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Introduction: The green revolutionmodel that is followed in the Brazilian Cerrado
is dependent on mechanization, chemical fertilization for soil dressing and
correction, and the use of herbicides. Paraquat is a methyl viologen herbicide
marketed as bipyridylium dichloride salts and used (in low doses) to combat weeds
in their post-emergence stage. It is a non-selective pesticide that causes the
peroxidation of the lipids that make up the cell membrane, and when it comes into
contact with foliage, it results in the death of the plant.

Methods: The effect of water molecules co-crystallized in Paraquat salt structures
was analyzed in anhydrous, dihydrate, and trihydrate forms to understand those
physicochemical properties in its redox activity. The frontier molecular orbitals
were also carried out using DFT to obtain the chemical reactivity of the
bipyridylium cation. Finally, the supramolecular arrangements were evaluated
to analyze the physicochemical stability and acquire insights on superoxide
anions.

Results and discussion: The electronic structure indicated that the BP cation
presents an acidic character due to its low ELUMO value, while the salt has a more
basic character due to its high EHOMO value. For this reason, the BP ion is more
susceptible to reduction during the weeds’ photosynthesis process. During the
process of plant photosynthesis, PQ is reduced to form a stable radical cation. In
the supramolecular arrangement, the presence of water molecules increases the
number of strong H-bonds, while the weak/moderate H-bonds are stabilized.
PQ’s toxic effects are observed in wildlife, domesticated animals, human
populations, and ecosystems. The influence of PQ on the terrestrial
environment is limited because of the soil adsorption capacity associated with
good agricultural practices. The current use of good agricultural practices in the
Cerrado seems not to prevent the environmental impacts of herbicides like PQ
because it aims for the expansion and profitability of large-scale farming based on
input-intensive practices instead of sustainable agriculture processes.
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1 Introduction

Paraquat (PQ) is a herbicide available in the 1,1’-dimethyl-4,4’-
bipyridilium chloride salt form. It is a methyl viologen compound
first described in 1882, with redox properties discovered only in
1933 (Michaelis et al., 1933), and herbicidal properties described in
1958 (Brian et al., 1958). From then on, PQ began to be developed
for commercial purposes, becoming available on the agricultural
market in 1962. It is a non-selective, fast-acting contact herbicide
used to control a broad spectrum of broadleaf weeds and grasses in
sugarcane (Aekrathok et al., 2021), soybean (da Silva et al., 2021),
cotton (Ferreira et al., 2018), rice (Lima et al., 2018), coffee (de
Queiroz et al., 2018) and in fruit such as grapes, apples, and
pineapples. PQ is listed under a pesticide category in regulatory
classifications (e.g., United States Environmental Protection
Agency) due to its primary use.

As bipyridylium (BP) salt, PQ interrupts photosynthesis
processes in plants, so that the main effect observed is the
burning of plant tissue after exposure to light. This is because its
mechanism of action consists of the electronic competition of the
herbicide with photosystem I (PSI) ferredoxin present in
chloroplasts during plant photosynthesis (Fukushima et al.,
2002). PQ is reduced by NADPH-cytochrome c reductase,
producing viologen methyl radicals that are instantly oxidized
with O2—forming the superoxide radical (O2 ·–), by cytochrome
P-450 in the presence of tertiary amine N-oxides. In addition, other
toxic oxygen species, including the hydroxyl radical (OH ·),
hydrogen peroxide (HOO ·), and singlet oxygen (1O2), are
formed, causing peroxidation of the lipids that constitute the
cytoplasmic membrane, resulting in water loss and rapid
desiccation of the plant, leading to its death (Dodge, 1982;
Fukushima et al., 2002; Cui et al., 2019).

