic aneurysm can lead to life-threatening internal

bleeding, with larger aneurysms exhibiting a greater risk (14, 15).
Current therapies

Therapies for AAAs depend on a variety of factors such as

location and size, as well as patient-specific factors like age, risk

factors, or other existing conditions that may increase the risk
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during surgical intervention. Small aneurysms (less than 5.5 cm in

diameter) are deemed at a low risk of rupture and are typically

treated with pharmacological interventions to control blood

pressure, aiming to reduce shear stress within the aorta (15). For

example, beta-blockers may decrease the rate at which aneurysms

grow by reducing blood pressure and contractility of the left

ventricle (15). Statins have also been considered as a good

therapy due to their pleiotropic anti-inflammatory properties, as

well as their ability to reduce the expression of MMPs (16).

Similarly, angiotensin-converting enzyme (ACE)-inhibitors and

Ang II receptor blockers (ARBs) have been proposed, and are

already widely deployed for the treatment of other cardiovascular

diseases (15, 16). Additionally, antibiotic therapy has been

evaluated as a method to reduce aneurysm expansion by

reducing elastin degradation and inflammation (17). Finally,

lifestyle changes are recommended to improve outcomes and

prevent aneurysm growth and rupture. As mentioned above,

smoking is a risk factor of aneurysm growth and rupture,

therefore the American College of Cardiology and American

Heart Association have advised those with a positive familial

history of AAA to stop smoking (18). However, there is currently

no pharmacological therapy established to slow or prevent AAA

growth and rupture directly.

Accordingly, two main methods of elective intervention are

used as surgical options and are the only available curative

treatment for AAA: open surgical repair and endovascular

aneurysm repair (EVAR). Usually, surgical treatment is adopted

only when the diameter of the aorta is greater than 5.5 cm, as

risk of rupture outweighs the risk of surgical complications.

Open surgical repair involves the removal of the damaged section

of the aorta and replacement with a synthetic vascular graft. This
FIGURE 1

Diagram of human AAA pathogenesis.
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will allow blood to flow through the graft, bypassing the

aneurysmal area and therefore, reducing pressure on the

damaged wall of the aorta. This procedure requires a 2–3-month

recovery and is associated with a high risk of mortality (19).

Alternatively, EVAR involves the minimally invasive insertion of

a synthetic graft within the aneurysm via groin incisions to

access the femoral artery. This is considered a less invasive

procedure due to less interference with the circulation, resulting

in a reduced recovery period. Considering outcomes, a study

comparing both short-term and long-term survival of patients

undergoing either procedure revealed that mortality rates are

similar and influenced by age, co-morbidities, and

pharmacological interventions (20).
Pathogenesis and composition

As shown in Figure 1, human aneurysms are characterised by

structural deterioration of the aortic wall, consequent progressive

aortic dilatation and ultimately rupture. Multiple factors are

involved in the pathogenesis of AAA which cause focal

destructive remodelling of connective tissue through all layers of

the aortic wall. A major pathobiological aspect of AAA includes

loss of key extracellular matrix (ECM) proteins through the

proteolytic degradation of collagen and elastin, accompanied by

the infiltration and accumulation of inflammatory cells

throughout all layers of the aortic wall, alongside resultant

secretion of inflammatory growth factors and cytokines.

Additionally, AAAs are commonly characterised by a reduction

in VSMC content due to apoptosis, and the presence of

neovascularisation (1, 21). MMPs and other proteases are
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produced by macrophages and VSMCs and are proposed to

contribute to many of the above processes.
Collagen and elastin

Collagen and elastin are the most abundant extracellular matrix

proteins found within large and mid-sized arteries, imparting the

elastic properties, structural strength and mechanical resistance to

the vessel wall (22). Collagen fibrils are stable structures formed

from the aggregation of several subunits, called tropocollagen,

which play an essential role in the artery wall providing the

necessary strength and stability. Twenty-nine types of collagen

have been identified in the human body, although 80%–90% of

collagen present in the body is of type I, II, and III (1, 23).

Within the aortic wall, type I collagen accounts for 70% of the

total collagen content, and is located predominantly in the

intima and adventitia, whereas type III collagen is expressed

within the media and along the elastic lamina (24). Several

studies have identified collagen loss within aneurysmal aortae,

contributing to the instability of the aortic wall. ECM

degradation is prevalent during aneurysm progression, because of

increased expression and activity of proteases, especially MMPs,

leading to increased collagen degradation (25, 26). Accordingly,

the combination of decreased vascular smooth muscle cell

(VSMC) collagen synthesis (25) alongside enhanced degradation

highlights the major contribution attributed to collagen turnover

during aneurysm progression. Accordingly, products released by

collagen catabolism have been indicated as potential aneurysm

biomarkers, especially the amino terminal pro-peptide of type III

procollagen (PIIIN). In AAA patients, serum levels of PIIIN were

significantly elevated compared to control subjects in two

separate studies, however the serum level of the carboxyterminal

pro-peptide of type I procollagen (PICP) was similar between

groups within multiple studies (27).

Elastin is organised as fibres within the medial portion of the

aortic wall. The interaction of these fibres with VSMCs and

collagen provide a solid structure which is necessary for the

biomechanical and elastic properties of the aorta (28). Alterations

in elastin fibre quantity alongside variations in collagen structure

underlie the mechanical and functional changes related to aortic

diseases. Specifically, elastin degradation occurs during aneurysm

progression, releasing elastin-derived peptides into the

circulation. A screening study revealed that patients with a

ruptured AAA greater than 6 cm display increased levels of

elastin-derived peptide, compared to those with small aneurysms

that have not ruptured (29). The primary catabolic enzyme

responsible of elastin degradation is elastase, a family of eight

human genes including chymotrypsin (CTRC), neutrophil

elastase (ELANE), and MMP-12 (also known as macrophage

metalloelastase) (30), whose activity is inhibited by endogenous

protease inhibitors such as alpha-1 anti-trypsin (A1AT) (31) and

TIMP-3 (32). It has previously been shown that serum levels of

A1AT are higher in AAA patients than those with aortic-

occlusive disease, highlighting the role of elastin degradation

during aneurysm progression and the response to alleviate
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increased elastase activity (1). As discussed in greater detail later,

researchers have exploited the proposed central role of elastase in

AAA development and progression through deploying intra-

aortic elastase perfusion to induce AAA formation in mice, rats,

rabbits, dogs, and pigs (33). The utility of this experimental

approach demonstrated that elastase activity contributed to

aneurysm formation and corroborated quantitative correlation

between elastase concentration and aneurysm size (34). In

summary, alterations in the structure of elastin and collagen

contributes towards aneurysm formation and progression.

