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Introduction: Oxidative stress refers to an imbalance between oxidant and 
antioxidant activity and accumulation of reactive oxygen species, which can have 
detrimental effects on animal health. Annual fluctuations in oxidative stress status 
can occur, increasing disease susceptibility during certain time periods. However, 
a full understanding of factors related to oxidative stress in Asian elephants and 
how to mitigate the negative consequences is lacking.

Methods: This study measured six serum oxidative stress markers [reactive oxygen 
species (ROS), malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), 
albumin, glutathione peroxidase (GPx), and catalase] and two stress markers 
[serum cortisol and fecal glucocorticoid metabolites (fGCM)] in 23 captive Asian 
elephants in Thailand over a 12  months period to examine relationships with age 
and season.

Results: Seasonal variations were observed, with several markers exhibiting 
significantly higher concentrations in the summer (ROS, MDA, 8-OHdG, albumin) 
and lower values during the rainy/winter seasons (MDA, 8-OHdG, albumin, 
catalase). By contrast, GPx was the only marker to be highest during the rainy 
season. For the stress markers, higher fGCM concentrations were noted during 
the rainy season, which contrasts with earlier studies showing more activity 
in the winter (tourist season). Positive correlations were found between the 
temperature-humidity index and ROS, GPx, and fGCM, while a negative correlation 
was observed with serum albumin. Elephant endotheliotropic herpesvirus (EEHV) 
shedding events were associated with higher concentrations of ROS and MDA. 
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A moderate negative correlation was observed between 8-OHdG and the PCR 
threshold cycle of EEHV shedding (Ct), indicating DNA damage may be involved 
in EEHV shedding in elephants.

Discussion: Results revealed significant age and seasonal effects on several 
oxidative stress markers, indicating those factors should be considered in study 
design and data interpretation. There also may be physiological adaptations in 
oxidative stress conditions in relation to environmental changes that could impact 
health outcomes.

KEYWORDS

Asian elephants, seasonal pattern, oxidative stress markers, stress markers, elephant 
endotheliotropic herpesvirus shedding

1. Introduction

The Asian elephant (Elephas maximus) is the national symbol of 
Thailand and plays an important role in animal-related ecotourism 
throughout the country (1, 2). Most captive elephants in Thailand are 
privately owned and housed in elephant facilities (or camps) that vary 
greatly in management due to lack of official husbandry standards or 
welfare guidelines (3). As such, elephant welfare varies among camps 
and tourist activities, leading to varied effects on health and disease 
status (1, 4, 5). According to records from the elephant hospital in 
Lampang (Thai Elephant Conservation Center, Forest Industry 
Organization of Thailand) between November 2019 and May 2022, 
the main health disorders of elephants were wounds (25.7%) and 
gastrointestinal distress (23.5%). Although infectious diseases 
accounted for only 5.4% of all cases, some had high fatality. For 
example, elephant endotheliotropic herpesvirus-hemorrhagic disease 
(EEHV-HD) was responsible for 3.2% of the infectious disease cases 
during that time period, with a mortality rate of 86%. The virus is 
endemic in elephants; adults shed it intermittently, with calves under 
8 years of age being most susceptible to clinical disease (6–10), leading 
to difficulty in disease control (10–12). EEHV-HD may be associated 
with changes in oxidative stress markers (6, 7, 9) comparable to 
herpesvirus infections in mammals and birds (13). Recently, lower 
albumin and higher malondialdehyde (MDA), glutathione peroxidase 
(GPx) and catalase activities were found in EEHV-infected elephant 
calves (14).