PQ is applied during the post-emergence stage of weeds (Cui et al.,
2019). It is rapidly absorbed by the soil, undergoing a sorption process
primarily driven by ion exchange, leading to deactivation (Weber and
Weed, 1968). This herbicide can enter the aquatic environment via
vertical transport through the soil profile (dissolved organic matter
colloids and dispersal colloidal clay) (Santos et al., 2013) or runoff
during the rainfall season (Veríssimo et al., 2018). This herbicide is
highly soluble in water (561–700 g/L) (Tsai, 2013; Huang et al., 2019),
but in waterbodies, it tends to be adsorbed by particles and sediment,
displaying a half-life time between 2 and 820 years, depending on
sunlight and water depth (Thi Hue et al., 2018). PQ has been found in
surface and underground water, the former involving a potential source
for drinking water contamination (Rial-Otero et al., 2006; Santos et al.,
2013). In aqueous solutions, PQ can be photochemically degraded in
the presence of oxygen and ultraviolet radiation (Tsai, 2013).

The Cerrado–a neotropical savanna–is the second largest Brazilian
biome, encompassing originally about two million km2 (Oliveira and
Marquis, 2002). This biome has been used since the Brazilian green
revolution, forming themain agricultural Frontier and becoming one of
the global centers for the production of grains and commodities
(Michaelis et al., 1933; Brian et al., 1958; Dutra e Silva, 2023). In
Brazil, the technique of choice since 1980 had been no-till agriculture,
accompanied by the use of herbicides, mainly PQ, until 2020, when its

use was banned (Ofstehage and Nehring, 2021). The green revolution
model followed in Brazil has been based on a pattern of mechanization,
chemical fertilization for soil dressing and correction, in addition to the
use of pesticides to control pests and insects. In recent years, the country
has stood out as one of the main import markets for pesticides, many of
which are banned in their own countries of origin, especially by the
European Union (Cabette et al., 2020; Rocha et al., 2022a; Rocha et al.,
2022b). The discussion on control and/or flexibility in the use of
pesticides in Brazil is associated with the context of the green
revolution in the country (Glaeser, 2010; Paumgartten, 2020).

PQ is an example of the controversies and struggles among those
who are in favor of or against the greater release of pesticides in
Brazilian agriculture (Brazil, 2020). This issue is still complex, and
there is no consensus on the risks and benefits of using PQ in
agricultural production (Brown et al., 2004; Shoham, 2013). Few
studies have been conducted about the impacts of PQ on the
Cerrado biome: Lajmanovich (Lajmanovich et al., 1998)
concludes that the tadpole Scinax nasica present in Cerrado
regions underwent increased mortality when exposed to 30.0 and
50.0 mg PQ/L. Peruzzolo (Peruzzolo et al., 2021) indicate that the
ingestion of PQ increases the mortality of Scaptotrigona bipunctata,
a native bee found in the Cerrado; Lundberg (Lundberg, 2021)
considered the use of herbicides in soybean crops between 2016 and
2018 and points out that PQ displays a very high potential impact on
freshwater species because of the high value of its ecotoxicity, as
measured by chemical toxic unit (CTU per kg released). Finally, the
Brazilian ban on PQ use was based on its mutagenic potential in
human germ cells in contact with this herbicide.

In this work, the effects of water molecules on the crystalline
structures of PQ salts were described. Theoretical calculations were
carried out using density functional theory (DFT) (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965), where the cation molecular and
electronic structures of BP were analyzed. The chemical reactivity
descriptors were obtained from Frontier molecular orbitals (FMO)
(Zhang and Musgrave, 2007) to understand the influence of Cl−anions
in the vicinity of the cation and simulate the effects on the cell
environment. Furthermore, the physicochemical information on the
capture of electrons during the herbicide’s action in the photosynthetic
processes of plants (Fukushima et al., 2002) was obtained based on the
spin density (Overhauser, 1962; Jacob and Reiher, 2012). Finally, the
supramolecular arrangements of the anhydrous, dihydrate, and
trihydrate PQ salts were analyzed on a physicochemical basis and
associated with environmental impact in the Brazilian Cerrado.

