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INTRODUCTION

Therapeutic options for advanced-stage ovarian cancer patients are limited in those subjects with
homologous recombination proficient molecular profiles. A recent review of the existing literature
demonstrates evidence of enhanced relapse-free survival and overall survival associated with
treatment with Vigil in the Phase 2b trial in the HRP population. Homologous recombination
(HR) is a genetic rearrangement in which molecular information is exchanged between two similar
molecules of double-stranded or single-stranded nucleic acids [1]. The purpose of HR is to maintain
genome stability by performing high-fidelity repair of complex DNA damage such as DNA double-
strand breaks and interstrand crosslinks [2–4].

Homologous recombination is responsible for double-stranded DNA breaks and interstrand
crosslink damage repair through the use of sister chromatids as a repair template. BRCA1/2 are
critically important proteins in this pathway. HR deficiency (D) is the result of germline or somatic
genetic alterations in HR genes (i.e., BRCA 1 or 2) [5]. Dysfunctional HR genes cause genome-wide
errors and can lead to tumorigenesis [6, 7]. Tumors that are not HRD are considered HR proficient (P)
and contain no functional genetic alterations in HR pathway genes, like BRCA1/2, resulting in faithful
DNA repair, thereby reducing the mutation burden. While the HR pathway is responsible for repairing
double-stranded breaks, the base excision repair pathway repairs single-stranded DNA breaks. Poly
(ADP-ribose) polymerase proteins (PARPs) are essential proteins in this pathway. When PARPs are
inhibited, single-stranded breaks are converted to double-stranded breaks during DNA replication.
Synthetic lethality occurs in cells treated with a PARP inhibitor that have a BRCAmutation or are HRD.

Alterations in HR pathway genes, especially mutations in BRCA1/2, can be germline and confer
familial risk for breast, ovarian, prostate, and pancreatic cancer [8] or somatic. For patients who
demonstrate negative germline testing, somatic HR molecular status is assessed by NGS and is most
commonly evaluated by Myriad’s MyChoice CDx-testing. This involves the analysis of BRCA 1 and
2 gene mutation status, loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-
scale state transition score (LST) to determine a genomic instability score (GIS) [9]. Each is weighted
and scored using a proprietary algorithm to determine the level of genomic instability. A GIS ≥42 in
BRCA 1 or 2 negative patients defines HRD status. A GIS score <42 defines HRP status [10]. BRCA
1 or 2 mutations or HRDmolecular profile tumors are a sensitive ovarian cancer population to PARP
inhibitor therapy [10–14] and are associated with a better prognosis in patients receiving platinum-
based chemotherapy and/or bevacizumab [15]. However, ovarian cancer patients with HRP
molecular status have a worse prognosis with standard-of-care therapy involving PARPIs,
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bevacizumab, and platinum-based chemotherapy [11, 16–19].
This is related to the ability of HRP molecular status tumors to
perform DNA repair, resulting in decreased DNA damage
induced by these therapeutic options. Regardless of mutation
status, all tumors demonstrate benefit from frontline
maintenance treatment with PARP inhibitors, although the
magnitude of benefit is greater in patients with a BRCA
mutation or HRD, as demonstrated in multiple clinical trials
[11, 12]. However, multiple resistance mechanisms have been
demonstrated. Additionally, PARP inhibitors in the recurrent
setting have recently been shown to be detrimental to OS, and the
FDA has removed them from this setting in patients without a
BRCA mutation1 [20, 21]. Additional studies are underway
investigating PARP inhibitor combination therapy to
overcome the limitations of PARP inhibitor therapy [22].
Results are expected soon from several large Phase 3 clinical
trials evaluating combination PARP inhibitor and checkpoint
inhibitor therapy. Previous studies evaluating checkpoint
inhibitors in ovarian cancer have been largely negative [23, 24].