Oxidative stress is a pathological condition defined as an 
imbalance between oxidative molecules and antioxidants, and 
whereby the body cannot cope with excess free radical production 
(i.e., reactive oxygen species; ROS) leading to oxidative damage and 
cell death (13). Reports in humans and animals have shown that 
oxidative stress is involved in disease susceptibility and progression 
(13, 15). For example, it increases the risk of myocardial injury in 
chronic renal failure (16) and mortality associated with infectious 
hemorrhagic-related diseases (e.g., leptospirosis, dengue, and 
malaria) (17–19), and has been linked to herpesvirus reactivation 
from latency (20). Oxidative stress is induced by physiological and 
pathological conditions such as trauma, aging, cancer, pregnancy, 
and infection (21). A meta-analysis conducted by Sebastiano et al. 
(13) provided evidence that oxidative stress may selectively enhance 
the susceptibility and progression of herpesvirus infection in 
vertebrates. In elephants, oxidative stress markers are influenced by 

age, season, and disease conditions, with acute EEHV-HD exhibiting 
the most significant changes (14). Physiological stress (i.e., increased 
glucocorticoid concentrations) also can contribute to oxidative stress 
in many species (22, 23). However, oxidative imbalances are not 
always obvious based on general appearances or standard 
hematology tests (15). Hence, measurement of specific markers to 
assess oxidative stress status could significantly advance our 
knowledge of disease states and development of effective 
treatment therapies.

Several biological markers have been used as indicators of 
oxidative stress, such reactive oxygen species (ROS), MDA, 
8-hydroxydeoxyguanosine (8-OHdG), serum albumin, and 
enzymatic antioxidants (e.g., GPx and catalase) (14, 24, 25). ROS are 
endogenously produced free radicals that are associated with a wide 
variety of clinical disorders, including cardiovascular disease, 
diabetes, cancer, and infections (26). MDA is a byproduct of lipid 
peroxidation that is highly toxic to cell membranes (27). In humans, 
herpesvirus-infected patients were found to have significant changes 
in serum MDA concentrations during periods of disease activity and 
remission (28), as were EEHV-HD cases in Asian elephants (14). 
8-OHdG is a marker for oxidative DNA damage and has been used 
to monitor and predict clinical outcomes in several conditions, such 
as renal failure (29), cancer (30), and herpesvirus infections (31). 
Serum albumin has antioxidant properties and serves as an important 
antioxidant in extravascular fluids (32). GPx and catalase are 
enzymatic antioxidants that play fundamental roles in breaking 
down hydrogen peroxide (the primary contributor of oxidative 
molecules) to water. Decreased activity of both enzymes has been 
associated with viral infections, metabolic disorders, and 
degenerative diseases (33, 34). Thus, assessing these oxidative 
markers could provide useful information in the health monitoring 
of elephants.

Previous studies have identified seasonal variation in oxidative 
stress in several species as part of normal physiological responses to 
cope with environmental change (35–37). Changes in oxidative stress 
markers associated with the temperature-humidity index (THI) have 
been demonstrated in several species; for example, higher oxidant 
(ROS and MDA) and antioxidant (GPx and catalase) markers were 
observed during hot summer months in cattle in south Asia as a 
response to heat stress (38–40). In Thailand, Yun et al. (10) reported 
an influence of season on the frequency of EEHV-HD in captive 
elephant calves, with the highest number of cases found during the 
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rainy season; however, data on whether shedding also is related to 
oxidative stress status are lacking. Thus, this study aimed to investigate 
annual patterns of several serum oxidative stress biomarkers in captive 
Asian elephants in Thailand, and correlate those to levels of EEHV 
shedding. Understanding how oxidative stress and viral shedding are 
influenced by seasonal changes might help veterinarians understand 
more about the factors responsible for and pathogenesis of this deadly 
disease in elephants.

2. Materials and methods

2.1. Animal ethical consent

Animal ethics approval was obtained from the Animal Care and 
Use Committee, Faculty of Veterinary Medicine, Chiang Mai 
University (FVM, CMU), reference number S7/2564.