2 Methods

2.1 Molecular modeling

The crystal structures of the PQ salts (1,1’-dimethyl-4,4’-bipyridylium
dichloride), in anhydrous (PQC-I) (Russell andWallwork, 1972), dihydrate
(PQC-II) (Cousson et al., 1993), and trihydrate (PQC-III) (Argay and
Kálmán, 1995) forms were obtained from the Cambridge Crystallographic
Data Centre (CCDC) (Cambridge Crystallographic Data Centre, 2023),
under codes 1228234, 1170961, and 110220, respectively. The crystal
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structure data of the salts is presented in Table 1, and the structural patterns
were analyzed in the Mercury program (Macrae et al., 2006; Macrae et al.,
2008). Theoretical calculations were carried out by DFT (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965), implemented in the Gaussian
16 program package (Frisch et al., 2016). For the calculations, the
hybrid exchange-correlation functional with long-range correction, M06-
2X (Zhao and Truhlar, 2008), combined with the basis set 6-311++G(d,p),
in gas phase, was used. By the FMO energies (Zhang andMusgrave, 2007),
the highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO), it was possible to compare the electronic
structures of the BP cation and its respective salt, as well as to infer
information about their chemical reactivity and kinetic stability. Spin
density calculations (Overhauser, 1962; Jacob and Reiher, 2012) were
also carried out to obtain information about the radical formed during
the mechanism of action of the herbicide (Fukushima et al., 2002) on the
photosystems of the weed.

2.2 Supramolecular arrangement

The supramolecular arrangements of the respective PQ salts were
studied by normalized Hirshfeld surfaces (HS) (Spackman and Jayatilaka,
2009) and 2D fingerprint plots (Spackman andMcKinnon, 2002) using the
program CrystalExplorer17 (Turner et al., 2017). Then, the topological
parameters were obtained by the quantum theory of atoms in molecules
(QTAIM) (Bader, 1985; Bader, 1994) using theMultiwfn program (Lu and
Chen, 2012). InQTAIM, the observable properties of themolecular system
are contained in the electron density ρ(r) of the molecular topology. The
Laplacian of the electron density, ∇2ρ, is a parameter that determines
depletions and peaks of electron charge concentration between nuclear
attractors in the molecular system topology, indicating the location of the
bond critical points (BCP). In other words,∇2ρ indicates the concentration
of electronic charge in the intranuclear region of two attractors: electronic
density accumulated in the intranuclear region will result in a BCP with
∇2ρ< 0; electronic density accumulated in the attractors (depletion in the
BCP) will result in a BCP with ∇2ρ> 0 (Bader, 1985; Matta and Bader,
2003). In the first case, the interaction is shared, such that the attractors are
covalently bonded, while in the second case, the interaction is of the closed-

shell type, in which the attractors are connected by weak electrostatic
interactions (Bader, 1985; Bader, 1994). The topological parameters
obtained by QTAIM are shown in Supplementary Table S1
(Supplementary Material S1). The results obtained low values of the
electron density (ρ< 0.1 au) and positive values of the Laplacian
∇2ρ> 0, indicating that the charge is depleted at the bond critical point
(BCP). By the virial theorem,

1
4
∇2ρ r( ) � 2G r( ) + ] r( ), (1)

in atomic units, and by the expression,

h r( ) � G r( ) + ] r( ), (2)
it was shown that the energy topological parameters are related to
∇2ρ, where h(r) corresponds to the electron density energy, G(r) to
the kinetic energy density, and ](r) to the potential energy density.
For H bonds, it was shown that the intensity of the interaction is very
strong for ∇2ρ< 0 and h< 0 values, strong for ∇2ρ> 0 and h< 0
values, and weak or moderate for ∇2ρ> 0 and h > 0 values (Carroll
and Bader, 1988). The binding energies (BE) (Emamian et al., 2019)
were calculated using the formula,

BE ≈ − 332.34ρ r( ) − 1.0661, (3)
where BE is given in kcal/mol.

TABLE 1 Crystallographic data and structure refinement for PQC-I, PQC-II, and PQC-III.