Moreover, aortic dilation is linked with elastin loss, whereas

aortic rupture is associated with loss of collagen (22, 35).
Vascular smooth muscle cells

VSMCs are the most abundant cell type within the blood vessel

wall, and play an important role in the structure of aorta wall by

maintaining production of elastin, collagen, matrix proteins,

several proteases, and inhibitors (36). VSMCs regulate the

contractile tone of the vessel alongside the secretion of ECM

proteins which highlights the two different VSMC phenotypes,

synthetic and contractile (37). In healthy blood vessels, the

predominant phenotype present is the contractile form, due to

the limited secretion of ECM proteins and profuse myofilament

production to allow regulation of blood flow and vessel diameter.

During pathological conditions, the switching of VSMC

phenotype from contractile to synthetic is induced, which is

characterised through a decrease in contractile protein expression

alongside an increased production of proteases such as

collagenolytic and elastinolytic MMPs, which can degrade elastin

and collagen and promote vessel dilation, weakening, and

eventual rupture (21, 38).

Together with VSMC phenotypic modulation, a reduced

number of VSMCs is observed in AAAs (39), attributed to their

enhanced susceptibility to apoptosis, as VSMCs undergoing

apoptosis are observed within the medial portion of human

AAAs (40). Multiple factors have been proposed to induce

VSMC apoptosis including oxidised lipoproteins, cytokines, and

increased reactive oxygen species (41), alongside extracellular

matrix degradation (42) and mechanical stress (43). Angiotensin

II can also trigger VSMC apoptosis through ligation of

angiotensin receptor types 1 and 2, with angiotensin II infusion

shown to induce AAA formation in mice (33) which is

associated with medial VSMC apoptosis (44). It was also found

that VSMCs within aneurysms showed increased production and

accumulation of p53, a pro-apoptotic protein and a member of

the Bcl-2 protein family (39), a mechanism corroborated in a

mouse elastase-induced aneurysm model (45).
Calcification

Abdominal aortic calcification (AAC) has been observed as a

sign of a degenerative inflammatory process within the arterial

wall, occurring at two distinct sites: the intima and the media.
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Mainly, intimal calcification is observed in advanced

atherosclerosis, with many studies revealing an association

between calcification and risk of cardiovascular events,

supporting its potential as a biomarker (46, 47). Calcification is

characterised by lipid deposition, macrophage infiltration and

VSMC proliferation, whereas medial calcification can exist

independently of atherosclerosis and is usually associated with

elastic fibres (48). Arterial calcification causes a reduction in the

elasticity of the vessel wall which increases the risk of rupture

during aneurysm development and progression (49, 50). A

proteomics study of calcified AAAs (CAAs) revealed type I

collagen α-1 and type III collagen α-1 chains were increased in

CAA, whereas type XIV collagen α-1 was decreased compared to

healthy controls (51). Furthermore, levels of ECM proteins such

as fibulin-5 were decreased in calcified TAA (CTA) patients (51).

Fibulin-5 plays an important role in endothelial cell adhesion

and elastin fibre integrity, and is therefore important in

preserving the stability of the aorta wall, through its integrin-

binding matricellular protein properties (52).
Angiogenesis/neo-vascularisation

Angiogenesis, characterised by the formation of new blood

vessels from pre-existing vessels, plays an essential role in many

developmental and pathological processes, including

embryogenesis, inflammation, tissue development and repair (53).

The induction of angiogenesis begins with ECM degradation and

activation of vascular endothelial cells, with their increased

proliferation and migration essential for new blood vessel

formation. In healthy individuals, the balance of pro- and anti-

angiogenic factors is maintained, whereas in pathological

conditions there is an imbalance which favours the accumulation

of pro-angiogenic factors (54). MMPs have been recognised as a

factor strongly involved in angiogenesis, and a histological study of

human AAAs demonstrated prevalent angiogenesis (also termed

neovascularisation) within the media of the aortic wall which

associated with increased MMP expression and activity (55),

especially ruptured AAAs (56). Accordingly, neovascularisation

within AAAs co-localise with areas of elastin degradation and

macrophage accumulation, which are mainly restricted to the

outer medial aspect and remodelling adventitia (53, 57).
Inflammation

Inflammation has been postulated to play a pivotal role in the

pathogenesis of aneurysm. Inflammatory cells including

neutrophils, T cells, B cells, macrophages, mast cells and NK

cells can permeate through the aortic wall and are associated

with increased production of pro-inflammatory cytokines and

chemokines (58). Furthermore, VSMCs, endothelial cells and

monocyte/macrophage MMP expression can be regulated by

chemokines and lead to ECM degradation, contributing to the

weakening of the aortic wall during aneurysm progression

(59, 60). Cytokines are intercellular messenger proteins involved
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in the regulation of inflammation, haematopoiesis, cellular and

humoral responses, and wound healing (60). Prevalent

inflammatory cells found within aneurysms include cluster of

differentiation 4+ (CD4+) T cells, B cells and macrophages.

CD4 + type 1 T helper cells (Th1) and CD8+ T-cytotoxic type-1

(Tc1) cells produce interferon gamma (IFNγ), interleukin-2

(IL-2) and tumour necrosis factor (TNFα), whereas type 2 T

helper cells (Th2) and type 2 cytotoxic cells (Tc2) secrete IL-4,

IL-5, IL-10 and IL-13, which are also produced by B cells,

macrophages, NK cells and ECs.

TNFα and IFNγ-driven inflammatory processes are prominent

in the pathogenesis of aneurysms due its role in activation and

recruitment of immune cells to inflammatory sites, alongside

secretion of pro-inflammatory cytokines and MMPs, and

inducing VSMC death (59, 61). Elevated levels of TNFα mRNA

and protein were reported in aneurysmal tissue of rodent models,

and elastase levels reduced after delivery of a TNFα binding

protein, which suggests that TNFα may play a role in the

pathogenic mechanisms of AAA (62). Similarly, increased levels

of IFNγ have been observed in human AAA compared to

controls and has been shown to suppress VSMC collagen

production (63). IFNγ also stimulates macrophage and VSMC

MMP production, further contributing to aneurysm formation

(59). However, there is conflicting evidence over the role of this

cytokine in AAA pathogenesis, as conversely, studies have found

that blocking the IFNγ receptor led to accelerated aneurysm

formation (64). This may be due to the divergent roles of IFNγ,

which can exert both anti- and pro-inflammatory effects,

dependent on the pathology and cytokines involved.

Transforming growth factor-β (TGFβ) can modulate the

structure and composition of the ECM and therefore considered

an important regulator of vascular remodelling. TGFβ is

produced by multiple cell types and participates in a wide array

of cellular responses including proliferation, angiogenesis,

differentiation, apoptosis, inflammation, and wound healing.

Reduced TGFβ levels have been detected in AAA patients, which

correlated with reduced cystatin C, a cysteine protease inhibitor

(65). TGFβ can also retard MMP-12 expression and therefore

abrogate aneurysm progression in several mouse models (66).