2.2. Elephants and sample collection

The study was conducted from June 2021 to September 2022. 
Twenty-three captive Asian elephants at seven tourist camps in 
Thailand (Chiang Mai and Lampang provinces) participated in the 
study (mean age, 14.2 ± 14.0 years; range, 1–50 years). Elephants were 
categorized into two groups according to EEHV susceptibility risk 
(12): calves (≤8 years, E1–E12, mean age, 5.0 ± 2.3 years, range 
21 months–8 years; male = 5, female = 7) and adults (>8 years, E13–
E23, mean age, 24.3 ± 14.5 years, range 10–50 years; male = 1, 
female = 10). Although housed at tourist camps, none of the elephants 
participated in tourist activities during this study because of an 
international travel ban due to the COVID-19 pandemic. Information 
on camps and previous EEHV-HD history is presented in Table 1. 
Elephants were fed mainly fresh roughage (e.g., Napier grass, corn 
stalks), with high energy supplements (e.g., bananas, sugar cane) 
provided occasionally. Four elephants had previously survived an 
episode of EEHV-HD Type 1 (E11, E12, and E13) and Type 3/4 (E9). 
Each had been transported to the elephant hospital at the Thai 
Elephant Conservation Center (Lampang, Thailand) and provided 
intensive care (fluid therapy, supportive treatment, and antiviral 
drugs), after which they returned to their respective elephant camps. 
General information on the EEHV-HD cases, including age, sex, 

camp, year of active EEHV-HD, and initial clinical signs is shown in 
Supplementary Table S1.

Blood, buccal and fecal samples were collected approximately 
monthly from each elephant in the morning (9.00 to 12.00 h) and 
transported in a cool box to the laboratory at FVM, CMU. Blood 
(~5 mL, N = 251) collected from an ear vein using a 21G scalp vein 
needle attached to a 5 mL syringe was transferred to a red-top serum 
tube (BD Vacutainer® Serum, Franklin Lakes, NJ, United States) and 
allowed to clot at room temperature for 1 h for assessment of oxidative 
stress markers. Buccal swab samples (N = 238) were collected using a 
sterile nylon swab and placed into a sterile tube containing 1 mL of 
phosphate buffer solution to quantify EEHV shedding. Fresh fecal 
samples (20 g, N = 248) were collected into a zip-lock bag on the same 
day as the swab and blood samples for measuring fecal glucocorticoid 
metabolites (fGCM). Blood was centrifuged (Hettich, Westphalia, 
Germany) at 700 × g for 10 min and the serum was stored at −80°C 
until analysis. Buccal swab samples were kept in a 4°C refrigerator and 
processed within 24 h. Fecal samples were stored at −20°C until 
extraction and subsequent analysis.

2.3. Oxidant markers

ROS and MDA were measured in serum samples following 
validated protocols for Asian elephants (14). Concentrations of 
8-OHdG were measured by an oxidative DNA damage enzyme 
immunoassay kit (Cat #K059-H5, Arbor Assays, Michigan, 
United States) validated for Asian elephant serum by demonstrating 
parallelism between serial dilutions of serum and the standard curve 
(y = −0.0093x + 82.74, R2 = 0.86) and a significant recovery of 8-OHdG 
added to a low concentration sample before analysis 
(y = 0.9902x + 122.47, R2 = 0.99). Serum was diluted 1:10 for analysis, 
absorbance was measured at 450 nm in a microplate reader (TECAN, 
Männedorf, Switzerland), and concentrations were expressed as ng/ml. 
Assay sensitivity was 0.072 ng/mL. Intra-and inter-assay coefficients of 
variation based on concentration were 6.3 and <10%, respectively.

2.4. Antioxidant markers

Serum GPx and catalase activities were quantified based on 
protocols validated for Asian elephant serum (14). Serum albumin was 

TABLE 1 General information about the number of elephants and previous EEHV-HD history in the seven camps of this study.