Crystal data PQC-I PQC-II PQC-III

Chemical formula C12H14N2Cl2 C12H14N2Cl2 · 2H2O C12H14N2Cl2 · 3H2O

Molecular weight (g/mol) 257.158 293.188 311.203

Space group Pnma (Orthorhombic) P 1 (Triclinic) P 21/c (Monoclinic)

a (Å) 9.22 ± 0.01 9.696 (3) 9.061 (1)

b (Å) 10.76 ± 0.01 11.322 (4) 16.229 (3)

c (Å) 5.88 ± 0.01 7.076 (3) 11.322 (1)

α (°) 90 100.68 (4) 90

β (°) 90 93.40 (3) 108.68 (1)

γ (°) 90 107.04 (4) 90

V (Å3) 1575.41 724.468 1577.21

Z 4 2 4

FIGURE 1
Solid-state Ortep representation of Paraquat, where the
ellipsoids are drawn at the 50% probability level.
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3 Results and discussion

3.1 Molecular modeling analysis

PQ consists of a quaternary BP structure (Figure 1) formed by
the connection of two pyridine rings. In this structure, the N atoms
are diametrically apart and, bonded in the para-position, a methyl
group is present on each aromatic ring. The compound is produced
in the form of a dichloride salt, where the organic part has two
positive charges distributed along its chain.

In each of the crystals, the PQ salts were crystallized into
distinct crystalline systems and space groups. The anhydrous salt
was crystallized in the orthorhombic system, for which the space
group is Pnma; the structure of the dihydrate salt is found in the
triclinic system and space group P 1; and, finally, the trihydrate
form of the salt is found in the monoclinic system and space
group P21/c. PQC-I unit cell volume corresponds to 1575.41 Å3

and 19.9% of this total was calculated as void space
(Supplementary Figure S1: Supplementary Material S1). In
PQC-II and PQC-III, the unit cell volumes are filled by the

chemical entities of the respective salts, in which in the latter,
the excess H2O molecule raises the volume of the former in the
proportion of 2.2:1. PQC-I, PQC-II, and PQC-III crystallographic
data are shown in Table 1. In Section 3.2, other characteristics
inherent to the crystalline structures of these salts will be
discussed.

The PQC-II and PQC-III geometric parameters were
compared with the PQC-I by the mean absolute deviation
percent formula,

MADP � 100
n

∑n
i�1

χPQC−X − χPQC−I
χPQC−I

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣, (4)

where χPQC−X is the geometric parameters of the PQC-II and PQC-III
and χPQC−I is the PQC-I geometric parameters. The graphs in
Supplementary Figure S2 (Supplementary Material S1) show the
comparison results carried out for the bond length and angle. The
presence of water molecules does not significantly alter the BP cation
structure. However, in PQC-III, we observed that the bond lengths are
more sensitive to H2O, where the MADP value was 1.801%; in PQC-II,

FIGURE 2
(A) The torsional effect on the bipyridylium cation structure by the presence of the Cl− anions and (B) the relaxed scan of the energy due to the
rotation of the C4−C7 bond by 180°.
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the MADP was 1.606%. H2O molecules were responsible for stretching
the C1–N1 and C12–N2 bonds (on average 4.8%) while compressing the
C2–C3 and C10–C11 bonds (on average 2.8%). On the other hand, the
angles in PQC-II showed the greatest deviations, so the MADP value
obtained was 0.885%, while in PQC-III, the MADP was 0.850%. Among
others, the greatest variations occurred in C5–C6–N1 and C8–C9–N2

angles, whose average increase was 2.2%, except in the case of PQC-II,
where the increase in the second was only 1.4%.

The BP cation assumes a planar conformation in the crystals.
However, in the gas phase and in the presence of Cl−anions, the
calculations showed that its structure undergoes a torsion in the
bond that joins the pyridylium portions, so that the planes formed
by the aromatic rings meet at 42.5° (Figure 2A). The total energy
scan showed that in conformations where the C3-C4-C7-C8 dihedral
angle in the BP cation is 0° or 180°, the system is in the highest energy
state (Figure 2B). However, the total energy is lower by rotating the
aromatic portions by 40° and 140°.