However, similarly to IFNγ, divergent roles for TGFβ have been

proposed, with increased TGFβ activity shown to associate with

AAA formation, and subsequent functional blocking of TGFβ

reduced aneurysm formation (67, 68).

In addition, other cytokines such as macrophage migration

inhibitory factor (MIF) have been implicated in aneurysm

pathogenesis. MIF functions as a pleiotropic protein,

participating in inflammatory and immune responses, in

particular the stimulation of angiogenesis and regulation of

proliferation (69). MIF also regulates the production and

activation of T and B cells as well as modulating proteolysis

through the regulation of MMP expression, and activation of

urokinase plasminogen activator (uPA) and tissue plasminogen

activator (tPA) (61). Granulocyte/macrophage-colony stimulating

factor (GM-CSF) regulates monocyte production and maturation,

while also polarising macrophages towards a pro-inflammatory

phenotype with heightened expression of MMPs (70). GM-CSF
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administration to hypercholesterolaemic mice was shown to

accelerate AAA formation (71), while GM-CSF inhibition

dampened AAA development in mice which was associated with

decreased inflammation and related MMP expression/activity,

and elevated GM-CSF expressing inflammatory cells were

detected within human AAA samples compared to non-diseased

aortic samples (72). These findings further support a direct role

for inflammation in the pathogenesis of AAA and highlight

GM-CSF as a potential therapeutic target.

Relatedly, C-reactive protein (CRP) is considered a biomarker of

cardiovascular events and an indicator of systemic inflammation. A

study by Vainas and colleagues found high levels of serum CRP in

patients with an increased aortic diameter (73). Patients with

symptomatic or ruptured AAA showed higher circulating levels of

CRP and this correlated with an increased aneurysm size. This

relationship between CRP and aneurysm size was further

confirmed in a study that demonstrated that the CRP level was

greater in patients with large AAAs, compared to small ones, and

a marked difference between AAA patients and healthy controls

(74), further qualifying a central role for inflammation in AAA

development and progression.
Contribution of atherosclerosis

Atherosclerosis is characterised by thickening of the arterial

wall due to the accumulation of lipids, vascular and

inflammatory cells, and the deposition of various ECM proteins

within the tunica intima (75). Several studies have revealed a

strong association with atherosclerosis and aneurysm formation,

with atherosclerosis commonly being considered a risk factor for

subsequent aneurysm formation (76). However, it is still unclear

if these pathologies are linked due to common risk factors or

exert direct causal effects (77). In the past, different concepts

have been developed to explain the relationship between AAA

and atherosclerosis, with the general consensus being that AAAs

are caused by atherosclerosis and are therefore called

atherosclerotic aneurysms typically occurring within the

abdominal aorta (78). Indeed, the pathophysiology of AAA has

been termed as a highly proteolytic from of atherothrombosis

(79). It has been proposed that luminal narrowing of the aorta,

typical of atherosclerosis formation, induces modification and

remodelling of the vascular wall to compensate for the loss of

lumen patency, involving ECM remodelling to try and correct

the vessel diameter. However, this inadvertently induces medial

thinning and therefore weakening of the vessel wall, typical of

AAA development (80). It is also plausible that AAA and

atherosclerosis are independent pathologies with different

aetiologies but are strongly linked with common risk factors such

as smoking, hypertension and hypercholesterolaemia, although as

discussed above, human AAAs harbour overlying atherosclerotic

lesions. A final concept suggests that AAA or aortic

atherosclerosis can develop first and consequently encourage

development of the other. A study conducted by Golledge et al.

stated that several independent mechanisms are responsible for

AAA and atherosclerotic plaque formation which are different
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broad standardised therapeutics that would not be successful (80).
Dissection vs. aneurysm

Aortic dissection is a lethal condition in which the inner layer of

the aorta tears causing blood to push through the tear, separating the

middle layer of the wall from the outer layer, creating a new lumen

(false lumen). In some cases, the dissection will cross all three

layers of the aortic wall and cause immediate rupture and almost

certain death (81, 82). Several conditions can alter and weaken the

aorta wall, subsequently predisposing individuals to an aortic

dissection. These include hypertension, atherosclerosis, disorders

of the connective tissue (Marfan Syndrome, Ehlers-Danlos

Syndrome), genetic disorders or trauma, which can cause damage

to the aorta wall, so as to cause an aortic dissection (83).

Conversely, an aneurysm involves focal dilatation of a blood

vessel, which may become weakened and subsequently rupture

and cause death (84). Common risk factors for both aneurysm and

dissection include ageing, atherosclerosis, and hypertension (85).

Moreover, if an individual develops an AAA, this becomes a

strong risk factor for future aortic dissection. In addition, once an

aortic dissection occurs, the aorta becomes weak and may enlarge

over time, which may ultimately lead to the development of an

aneurysm. Therefore, although aneurysms and dissections have

separate pathologies and aetiologies, they can be associated.
Animal models of AAA

AAA is a common degenerative disorder associated with aortic

rupture and consequently sudden death, with current therapies

being limited. Accordingly, several animal models have been

developed with the purpose of further elucidating the

pathogenesis of AAA and illuminate the biochemical and cellular

mechanisms underlying this disease (86). A wide range of animal

models have been developed across a variety of species including

pig, sheep, dogs, rabbits, rodents, and primates. Like humans,

certain dog breeds have comparable artery size as well as ability

to endure prolonged anaesthesia. Pigs also display a high level of

similarity in the morphology of the arterial system compared to

humans, and the coagulation process is comparable between

sheep and humans. Finally, primates have a high level of

similarity with humans, especially the fibrinolytic system.

However, costs and ethical concerns related to the use of these

large animal species restrict their utilisation in aneurysm studies.

Accordingly, the mouse is a desirable species to model AAA

due to their small size, relatively low costs and their capacity to

overexpress or delete specific genes (87). There are several classes

of experimental AAA which can be divided in three categories:

genetically predisposed animal models, chemical and physical

models (33). The most commonly used approach is chemical

induction and includes methods such as the localised perfusion

of elastase, application of calcium chloride to the adventitia of

the aorta, or systemic infusion of angiotensin-II (88). Most
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FIGURE 2

Similarities and differences between human and mouse AAAs. Histological
images of EVG-stained abdominal aortae from (A) diseased and (B) non-
diseased humans alongside (C) Ang II-infused Apoe-/- mouse and (D)
C57Bl/6J wild-type mouse. Numbers and associated arrows indicate the
following histological characteristics; 1 = atherosclerosis; 2 = intra-luminal
thrombus; 3 =medial degeneration; 4 = VSMC loss; 5 = adventitial
remodelling; 6 = intra-mural thrombus.
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published studies utilised the angiotensin II (Ang II)-infusion

mouse model which involves the subcutaneous implantation of

osmotic mini-pumps in male and/or female apolipoprotein

E-deficient (Apoe-/-) mice to deliver Ang II (500–

1000 ng/kg/min). This induces suprarenal aneurysm formation,

approximately 3–15 days after implantation with a reported

mortality rate of 15%–30% attributed to aortic rupture (89, 90).