Camp Location Total number 
of elephants

Number of study 
elephants

Previous EEHV-
HD cases

EEHV type 
detected

Comments

A Chiang Mai 52 4 None – Located near Camp B

B Chiang Mai 30 3 2013, 2017 1A and 1B Died (2013); survived (2017)

C Chiang Mai 35 7 2022 1A Survived

D Chiang Mai 15 1 2021 1A Survived

E Chiang Mai 27 2 2015, 2017 3/4 and 1A + 3/4 Died

F Chiang Mai 6 1 2018 4 Survived

G Lampang 31 5 2014, 2018, 2019 1A Survived (2014, 2019); died 

(2018)

EEHV-HD, elephant endotheliotropic herpesvirus-hemorrhagic disease; EEHV, elephant endotheliotropic herpesvirus.
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quantified by using an automated chemistry analyzer (BX-3010, Sysmex 
Corporation, Tokyo, Japan) according to the manufacturer’s protocol.

2.5. Stress markers

Serum was ether extracted under a fume hood for analysis of 
cortisol. Briefly, 150 μL of serum was added to diethyl ether (600 μL, 
RCI Labscan) and vortexed for 30 s. The solvent layer was allowed to 
separate for 5 min at room temperature and then placed in a dry ice 
ethanol bath until the serum fraction was completely frozen (10 s). 
Ether was decanted from the frozen serum into a new glass tube and 
evaporated off in a heat block (60°C, 5–10 min). Samples were 
resuspended in 150 μL of assay buffer and stored at −20°C until 
analysis. Cortisol concentrations were measured by a double-antibody 
enzyme immunoassay (EIA) using a secondary goat anti-rabbit IgG 
antibody and polyclonal rabbit anti-cortisol antibody (R4866, Coralie 
Munro, University of California Davis, CA, United States) validated 
for elephants (41). The assay was validated by demonstrating serial 
dilutions of ether-extracted serum pools were parallel to the standard 
curve (y = −39.54x ± 70.011, R2 = 0.89). Recovery of serum cortisol 
concentrations added to a low-concentration sample before analysis 
was significant (y = 0.9604x + 0.0523, R2 = 0.99). Extracted serum was 
analyzed in duplicate (neat to 1:4) and absorbance measured at 
450 nm. Assay sensitivity was 0.11 ng/mL. The intra-and inter-assay 
coefficients of variation were <10 and 9.3%, respectively.

Fecal sample extraction and analysis followed Kosaruk et al. (2). 
Briefly, frozen samples were thawed at room temperature before 
drying in a conventional oven at 60°C for 24–48 h. Dried fecal powder 
(0.1 g ± 0.01 g) was extracted by adding 5 mL of 90% EtOH, vortexing 
briefly (10 s), and boiling in a water bath (90°C) for 20 min. Additional 
95% EtOH was added to maintain the volume at 5 mL. After boiling, 
the tubes were centrifuged at 960 × g for 20 min and the supernatants 
poured into new tubes. Fecal pellets were extracted again and the 
supernatants combined, dried in a 90°C water bath, resuspended in 
3 mL of 95% EtOH, and dried again. Final extracts were resuspended 
in 1 mL of 50% methanol and stored at −20°C until analysis. Fecal 
extracts were diluted 1:3 in assay buffer (0.0137 M Trizma base, 0.2 M 
Triz-HCl, 0.2 M NaCl, 0.2 M EDTA, 0.001% BSA, and 0.001% Tween 
20; pH 7.5) and fGCM concentrations measured by double-antibody 
EIA with a polyclonal rabbit anti-corticosterone antibody (CJM006, 
Coralie Munro) validated for Asian elephants in Thailand (42). 
Samples and corticosterone standards (50 μL) were added to wells in 
duplicate followed by corticosterone-HRP (25 μL; 1:30,000) and anti-
corticosterone antibody (25 μL; 1:100,000). Plates were incubated in 
the dark at room temperature for 2 h before adding 100 μL of TMB 
solution, followed by incubation for 20–35 min, and then addition of 
stop solution (50 μL). Absorbance was measured at 450 nm by a 
microplate reader (TECAN). Assay sensitivity was 0.192 ng/g, and 
intra-and inter-assay coefficients of variation based on concentration 
were <10 and 11.33%, respectively.