FMO for the salt and BP cation are shown in Supplementary
Figure S3. The respective HOMO and LUMO energies, as well as the
energy gap (ΔEH-L), are shown in Table 2. According to Pearson’s
principle, the FMO energy values indicated that the BP cation
presents an acid character due to its low ELUMO value. On the
other hand, because of the presence of Cl−ions, salt has a markedly
more basic character, which is justified by its high EHOMO value.
Furthermore, these data indicate that the BP ion is more susceptible
to reduction during the weeds’ photosynthesis process. The high
ΔEH-L value for the cation, together with its high oxidation state,
indicates a harder structure and, consequently, less polarizability.
Chemical hardness

η � 1
2

∂2E
∂N2

( )
υ r( )

� I − A

2
, (5)

is an electronic property that measures the resistance to electron cloud
deformation under small perturbations during chemical processes. In Eq. 5,
E is the energy of the system, N is the number of particles, υ(r) is the
external potential at point r, I � −EHOMO is the ionization potential, and
A � −ELUMO is the electron affinity. The presence of the chloride anion in
the salt reduces the BP cation’s ΔEH-L value, allowing an electron cloud

distortion in the presence of a momentary dipole; that is, the cation
becomes more polarizable. In addition, the salt’s higher chemical potential
allows charge transfer to lower chemical potential systems. Chemical
potential

μ � ∂E
∂N

( )
υ r( )

� −I + A

2
� −χ, (6)

is a measure of the charge transfer from a system of greater μ to one of
smaller μ, and χ is the electronegativity. These values agree with the PQ
redoxprocesses in the chloroplasts,where the plant photosynthetic systems
are contained (Photosystem I). In this environment, the electrons
produced during the absorption of light energy are captured by the BP
cation, resulting in the formation of a free radical. The results of the spin
density calculations showed that the unpaired electron in the free radical is
in the p orbitals of the N atoms (Figure 3), whose occupation is 0.84e, and
the probability in each one is 0.158.

During the process of plant photosynthesis, PQ is reduced to form a
stable radical cation. Spin density calculations showed that the unpaired
electron could be located equally on both nitrogen atoms of its structure.
This cation rapidly reacts with the molecular oxygen present in
chloroplasts, forming the superoxide ion from water molecules. From
then on, other reactive oxygen species are formed, initiating lipid
peroxidation, and culminating in the rupture of cell membranes.

3.2 Supramolecular arrangement
description

HS shows that, in the three crystal structures of PQ, the BP cation
interacts with the Cl−ions as well as the water molecules in the
hydrated salts at the same sites, as shown by the red circular
regions (Figure 4). In these regions, the van der Waals spheres are
superimposed, indicating short contacts, forming classical and non-
classical H-bonds. The 2D fingerprint plots showed that the H/Cl
contacts of the BP cation with the Cl−anions correspond to 19.2% of
the HS in PQC-I, 15.3% in PQC-II and 11.0% in PQC-III. On the
other hand, in PQC-III, the H/O interactions account for 9.8% of
the HS, whereas in PQC-II, this area is just 5.8%. The topological

TABLE 2 Reactivity indices for bipyridylium cation, salt and radical, obtained at M06-2X/6-311++G(d,p) level of theory.

Descriptor Cation (kcal/mol) Salt (kcal/mol) Radical (kcal/mol)

EHOMO −387.60 −167.31 −286.14

ELUMO/ESOMO
a −222.32 −50.51 −198.41*

ΔEH-L
b 165.28 116.81 87.73

Ionization Energy (I) 387.60 167.31 286.14

Electronic Affinity (A) 222.32 50.51 198.41

Electronegativity (χ) 304.96 108.91 242.27

Chemical potential (μ) −304.96 −108.91 −242.27

Chemical hardness (η) 165.28 116.81 87.73

Electrophilicity index (ω) 281.33 50.77 334.52

aIn radical, ESOMO (SOMO, singly occupied molecular orbital).
bΔEH-L = ELUMO–EHOMO.
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parameters provided byQTAIM showed that, in all H/Cl andH/O
interactions, the charge densities are very low (ρ < 0.1 a.u.) in the
respective internuclear regions and ∇2ρ> 0, indicating that the
electrons are depleted in the BCP and configuring closed-shell
interactions. In these interactions, the nuclear attractors are

connected by weak electrostatic interactions. Supplementary Table
S1 presents the topological parameters obtained by calculating the
structures of the PQ salts. It is notable that the number of interactions
increases with the amount of co-crystallized water molecules in the
salts.