Although rarely reported in mouse AAA studies, early

atherosclerotic plaque formation can be induced in the Ang II-

infusion mouse model when combined with high-fat feeding.

The aneurysms which from within the suprarenal abdominal

aortae of Ang II-infused Apoe-/-mice are characterised by medial

degeneration, inflammation, and intra-mural thrombosis (89).

Furthermore, although Ang II is a hypertension-inducing

molecule, blood pressure assessment in Apoe-/-mice revealed that

aneurysm formation in this model was independent of blood

pressure changes (88). However, it should be noted that ultra-

high-resolution imaging studies have suggested that Ang II-

infusion induces rupture of the aortic medial layer which results

in formation of an intra-mural haematoma/thrombus and

subsequent partial dissection of the adventitia within the supra-

renal region of the abdominal aorta (91). Accordingly, it has

been proposed that the Ang II-infusion Apoe-/- mouse may

model aortic dissection rather than fusiform AAA-related

rupture, with mice displaying intra-mural rather than intra-

luminal thrombus, which is prevalent in most human AAAs

(92); these disparities are highlighted in Figure 2.

Adventitial application of calcium chloride solution is another

method adopted to induce aortic aneurysm formation. This

method was first applied to rabbit aortas, and subsequently mice,

involving the application of 0.25–1 molar calcium chloride to the

adventitia of the infra-renal abdominal aorta, using either a

soaked swab or directly in solution (93). Results illustrated an

increase in the aorta diameter by 64% after two weeks of

application and by 110% after three weeks, alongside a marked

inflammatory response (94). Further features of this model that

correlate with human AAAs include medial calcification, elastin

loss, VSMC apoptosis, and increased proteolytic activity (33).

The elastase infusion model is further model deployed in AAA

studies. This method requires the introduction of a catheter into

the infra-renal aorta and isolation of a segment of the abdominal

aorta by distal suture before perfusion with elastase, commonly

porcine pancreatic elastase (34). This leads to medial destruction,

dilatation of the aorta and consequently, aneurysm formation

within 2–4 weeks after the procedure in rats and mice (86).
Matrix metalloproteinases (MMPs) and
tissue inhibitors of MMPs (TIMPs)

MMPs—structure, classification, activity and
role in inflammation and vascular
remodelling

Matrix metalloproteinases (MMPs), also known as matrixins,

are a family of proteolytic enzymes capable of degrading many
Frontiers in Cardiovascular Medicine 07
components of the extracellular matrix (ECM) (2). MMPs are

involved in a multitude of physiological processes such as

morphogenesis, tissue repair, and remodelling. However, they

also play a crucial role in pathological events including many

cardiovascular diseases such as atherosclerosis, post MI

remodelling, and aneurysm formation, progression, and rupture

(26). In addition to degradation of ECM components, MMPs

have the ability to target and process non-ECM molecules

directly affecting cell behaviour (95). Consequently, MMP activity

has been linked to migration/invasion, proliferation, and

apoptosis of several component cells of the blood vessels,

VSMCs, endothelial cells, and monocyte/macrophages (96). The

MMP family consists of 23 members which share structural

similarities and are included in the Metzincin family together

with ADAMs (a disintegrin and metalloproteinase family) and

ADAMTs (ADAM with thrombospondin motifs) proteases (97).

The structure and classification of MMPs are summarised in

Figure 3. MMPs are produced as latent enzymes (pro-forms)

and therefore they require activation through pro-domain

cleavage. Stepwise activation of secreted MMPs require the

destabilisation, followed by full cleavage of the pro-domain by

either plasma, bacterial protease and/or, in some cases, by other

active MMPs (97). Membrane type-1 and type-2 MMPs

(MT-MMPs) are fully activated intracellularly by furin or other
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FIGURE 3

Classes of MMPs and their domain structure.
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pro-protein convertases before being expressed on the cell

membrane as active enzymes. Similarly, MMP-11 and -28 are

intracellularly activated by furin and secreted as active enzymes

into the extracellular space.

Due to the potential damaging actions of uncontrolled MMP

expression, their activity is tightly regulated by multiple

endogenous protease inhibitors; these include α2-macroglobulin,

the reversion-inducing cysteine-rich protein with Kazal motifs

(RECK), tissue factor pathway inhibitor-2 (TFPI-2), and the pro-

collagen C-terminal proteinase enhancer (PCPE) (97). However,

tissue inhibitor of MMPs (TIMPs) are the most potent

endogenous inhibitors of MMPs, playing a major role in

regulating MMP activity during physiological and pathobiological

processes (98). The balance between MMPs and TIMPs is crucial

for homeostasis and dysregulation can result in pathological

dysfunctions associated with an aberrant turnover of the

extracellular matrix and/or alterations in cell behaviour. Four

different TIMPs have been identified in vertebrates (TIMP-1, -2,

-3, and -4); they are secreted proteins able to form tight

complexes with MMP catalytic domains due to inhibitory

residues existing within their N-terminal domain. Each distinct

TIMP exhibits diverse inhibitory efficacy against different

members of the MMP family (i.e., TIMP-1 has a poor inhibitory

effect on MMP-9, -14, -15, -16, and -24) (96). Moreover, TIMPs

also retain the ability to inhibit members of both the ADAM and

ADAMTS family of proteinases (96) which, however, will not be

discussed in the present review. Finally, TIMP-3 is distinct to the
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other TIMPs as it displays high-affinity for extracellular matrix

proteins through interactions with its C-terminal domain,

facilitating TIMP-3 accumulation within the matrix and

subsequently extending its half-life (98).

MMPs share structural homology and are classified into six

classes based upon their structure. All members contain a pro-

domain (blue) which requires removal during activation. A

linker hinge domain separates the catalytic domain (orange)

from the hemopexin-like domain (green) for members of the

collagenase and stromelysin families. Three fibronectin-like

repeats in the catalytic domain (red) are present within

members of the gelatinase sub-family. Membrane-type MMPs

also contain a transmembrane domain and a cytoplasmic tail

which is linked to the cell membrane. Two members of

membrane-type MMPs are glycosylphosphatidylinositol (GPI)-

anchored MMPs.