2.6. EEHV shedding analysis

Buccal samples were vortexed for 30 s and centrifuged at 700 × g 
for 10 min. An 200 μL aliquot of the supernatant was gently removed 
for DNA extraction using a commercial kit (NucleoSpin® Blood, 

MACHEREY-NAGEL Inc., Allentown PA, United States). Extracted 
DNA samples were stored at −20°C until analysis. The real-time 
polymerase chain reaction (PCR) was performed following the 
protocol of Stanton et al. (43) for assessing EEHV 1 and EEHV 3/4 
(Pacific Science CO., LTD., Bangkok, Thailand) (44–46). The Asian 
elephant tumor necrotic factor gene was used as an internal control 
(TNF, Pacific Science CO., LTD., Bangkok, Thailand). Samples were 
considered positive when the threshold cycle (EEHV Ct) was between 
20 and 40, and the negative control (sterile water) Ct was 0 (46). 
Standard curves for EEHV1 (R2 = 0.99) and EEHV3/4 (R2 = 0.99) were 
constructed followed Stanton et al. (47) and used to quantify EEHV 
viral load (viral genome copies/mL or vgc/mL).

2.7. Seasonal and environmental 
determinations

The three major seasons in Thailand are winter (16 October–15 
February), summer (16 February–15 May), and rainy (16 May–15 
October) (Thai Meteorological Department, www.tmd.go.th (accessed 
on 16 May 2023)). THI was calculated following Yeotikar et al. (48) 
and presented in Supplementary Figure S1.

2.8. Statistical analysis

All data were analyzed by using R statistical software (RStudio, 
version 4.1.0). Descriptive data are presented as the mean ± standard 
deviation (SD) for each biomarker. A generalized least square model 
(GLS function; R package: non-linear mixed effect model (nlme) 
3.1–148 (49)) was used to determine differences in means of 
biomarkers among age groups and months, followed by Tukey Post 
Hoc tests. Assumptions of GLS including normality and homogeneity 
of variance of the residuals were assessed by examining the normal 
Q–Q plot and residuals vs. fitted values plots, respectively. If the 
assumptions were met, the biomarker concentrations were analyzed 
without any additional transformations. Repeated measures 
correlations were then used to determine relationships between each 
biomarker, THI, and EEHV shedding (Ct and viral load) data.

3. Results

Summaries of monthly means (±SD) for oxidant (serum ROS, 
MDA, 8-OHdG), antioxidant (serum albumin, GPx, catalase) and stress 
(serum cortisol, fGCM) markers are presented in Table 2 with data 
according to the three major seasons in Thailand shown in Table 3.

3.1. Oxidant markers

Monthly patterns of oxidant marker (serum ROS, MDA, 
8-OHdG) concentrations in calves and adult elephants are shown in 
Figure  1, with results of GLS analyses for all elephants combined 
presented in Supplementary Table S2. For ROS, concentrations 
fluctuated throughout the year, with generally higher concentrations 
in the summer and lower concentrations in the winter (Figures 1A,B). 
For calves, the highest concentration was observed in April, with the 
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lowest in January. In adults, ROS concentrations were more stable 
compared to calves, but followed a similar pattern, with a peak in 
April similar to calves, and again in December, with the lowest 
concentrations exhibited in November. The GLS analysis 
(Supplementary Table S3) revealed ROS concentrations were higher 
in adults (2.44 ± 0.09 mg/L) than calves (2.40 ± 0.10 mg/L, p < 0.01). 
Compared to the reference value in January, ROS was higher in 
summer (March to May), rainy (July to October), and winter 
(December) months for all animals combined. For interactions, there 
were differences in adults during April (2.19 ± 0.05 mg/L), July 
(2.47 ± 0.06 mg/L), August (2.42 ± 0.06 mg/L), September 
(2.42 ± 0.08 mg/L), and October (2.40 ± 0.07 mg/L). Compared to the 
reference value (calves × January; 2.31 ± 0.09 mg/L, p < 0.01).