VIGIL

Vigil is a novel, triple-function, cell-based immunotherapy
recently cleared by the FDA for the initiation of a phase
3 registration trial in newly diagnosed stage IIIb/IV HRP-
positive ovarian cancer patients. Vigil expresses GMCSF, an
immunostimulatory cytokine, and a bifunctional short-hairpin
RNA to knockdown furin. Furin is the critical convertase
responsible for the cleavage of TGFβ1 and 2. Finally, Vigil
provides the full complement of personal neoantigens relevant
to the patient’s cancer, allowing for T cell education and priming.
Data supporting the efficacy of Vigil in the ovarian cancer
population include results from phase 1, 2a, and 2b trials [25–31].

A phase 2b, double-blind placebo-controlled trial [25] recently
evaluated 91 newly diagnosed stage IIIb-IV ovarian cancer
patients randomized to Vigil vs. placebo at maintenance
following debulking surgery and combination cisplatin/taxane
induction chemotherapy. The molecular profiles of the
91 patients enrolled in the study included BRCA-mutant,
HRD, and HRP patients. At the time of trial initiation and
accrual, the use of somatic HRD/HRP testing was not part of
clinical practice, so somatic testing was not done prospectively. A
post hoc analysis demonstrated improved clinical benefit
correlated with increased DNA repair capacity (HRP) with
Vigil. A trend toward clinical benefit in RFS was observed in
all patients (HR 0.688, p = 0.078) [25]. However, a statistically
significant survival benefit was observed in the non-germline
mutated population (combination of HRD and HRP) in both RFS
and OS (HR 0.514, p = 0.020; HR 0.493, p = 0.049, respectively).
The HRD/HRP subgroups were evaluated using Myriad’s
MyChoice CDx. The greatest benefit following Vigil treatment

was observed in those patients with the highest capacity for DNA
repair and those with the HRPmolecular profile, in both RFS and
OS (HR 0.386, p = 0.007 and HR 0.342, p = 0.019, respectively)
[26, 27]. This effect was durable and continued at a long-term
follow-up of 3 years [27].

DISCUSSION

Recent literature, both preclinical and clinical, has convincingly
demonstrated the role of clonal neoantigen burden in correlating
OS improvement with checkpoint inhibitor therapy in advanced
cancer patients [32–34]. CD8+ lymphocytes reactive to clonal
neoantigens have been identified in multiple studies [32–36].
Durable clinical benefit has been correlated with the identification
of T cells recognizing clonal neoantigens (not subclonal neoantigens)
[32–36]. Cytotoxic chemotherapy has been shown to increase the
proportion of subclonal neoantigens and reduce the expression and
visibility of clonal neoantigens, thereby reducing the responsiveness
of malignant cells to immunotherapy [32, 34, 35]. The inconsistency
of PD-L1 expression and checkpoint inhibitor response appears to
be related to the proportion of clonal neoantigens targeting effector
cells. We hypothesized that Vigil activity would be more likely to
provide clinical benefit in patient tumors with higher expression of
clonal neoantigens (present on all tumor cells) as opposed to subclonal
neoantigens (only present on newlymutated subpopulations). It is our
premise that Vigil construction involving autologous tumors and ex
vivo transfection with a dual plasmid containing bi-shRNAi furin/
GMCSF wild-type DNA would generate a more active clonal

FIGURE 1 | Homologous Recombination Deficient (HRD) and Proficient
(HRP) OvCs: neoantigen fraction (clonal vs. subclonal) affects immunogenicity.
The clinical benefit of Vigil is improved with increased clonal neoantigen
display.

1Clovis Oncology. Rubraca Rucaparib for Treatment of BRCA-Mutated Ovarian
Cancer after 2 or More Chemotherapies Is Voluntarily Withdrawn in the U.S.
Health Care Provider Letter (2022).
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neoantigen profile to induce an effector cell response in malignant
cells containing the HRP molecular profile [37–40]. In this scenario,
the clonally matched targets are more highly visible and associated
with greater effector cell responsiveness as compared to effector cells
impacting subclonal neoantigens that are selectively on tumor cells
(Figure 1). This effect has been demonstrated in the BRCA-wt HRP
population clinical benefit to Vigil.

In conclusion, the achievement of high clonal neoantigen targeting
capacity provides an enhancement in immunotherapeutic proficiency
and is likely induced by Vigil treatment and optimized by HRP
molecular profile capacity.
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