MMPs have been proposed to play a significant role during

inflammatory responses, as they can promote accumulation of

inflammatory cells within areas of injury/damage through

enabling their invasion, proliferation, and susceptibility to

apoptosis. For instance, MMP-12 contributes to the invasion of

monocyte/macrophages and their subsequent accrual at sites of

inflammation including atherosclerotic plaques, attributed to the

potent elastinolytic activity of MMP-12 (99, 100, 101). Similarly,

MMP-14 has been shown to promote monocyte invasion

through a synthetic matrix, and monocyte/macrophage

accumulation at sites of sterile inflammation (mouse model of
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granuloma formation), as well as within atherosclerotic lesions

(102, 103). Additionally, it has been indicated that TIMP-2 and

TIMP-3, but not TIMP-1, can inhibit macrophage apoptosis by

inhibiting MMP-14 and MMP-12 dependent cleavage of

N-Cadherin, respectively (101, 103). Moreover, MMPs can

modulate the bioavailability of inflammatory mediators either by

modifying chemokines, cytokines, and growth factors, or by

shedding membrane receptors (104). In particular, the MT-

MMPs (such as MMP-14) are considered effective sheddases due

to their pericellular location, and are afforded the capacity to

control cell behaviour through modifying membrane protein

localisation, including the cleavage of growth-factor and cytokine

receptors, integrins, and proteins that regulate cell–cell contacts

(105). These effects can be mediated by direct targeting of

inflammatory molecules as well as indirect control of their

activity through the modulation of other substrates, such as ECM

proteins or co-receptors which are able to bind and maintain

pro-inflammatory mediators in specific locations during

inflammatory responses (106).

In addition to a prominent role in inflammation, MMP activity

is also required for vascular remodelling, where degradation of

ECM components is fundamental alongside substantial evidence

indicating MMPs as modulators of VSMC migration,

proliferation, and apoptosis. Heightened MMP-2 and MMP-9

expression/activity promotes VSMC migration and subsequent

neointima formation in an in vivo model of carotid ligation-

induced vascular injury (107, 108, 109), with a similar role

proposed for MMP-3, ascribed to its regulation of MMP-9

activation (110). Regarding VSMC proliferation, conflicting

results indicate a more complicated role of MMPs. Several

MMPs are able to disrupt VSMC cell-cell contact through

shedding of N-cadherin and subsequent activation of intracellular

β-catenin signalling, successively promoting a pro-proliferative

VSMC phenotype, particularly MMP-9 and MMP-12 (111).

However, although Mmp9 deficiency resulted in retarded VSMC

proliferation in response to arterial injury, but not in carotid

ligation experiments (108, 109). Similarly, several studies utilising

pharmacological broad-spectrum MMP inhibitors revealed

ambiguous findings on VSMC proliferation (26). Whereas

adenoviral-based gene transfer studies have shown that over-

expression of individual TIMPs can abrogate adverse vascular

remodelling and neointima formation, but with limited effects on

VSMC proliferation (112, 113, 114, 115). MMP-9 has also been

demonstrated to facilitate reorganisation of the ECM alongside

its degradation, and therefore participated in adverse arterial

remodelling in response to haemodynamic changes (116), with

clear connotations for vessel expansion during AAA

development. MMP activity can also mediate mobilisation of

growth factors, such as fibroblast growth factor (FGF)-1 and

FGF-2, potentially promoting VSMC proliferation (106).

Together with migration and proliferation, VSMC apoptosis also

contributes to vascular remodelling, and alongside MMP-12 and

MMP-14, MMP-7 proteolytic activity has been linked to cleavage

of N-cadherin in VSMCs promoting their apoptosis (117).

Finally, dysregulated MMP activity can also modulate apoptosis

through the processing death ligands (i.e., TNFα and Fas ligand)
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and/or their receptors, prompting apoptosis in an autocrine as

well as paracrine manner (42).
MMPs and TIMPs expression in human AAA
—potential biomarkers of AAAs

Histological studies assessing the expression and activity of

MMP family members and TIMPs in AAA tissues has

demonstrated their spatial and temporal profile, including cell-

type expression (Table 1). Most of the MMPs evaluated within

AAAs are highly expressed by inflammatory cell infiltrates

alongside VSMCs and endothelial cells. Inflammatory cells—

which comprise of neutrophils, monocytes/macrophages, mast

cells, B- and T-cells—may serve as a prominent source of MMPs

in AAA, as their numbers increase during aneurysm progression

through amplified cell recruitment and proliferation (135). The

collagenase family members, MMP-1, -8, and -13 have been

reported to be increased in macrophages and VSMCs within AAA

tissues in comparison to healthy aortic tissue (136, 137), with

MMP-2, -3, -9, -12, and -14 also displaying elevated expression

(26). Additionally, genetic studies examining relationships between

gene polymorphisms and AAA provide support for MMP-3 as an

important contributory factor (138, 139). Spatially, MMP-2

expression and activity are co-localised primarily with VSMCs in

human AAAs (140). Conversely, MMP-9 is predominantly

expressed by macrophages, and its activity as assessed by

zymography, is increased in ruptured aneurysms when matched to

similar sized intact AAAs (140, 141). MMP-12 (also known as

macrophage metalloelastase), is expressed by infiltrating-

macrophages within the atherosclerotic portions and medial aspect

of AAAs, which co-localise with areas of elastin fragmentation and

loss (142). Furthermore, proteomics analysis of human AAAs

confirmed increased accumulation of MMP-12 along with

degradation of collagen XII, fibronectin, periostin, tenascin, and

thrombospondin 2, and suggested MMP-12 as the dominant

protease within human AAAs (143). Accordingly, MMP-12 is

considered to have a direct role in the pathogenesis of the AAAs

through its ability to preferentially degrade elastin, and facilitate

macrophage invasion, two key characteristics of ruptured human

AAAs. MMP-14, one of the most predominant membrane-bound

MMPs in the vasculature, has also been detected in VSMCs within

human AAAs (144). Lastly, transcriptomic analysis of monocyte-

derived macrophages isolated from AAA and peripheral arterial

occlusion patients revealed heightened MMP-27 levels in AAA

individuals (145).

At the mRNA level, TIMP-1 (146) and TIMP-3 (32) were

unchanged between AAA and non-aneurysmal tissues, although

TIMP-2 levels were modestly increased within AAAs (146).

When comparing human AAA samples to healthy aortae,

although protein expression of TIMP-2 was decreased while

TIMP-1 and TIMP-3 were increased, heightened activity of

MMP-1, MMP-9, MMP-12, and MMP-14 were observed (147),

and therefore credited with the excess degradation of collagen

and elastin, and driving aneurysmal dilatation. Further

supporting a protective role for TIMP-2, a promoter
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TABLE 1 MMP expression in human AAA tissues and plasma, alongside results of in vivo animal studies evaluating the effects of genetic deficiency for
select matrix metalloproteinases (MMP) or tissue inhibitors of metalloproteinases (TIMPs) on AAA formation.

MMP# Expression in
human

Animal studies Ref.