For MDA (Figures 1C,D), overall concentrations trended higher 
in late winter and summer and lower in the mid rainy season, more so 
for adults than calves, the latter of which were more stable across the 
year. In calves, the lowest concentrations were observed in August, 
while the highest were in November, with both being significantly 
different (p < 0.05). By contrast, in the adult group, there was a notable 
decrease in MDA concentrations during rainy season months (June, 
July, August), with the lowest in June. Based on the GLS analysis 
(Supplementary Table S2), no differences were found between calves 
(1.79 ± 0.34 nmoL/mL) and adults (1.71 ± 0.29 nmoL/mL, p > 0.05). 
Overall MDA concentrations were higher in March, April, May, and 
November compared to the reference value (January, p < 0.05). 
Interaction effects were observed, with adults during June 
(1.23 ± 0.19 nmoL/mL), July (1.50 ± 0.17 nmoL/mL), August 
(1.40 ± 0.18 nmoL/mL), and November (1.76 ± 0.23 nmoL/mL) being 
different compared to the reference value (calves × January; 
1.65 ± 0.30 nmoL/mL, p < 0.05).

For 8-OHdG (Figures  1E,F), the overall trend was for higher 
concentrations in the summer and lower concentrations in late rainy/
early winter months, especially for calves. In that group, the lowest 
concentrations were found in August, which then remained relatively 
stable from September to November. Subsequently, concentrations 
increased, reaching a peak in March that was sustained for the following 
4 months (April to July). In the adult group, concentrations were low 
from January to April, then increased sharply to a peak in May, gradually 
declining to low levels until the end of the year. GLS analysis 
(Supplementary Table S2) found 8-OHdG concentrations in calves 
(8.53 ± 2.50 ng/mL) were higher than those in adults (7.31 ± 1.35 ng/mL, 
p = 0.014). Overall, concentrations were higher in February, March, April, 

and May, and lower in August, September, and November compared to 
the reference value (January, p < 0.05). Few interactions were found, only 
adults in May (9.15 ± 1.00 ng/mL) and August (7.35 ± 1.40 ng/mL) 
compared to the reference value (calves × January; 8.41 ± 2.35 ng/mL).

3.2. Antioxidant markers

Monthly patterns of antioxidant markers (serum albumin, GPx, 
catalase) in calves and adult elephants are shown in Figure 2, with 
results of GLS analyses for all elephants combined presented in 
Supplementary Table S3. For serum albumin, clear seasonal patterns 
were similar in both age groups, with higher concentrations observed 
during summer and winter, and lower concentrations during the rainy 
season (Figures 2A,B). In calves, albumin concentrations were higher 
during the three summer months (March, April, May), and again in 
November and December. Conversely, concentrations were lowest 
during the rainy season in June and August. Similarly, in adults, serum 
albumin concentrations were high during summer (March to May) 
and winter (November to February) months, and low during the rainy 
season (June to October), with the lowest concentrations observed in 
August similar to calves. In the GLS analysis (Supplementary Table S3), 
adults (3.35 ± 0.27 g/dL) had higher albumin concentrations than 
calves (3.34 ± 0.26 g/dL, p < 0.01). Overall, concentrations were higher 
in March, April, May, November, and December, and lower in August 
and September compared to the reference value (January, p < 0.05). 
Several interaction effects were found, with differences in adults during 
March (3.49 ± 0.10 g/dL), April (3.52 ± 0.18 g/dL), May (3.48 ± 0.26 g/
dL), June (3.26 ± 0.19 g/dL), July (3.17 ± 0.23 g/dL), November 
(3.44 ± 0.34 g/dL), and December (3.43 ± 0.25 g/dL) compared to the 
reference value (calves × January; 3.25 ± 0.26 g/dL, p < 0.05).