FIGURE 3
Paraquat’s mechanism of action on plant chloroplasts. The bipyridylium cation captures the electron produced in photosynthesis and becomes the
free radical. The molecular oxygen present in the environment recovers the radical into a cation and transforms it into a superoxide radical, which
destroys the unsaturated fatty acids, killing the plant.

FIGURE 4
Hirshfeld surface dnorm showing the intermolecular interactions in (A) PQC-I, (B) PQC-II, and (C) PQC-III supramolecular arrangements of the
Paraquat salts. The red spots represent the short contact areas.
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Furthermore, the total interactions accounted for in three salts
(Figure 5) indicated that PQC-III held 75% of the strong H-bond
(Hibbert and Emsley, 1990), being attributed to interactions
O3–H/O1, O3–H/O2 and C1–H/O2, whose BE values are,
respectively, −13.60, −17.62, and −13.36 kcal/mol. In PQC-II, the H
atom bonded to C1 does not interact with O atoms. van der Waals
interactions occur to a lesser extent in the PQC-II supramolecular
arrangement, which is attributed only to C5–H/Cl1, where BE
is −4.39 kcal/mol. However, the C5–H/Cl1 interaction also occurs in
PQC-I, with BE being −6.45 kcal/mol, where, together with the
topological parameters, it presents a weak/medium H-bond character.
The C2–H/Clx interaction was observed in three crystalline
environments. However, the associated energy increases in the order
PQC-III < PQC-II < PQC-I, where the data point to a van der Waals
interaction character in the trihydrate salt.

It was observed that in the interactions C8–H/Clx the BE values are
similar in PQC-I and PQC-III (−7.51 and −7.05 kcal/mol). In PQC-I, the
charge density in BCP is about 1.08 times greater, and, in addition, the
slightly greater angle C8–H–Clx confers amore effective superimposition of
the orbitals involved. In PQC-II, although this angle is quite favorable for
orbital overlap, the Cl−ion is stressed in the structure, forming a structure
like a pyramid with a “square” base, with the Cl−anion slightly below the
plane of this base. However, the topological parameters indicated that in the
three cases, C8–H–Clx is weak/medium H-bond. The C10–H–Clx
interaction is very weak in PQC-I, showing a van der Waals character.

Finally, while the C9–H/Oy interaction in PQC-II is a strong
H-bond, in PQC-III it is a van der Waals interaction, with the
highest BE value in its supramolecular arrangement. This effect is
because in PQC-III, the water molecule responsible for this
interaction is strongly connected to two other water molecules, which
in turn are connected to two Cl−ions, minimizing the contribution of the
lone pair from O3.

3.3 Environmental impact

PQ is usually applied in the post-emergence of weeds in small
concentrations (Cui et al., 2019), being absorbed by the foliage and

binding strongly to organic and mineral matter, making it biologically
inert. For this reason, PQ quickly became a hit on the market, given that
the agriculturist could spray the weeds 1 day and sow the crop the next.
PQ is poorly translocated within plants due to the rapid desiccation of
plant tissues, so tubers and roots are not affected and can grow back. In
addition, this herbicide is quickly absorbed by the soil, where the process
of sorption is essentially ion exchange, and is deactivated, allowing new
crops to be cultivated immediately without risk of phytotoxicity (Weber
et al., 1965; Weber and Weed, 1968; Wibawa et al., 2009).

PQ also occurs in non-photosynthetic tissues, such as those
of mammals. In these organisms, the compound is reduced
through electron transfer in microsomes and mitochondria
(Cochemé and Murphy, 2008), the mechanism being like that
of photosynthetic systems. PQ is poorly absorbed through intact
skin but can penetrate through skin wounds, which is of concern
as the compound is a skin irritant (Tabak et al., 1990). Oral
exposure is not considered relevant due to its low volatility;
however, studies show that inhalation exposure may depend on
climatic conditions. Oral exposure can occur through splashing
in the mouth during mixing and transport, eating with
contaminated hands, blowing on or sucking on spray nozzles,
or eating contaminated food.