AAAs Plasma Modulation Model AAA Development

MMP-1 ↑

MMP-2 ↑ Mmp2 −/− CaCl2 ↓ (118)

Mmp2 −/− CaCl2+ BMT No effect (118)

MMP-3 ↑ Mmp3 −/− Apoe −/− + HFD ↓ (119)

MMP-7 ↑ Mmp7 −/− Ang II No effect (120)

MMP-8 ↑

MMP-9 ↑ ↑ Mmp9 −/− CaCl2 ↓ (118)

Mmp9 −/− CaCl2+ BMT ↓ (118)

Mmp9 −/− Elastase ↓ (121)

Mmp9 −/− Elastase + BMT ↓ (121)

MMP-12 ↑ Mmp12 −/− CaCl2 ↓ (122)

Mmp12 −/− Ang II + TGFβ inhibition ↓ (123)

Mmp12 −/− Elastase No effect (121)

Mmp12 −/− Ang II + Apoe −/− ↑ (124)

Mmp12 −/− Ang II + PCSK9-AAV ↑ (124)

Mmp12 −/− (mac−specific) Ang II + Apoe −/− ↑ (124)

MMP12 (mac over−expression) Carrageenan ↑ (125)

MMP-13 ↑ Mmp13 −/− Elastase ↓ (126)

MMP-14 ↑ Mmp14 −/− (mac−specific) CaCl2 ↓ (127)

Mmp14 SNP (Y573D) Ang II + PCSK9-AAV ↑ (128)

MMP-17 Mmp17 −/− Ang II ↓ (129)

TIMP-1 ↓ ↓ Timp1 −/− Apoe −/− + HFD ↑ (130)

Timp1 −/− Elastase + HFD ↑ (131)

Timp1 over−expression Xenograft ↓ (132)

TIMP-2 ↓ Timp2 −/− CaCl2 ↓ (133)

TIMP-3 ↓ ↑ Timp3 −/− Ang II ↑ (134)

Timp3 −/− Ang II + Apoe −/− +HFD ↑ (32)

TIMP-4 ↓

↓, decreased; ↑, increased.
BMT, bone marrow transplantation; Apoe, apolipoprotein E; HFD, high-fat diet; Ang II, angiotensin II; CaCl2, calcium chloride; SNP, single nucleotide polymorphism;

AAV, adeno-associated virus.
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polymorphism (-418 G/C; rs8179090) that diminishes TIMP2 gene

expression rate, has been identified as a risk factor of AAA (148).

Although TIMP-3 expression is elevated in the plasma from

AAA patients, it is considered a potential positive feed-back

mechanism to negate increased MMP activity (145, 149, 150).

Interestingly, macrophage TIMP-3 expression was decreased in

human AAAs, independent of changes in mRNA levels, and

associated with increased MMP activity (32). Although reduced

plasma and tissue levels of TIMP-4 were reported in patients

with ascending aortic aneurysmal patients compared to controls

(151), expression in AAAs has not been examined.

In line with elevated tissue levels of select MMPs, several

studies have ascertained MMP plasma levels in AAA patients

alongside healthy controls or patients with aortic obstructive

diseases, to determine if they may serve as biomarkers of AAA

presence and progression (Table 1). Specifically, elevated MMP-9

plasma levels were detected in AAA patients compared to

controls and, additionally, a reduction of plasma MMP-9 was

observed after surgical repair of AAA (152, 153, 154). Moreover,

MMP-9 plasma levels have also been associated with evidence of

aortic medial remodelling and increased luminal diameter (155).

Furthermore, MMP-1 alongside MMP-9 were identified as
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elevated in the plasma of patients with ruptured AAAs when

compared with individuals harbouring intact AAAs, with MMP-9

levels also associating with 30-day mortality (156). However, no

correlation between MMP-9 plasma levels and the yearly

expansion of small diameter AAAs (35–49 mm) was observed,

questioning the utility of MMP-9 as a plasma biomarker for

AAA progression (157).

Single-cell transcriptomics have been deployed to examine the

cell phenotype expression of genes during the development and

progression of human and mouse aortic aneurysms including

AAAs (158), with certain studies identifying changes in the

expression of select MMPs and TIMPs. Focussing upon VSMC

phenotypes, single-cell sequencing data analysis combined from

two independent studies demonstrated that a “fibroblast-like”

VSMC phenotype (characterised through expression of ACTA2,

MYH11, COL1A1, COL1A2, and PDGFRA) was increased in

human aortic aneurysm samples compared to normal aorta, and

displayed augmented MMP2 expression compared to contractile

VSMCs (159). In mice, two standalone studies both deploying

the Ang II-infusion mouse model of AAA revealed a pro-

inflammatory macrophage subpopulation (Netrin1 + ve) and

VSMC Mmp3 levels are increased and contribute to AAA
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formation (160, 161). A further study using the Ang II-infusion

approach in Apoe−/− mice identified a “fibrocyte” cell cluster

(Cd34+ and Col1a2+) which was more prevalent compared to

control aorta, and enriched for Mmp2, Mmp3, Mmp14, and

Mmp23 (162). Utilising the elastase-induced mouse AAA model

and examining the infrarenal abdominal aorta, Mmp9 and

Mmp4 were identified as enriched genes across multiple

monocyte/macrophage subpopulations, with Mmp9 highly

expressed in a specific subpopulation termed “aortic-resident”

and characterised through expression of Cx3cr1 and Flt3, which

decreased proportionally in elastase-treated mice (163). No

differentially expressed MMPs were identified in single-cell RNA

sequencing on mouse AAA tissues from the perivascular CaCl2
application mouse model (164).
Role of MMPs and TIMPs in animal models
of AAA

Multiple proof-of-principle animal studies have been

conducted to determine the contribution of specific MMP and

TIMP family members to AAA formation (Table 1). A

deleterious role for MMP-2 in AAA formation was proposed

based upon reduced aortic diameter in mice with global Mmp2-

deficiency using the CaCl2-application model (118). The adverse

involvement of MMP-2 was attributed to heightened VSMC

production as intravenous administration of peritoneal

macrophages from wild-type mice failed to reverse the phenotype

(118). Assessment of spontaneous AAA formation in long-term

high fat-fed Apoe−/− mice with and without Mmp3-deficiency

revealed increased presence of aneurysms in Mmp3 wild-type

mice, as characterised by elastin fragmentation, aortic wall

thinning, and rupture of medial elastin fibres (119). Mice

harbouring deletion of Mmp-7 displayed reduced VSMC

proliferation and apoptosis numbers within Ang II-induced

AAAs compared to wild-type controls, however this did not

translate to a difference in AAA expansion or severity (120).

Two independent studies demonstrated absence of MMP-9

suppressed aneurysm development in the CaCl2-application

model (118) and elastase-induced AAAs (121). In addition, both

studies utilised a bone marrow transplant technique to suggest

that macrophage-derived MMP-9 underlies the induction of

AAA in both models (118, 121).

Multiple reports utilising an array of mouse and rabbit models

have yielded conflicting findings regarding the role of MMP-12 in

AAA development. Mmp12 deficiency attenuated AAA

development allied with reduced macrophage recruitment in the

peri-aortic CaCl2-application model (122), and a mouse model of

combined Ang II-infusion and TGF-β neutralising antibody

treatment (66). Further supporting the proposition that MMP-12

promotes AAA formation, medial elastin fragmentation and

aortic dilation were increased in transgenic rabbits over-

expressing MMP-12 in macrophages and subjected to

carrageenan-induced AAA, compared to wild-type rabbits (125).

However, no effect of Mmp12 knockout on AAA formation was

observed in the elastase-perfusion mouse model (121).
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Conversely, the development of AAAs was reported to have

accelerated in two different hypercholesterolaemic mouse models

(Apoe-deficient mice or mice over-expressing PCSK9) (124).

Additionally, it was proposed that the protective effects were

through macrophage expression of MMP-12 suppressing

complement activation and subsequent neutrophil infiltration, as

macrophage-restricted Mmp12-deficeincy mirrored global

Mmp12-deficeincy effects on AAA (124). Aortic dilation was

reduced in Mmp13-deficient mice subjected to elastase infusion

compared to wild-type animals, suggesting MMP-13 promotes

AAA formation (126). An adverse role for MMP-14 in aneurysm

progression has been suggested given bone marrow

transplantation of Mmp14-deficient macrophages into wild-type

mice prevented AAA development in the peri-aortic CaCl2-

application model (127). Although in opposition, a transgenic

mouse harbouring a point mutation in the cytoplasmic domain

MMP-14 (Y573D) which abrogates its signalling function

without affecting its proteolytic activity, protected from Ang II-

induced AAA development (128). Finally, a beneficial effect for

MMP-17 was proposed given that lack of Mmp17 resulted in

increased susceptibility to ang II-induced AAA expansion,

although incidence was unaffected (129).

Focussing on the endogenous MMP inhibitors, TIMPs are

largely considered as protective during aneurysm formation,

development, and rupture through combatting MMP proteolytic

activity. Indeed, deletion of TIMP-1, in both wild type and

Apoe−/− mice increased AAA development (130). Moreover,

Timp1 knockout, in an elastase-induced model of AAA, resulted

in increased aortic diameter and augmented loss of medial elastin

(131). Hence, overexpression of TIMP-1 in a rat model of

guinea-pig xenograft-induced AAA reduced elastin degradation

together with aneurysm formation and rupture (132). On the

contrary, the genetic deletion of Timp2 in in the peri-aortic

CaCl2-application model, suppressed aortic expansion compared

to wild type controls with no effect upon medial elastin

fragmentation, despite a reduction in MMP-2 activity in Timp2-

deficient mice (133). The role of TIMP-3 in the formation of

AAA has been explored in the non-atherosclerotic and

atherosclerotic Ang II-induced AAA mouse model, with both

approaches demonstrating Timp3-deficiency adversely affected

vascular remodelling through increased inflammation and

proteolytic activity, consequently contributing to reduced

collagen and elastin content (32, 134), highlighting the protective

role of TIMP-3 on AAAs. No animal study addressing the role

of TIMP-4 in AAA development and rupture has been

conducted at present.
MMP pharmacological intervention in
animal models of AAA

The accumulating human histological analysis alongside

complimentary animal studies provide robust proof-of-principle

evidence for dysregulated MMP expression and activity actively

contributing to AAA formation and progression. Broad-spectrum

targeting of aberrant MMP activity has been explored as a
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therapeutic strategy to limit the development of experimental AAAs

in numerous rodent models (Table 2). Researchers have deployed

tetracycline derivatives as non-specific MMP inhibitors alongside

other pleiotropic compounds with established MMP-inhibitory

capacity. Doxycycline, a broad-spectrum antibiotic, and

tetracycline analogue, harbours the ability to non-specifically

inhibit MMP activity and expression, as demonstrated in AAA

explants and cultured VSMCs (181). In the rat elastase-perfusion

AAA model, doxycycline administration was shown to suppress

aortic dilation, alongside decreased incidence of AAA formation

and medial elastin degradation, and inhibited MMP-9 expression/

activity (165, 166, 167). Comparable beneficial effects of

doxycycline treatment were detected in mice with established

elastase-induced AAAs (168) or during their development (121).

Doxycycline treatment induced equivalent effects within a rat

aortic ligature model of AAA (176), and in rats where AAAs were

stimulated through application of thioglycolate and plasmin (175).

Aortic dilation was equally dampened in the mouse peri-aortic

CaCl2-application AAA model, which was associated with
TABLE 2 Results of in vivo animal studies evaluating the effects of
modulating non-specific MMP activity on abdominal aortic aneurysm
formation and cellular composition, using broad-spectrum
pharmacological inhibitors of MMPs.

Therapeutic Species Model AAA Development;
Effects

Ref.

Doxycycline Rt Elastase Reduced; ↓ AD; incidence;
elastin deg; MMP-9 activity

(165)

Doxycycline Rt Elastase Reduced; ↓ AD; mac; elastin
deg; MMP-9 levels & activity

(166)

Doxycycline Rt Elastase Reduced; ↓ AD; incidence;
elastin deg; ↔ inflamm or
MMPs

(167)

Doxycycline Ms Elastase Reduced; ↓ AD; incidence (121)

Doxycycline Ms Elastase Reduced; ↓ AD; incidence;
elastin deg

(168)

Doxycycline Ms CaCl2 Reduced; ↓ AD (169)

Doxycycline Ms CaCl2 Reduced; ↓ AD; global MMP
activity

(170)

Doxycycline Ms Ang II Reduced; ↓ AD; inflamm (171)

Doxycycline Ms Ang II +
Apoe −/−

Reduced; ↓ AD; incidence;
MMP-2/-9 activity

(172)

Doxycycline Ms Ang II +
Apoe −/−

Reduced; ↓ AD; incidence; ↔
MMP expression

(173)

Doxycycline Ms Ang II +
Ldlr −/−

Reduced; ↓ incidence; severity;
↔ athero burden

(174)

Doxycycline Rt Thio +
plasmin

Reduced; ↓ AD; elastin deg;
MMP-9 activity; ↔ inflamm

(175)

Doxycycline Rt Aortic
ligature

Reduced; ↓ AD; incidence;
MMP-2/9 activity; inflamm

(176)

Hydroxamic
acid

Rt Elastase Reduced; ↓ AD; elastin deg;
inflamm

(177)

Hydroxamic
acid

Rt Elastase Reduced; ↓ AD; incidence;
fibrotic resp; ↔ inflamm

(178)

Hydroxamic
acid

Rt CaCl2 Reduced; ↓ AD; incidence;
elastin deg; MMP activity

(179)

Hydroxamic
acid

Ms Ldlr −/− Reduced; ↓ elastin deg; ectasia;
↔ MMPs or athero

(180)

↓, decreased; ↑, increased; ↔, no change.