PQ’s toxic effects are observed not only in wildlife [terrestrial
insects, birds, mammals, fish, algae, aquatic macrophytes, crustacean
larvae, frogs (Eisler, 1990)], domesticated animal [cats, dogs, pigs,
sheep, poultry, and geese (van Oers et al., 2005)], and human (Tsai,
2013) populations, but also in ecosystems. These include small lakes
(Way et al., 1971) and reservoirs (Brooker and Edwards, 1973) from
temperate and tropical regions, the latter including the Cerrado
biome. PQ can thus harm non-target organisms (Martins, 2013),
thus reducing biodiversity and the ecosystem services related to food
security and farming profitability (Dennis et al., 2018). Furthermore,
the intoxication of individuals can result in death, depending on
ingested PQ concentration and species’ sensitivity; among vertebrates,
mammals, including humans, are the most sensitive, displaying acute
intoxication symptoms at 22–35 mg kg−1 body weight (Eisler, 1990;
Huang et al., 2019). Intoxication can occur through bioaccumulation,
expressed by injuries in the lungs (Tsai, 2013) and kidneys (McGwin
and Griffin, 2022), and can contribute to Parkinson’s disease in
humans (Zhang et al., 2016). However, PQ’s toxicity is not
experienced only by vertebrates; it interferes with the habitat
selection processes of fish (Oreochromis niloticus in this case),
meaning that suitable habitats for fish with PQ concentrations
higher than1.0 mg/L are avoided because of their low habitat
quality, leading to the population’s decline (Soriwei et al., 2021).

Regarding the Cerrado biome, the contact of PQwith environmental
biotic and abiotic components is facilitated by agricultural activity,
resulting in low habitat quality and habitat loss when natural areas
are converted to agricultural production (Schiesari and Grillitsch, 2011).
However, the influence of PQ on the terrestrial environment is limited
because of soil adsorption capacity associated with good agricultural
practices. It is these practices and conditions that minimize the risk of
causing pollution while protecting natural resources and allowing
economically viable agriculture to continue, and in these conditions
the use of PQ is not detrimental to soil-dwelling flora and fauna in
the long term (Roberts et al., 2002). A similar situation is observed in the
aquatic environment, where PQ’s availability is restricted because it is
adsorbed by particles and sediment (Thi Hue et al., 2018). This situation

FIGURE 5
Percentage of each type of interaction occurring between the
chemical entities in the Paraquat salts.
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seems to explain the few studies conducted to assess its toxicity for the
environment in the Cerrado biome [influence of PQ on mortality of
tadpoles (Lajmanovich et al., 1998) and native bees (Peruzzolo et al., 2021)
and potential danger for freshwater species (Lundberg, 2021)], although
the Brazilian Cerrado has been intensively used for agricultural purposes
since the 1980s, involving the use of herbicides such as PQ. However, the
current use of good agricultural practices in the Cerrado, such as no-till
agriculture, seems not to prevent the environmental impacts of herbicides
like PQ, because it aims for the expansion and profitability of large-scale
farming based on input-intensive practices instead of sustainable
agriculture processes (Ofstehage and Nehring, 2021).

4 Conclusion

The structure and reactivity of the BP cation, isolated and in PQ
salts, were investigated, and theoretical data were used to understand
the cation’s tendency for electronic capture during photosynthetic
processes in chloroplasts, resulting in the formation of a stable free
radical. The supramolecular arrangement structures of PQ salts
showed that co-crystallization of H2O molecules leads to an
increase in the number of strong interactions in the respective
crystals. The Cerrado biome in central Brazil is composed of
unique vegetation types that are a large source of bioactive
compounds and provide great opportunities for sustainable
agricultural practices. This biome has been used for agricultural
purposes for some time, involving the use of the herbicide PQ
until 2020, and the few studies conducted in Cerrado areas
confirm its toxicity for the environment. While no decision has
been made on the future use of PQ in Brazil, environmental
studies based on legislation and physicochemical properties are
essential to analyzing it within agriculture’s dynamic sector.
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