Ms, mouse; Rt, rat; BMT, bone marrow transplantation; Apoe, apolipoprotein E;

Ldlr, low-density lipoprotein receptor; Ang II, angiotensin II; CaCl2, calcium

chloride; thio, thioglycolate; AD, aortic dilation; deg, degradation.
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decreased MMP activity (169, 170). Doxycycline was also shown

to diminish aortic expansion and inflammation within Ang II-

induced AAAs from wild-type mice (171), with reduced AAA

development also observed in Apoe−/− mice but with mixed

effects upon MMP expression and activity (172, 173). Lastly, AAA

incidence and severity were reduced in Ldlr−/− mice infused with

Ang II alongside prolonged high fat feeding, although

atherosclerotic burden within the aorta was unaffected (174).

Batimastat, a synthetic peptide also known as BB-94, is a

hydroxamic acid-based broad-spectrum inhibitor of MMPs, and

it was demonstrated that systemic administration of BB-94

reduced aortic dilatation and medial elastin fragmentation in

elastase-induced AAAs in rats, and also suppressed inflammatory

cell infiltration (177). Moreover, targeted delivery and inhibition

achieved through delivery of elastin antibody-conjugated BB-94-

loaded nanoparticles retarded AAA MMP activity, elastin

degradation, calcification, and aneurysmal development in a peri-

aortic CaCl2-application rat model (179). An alternative

hydroxamate-based MMP antagonist, RS 132908, also suppressed

aortic dilatation in a rat intraluminal elastase-perfusion AAA

model, preserving medial elastin integrity and exerting a medial

pro-fibrotic response, although no effect on inflammation was

observed (178). Furthermore, CGS 27023A, a similar hydroxamic

acid MMP inhibitor, reduced elastin degradation and medial

degeneration within the atherosclerotic abdominal aortae of

hypercholesterolaemic Ldlr−/− mice (180).
MMP inhibitors in clinical trials and
limitations

The positive response to doxycycline treatment in animal

models of AAA resulted in the undertaking of several clinical

trials being carried out globally. Doxycycline treatment for

3-months in patients with small AAAs (diameter <5.5 cm)

significantly reduced AAA expansion at 6- to -12 and 12- to

18-month follow-up periods, in a double-blind, placebo-

controlled, randomised clinical trial (182). Moreover, longer-term

(6-month) doxycycline treatment reduced MMP-9 plasma levels

as well as maximum aortic diameter in EVAR patients within a

randomised, placebo-controlled study (183). Short-term

doxycycline treatment (2-weeks) increased TIMP-1 and reduced

MMP-8, MMP-9, MMP-3, and MMP-25 expression, resulting in

a decrease of inflammatory cell accumulation within diseased

aorta of AAA patients (184, 185). Nevertheless, conflicting results

in other studies have raised some concerns. A phase II study

indicated no changes in AAA diameter after 6-months of

doxycycline treatment, despite an observed reduction in MMP-9

plasma levels (186). Additionally, in a randomised, placebo-

controlled, and double-blind study, doxycycline treatment did

not affect expression or activity of any of the MMPs and TIMPs

assessed (187). A further randomised, placebo-controlled, double-

blind study utilising a larger patient cohort, demonstrated that

long-term doxycycline treatment (18-months) associated with

increased AAA growth, and did not impact the requirement for

AAA repair or time to surgical repair (188). Lastly, a parallel,
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two-group randomised clinical trial across 22 US clinical centres

demonstrated doxycycline had no effect upon the growth of

small infrarenal AAAs at two-years (189). Accordingly, the

ambivalent outcomes have not fostered the therapeutic adoption

of doxycycline as a treatment for reducing the expansion of

AAAs in humans, with ambiguous outcomes with broad-

spectrum MMP inhibitors suggesting the selective targeting of

individual MMPs is desirable.

Although an important role for MMPs in AAAs is evident

from the published literature, a major limitation of targeting

these proteases clinically rests in the difficulty in designing highly

selective MMP inhibitors that remain effective in vivo. MMPs

govern a variety of biological processes that can exert beneficial

and detrimental effects upon the pathophysiology of AAAs

alongside physiological processes throughout the body, hence the

ongoing attempts to pharmacologically target select MMPs using

small organic inhibitors. However, due to the high structural

homology of MMP family members, early-stage MMP inhibition

has commonly failed as a therapeutic strategy in clinical trials.

Such failures have been attributed to the poor specificity of the

compounds, in part due and their broad inhibitory profile,

resulting in effects on multiple MMPs which exert divergent

properties on differing matrix proteins and disparate cell types.

Additionally, shared substrates and cross-reactivity between

MMP family members (alongside ADAMs and ADAMTSs)

remains a continual obstacle, that requires novel strategies which

can distinguish between the activities of separate MMPs. Next

generation MMP inhibitors must be highly selective, specific, and

preferably inhibit a single MMP function, and would benefit

from cell-type directed delivery advances to negate off-target

effects.
Conclusions and future prospective

In summary, there is considerable evidence supporting a direct

role for dysregulated MMP expression and subsequent activity to

the formation and progression of AAAs. Evidence demonstrates

that destruction of elastin and collagen can be limited or

reversed with MMP inhibition, while animal studies have

confirmed the anomalous role and function of individual MMPs

during AAA development. Accordingly, modifications to restore

or over-express TIMP family members have proven to effectively

suppress MMP activity and prevent the development and

progression of AAAs in animal models. However, the inability of

broad-spectrum MMP inhibition to successfully provide clinical

translation has led to renewed interest in the elaboration of

MMP inhibitors that exhibit narrow specificity, as has been

successfully demonstrated in atherosclerosis studies utilising
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inhibitors restricted to the targeting of MMP-12 (101) or MMP-

13 (190). Indeed, the direct association of heightened

macrophage infiltration and elastin degradation to the

pathogenesis of AAAs, in marriage with the central role of

MMP-12 to both processes suggests that perturbing the resulting

medial wall inflammation and destruction of elastin could be

achieved through inhibition of MMP-12 activity. Therefore,

future studies focussing on the development of MMP-12 specific

inhibitors as a potential therapeutic for AAA would appear

desirable. However, evaluating the efficacy of MMP inhibition

while also identifying patients who will benefit most from

associated therapeutics would also be advantageous. Accordingly,

there is a keen interest to develop imaging approaches to identify

MMP activity within AAAs. Two recent studies demonstrating

how MMP inhibitors or substrates can be engineered to permit

visualisation of MMP activity within AAAs (191, 192) may

therefore facilitate prognosis and potential treatment

stratification. So, notwithstanding the limitations associated with

translating findings from animal models to human AAA, the

reviewed studies should encourage renewed motivation for future

clinical trials of selective MMP inhibitors for the treatment of

existing AAAs. Furthermore, new insight into the spatial and

temporal expression and activity of MMPs and TIMPs, alongside

cell-type expression patterns, may aid the design of future

therapeutics.
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