For GPx, activity was notably higher in the rainy season 
(Figures 2C,D). In calves, concentrations were fairly stable for most of 
the year, except 3 months during the rainy season (June, July, August) 
where higher activity was displayed. The GPx pattern in adults displayed 
more fluctuations throughout the year; concentrations peaked in June 
(mid rainy season), while the lowest activity was in September (late 
rainy season). GLS analysis (Supplementary Table S3) found no 
differences between calves (1.59 ± 0.73 U/L) and adults (1.44 ± 0.65 U/L, 
p > 0.05). GPx activity was higher in June, July, August, and November 
when compared to the reference value (January, p < 0.01). Few 
interactions were observed, with differences only in adults during July 

TABLE 2 Biomarker concentrations (means  ±  SD) and ranges according to three seasons in Thailand.

Biomarkers Winter (16 October–15 
February) N  =  79

Summer (16 February–15 May) 
N  =  63

Rainy (16 May–15 October) 
N  =  110

ROS (mg/L) 2.39 ± 0.08 (2.14–2.57) 2.46 ± 0.13 (2.22–2.77) 2.42 ± 0.09 (2.18–2.62)

MDA (nmol/mL) 1.79 ± 0.27 (1.04–2.99) 1.86 ± 0.27 (1.34–2.99) 1.66 ± 0.34 (1.04–2.69)

8-OHdG (ng/mL) 7.31 ± 1.86 (3.79–13.53) 8.63 ± 2.15 (5.25–14.33) 7.31 ± 1.86 (3.73–15.24)

Albumin (g/dL) 3.40 ± 0.27 (2.80–4.00) 3.46 ± 0.22 (2.90–3.90) 3.25 ± 0.24 (2.80–3.80)

GPx (U/L) 1.34 ± 0.45 (0.28–2.51) 1.26 ± 0.58 (0.24–2.90) 1.77 ± 0.79 (0.23–3.99)

Catalase (U/mL) 11.91 ± 5.47 (3.29–24.61) 16.51 ± 5.53 (7.55–38.76) 15.10 ± 6.93 (4.72–32.10)

Serum cortisol (ng/mL) 2.79 ± 1.81 (0.29–9.45) 2.80 ± 1.51 (0.34–7.96) 2.86 ± 1.57 (0.44–9.14)

fGCM (ng/g) 50.18 ± 15.19 (22.15–104.36) 55.85 ± 14.60 (23.91–86.11) 63.21 ± 15.46 (23.80–106.08)

ROS, reactive oxygen species; MDA, malondialdehyde; 8-OHdG, 8-hydroxydeoxyguanosine; GPx, glutathione peroxidase; fGCM, fecal glucocorticoid metabolites.
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(1.78 ± 0.66 U/L) and August (1.12 ± 0.44 U/L) when compared to the 
reference value (calves × January; 1.25 ± 0.17 U/L, p < 0.05).

For catalase, the trend was lower concentrations in the late rainy and 
early winter months (Figures  2E,F). In calves, concentrations were 
highest in July (24.62 ± 6.39 U/mL) and lowest in October (7.56 ± 1.45 U/
mL), otherwise remaining relatively stable. In adults, catalase activity also 
was lowest in October, plus November, with a higher concentration in 
March (20.45 ± 7.76 U/mL), although there was considerable fluctuation 
throughout the year. The GLS analysis (Supplementary Table S3) showed 
no differences between catalase concentrations in calves (15.52 ± 6.61 U/
mL) and adults (13.40 ± 6.05 U/mL, p > 0.05). Higher catalase activities 
were found in July, while concentrations were lower in September, 
October, and November compared to the reference value (January, 
p < 0.01). Interactions were observed in adults in July (15.00 ± 3.42 U/mL) 
and August (9.74 ± 2.66 U/mL), compared to the reference value 
(calves × January; 16.73 ± 5.07 U/mL, p < 0.05).

3.3. Stress markers

Monthly patterns of stress markers (serum cortisol, fGCM) in 
calves and adult elephants are shown in Figure 3, with results of GLS 
analyses for all elephants combined presented in 
Supplementary Table S4. For serum cortisol (Figures  3A,B), 
concentrations were relatively stable throughout the year in both age 
groups. The GLS analysis (Supplementary Table S4) showed no 
differences in serum cortisol concentrations between calves 
(2.93 ± 1.69 ng/mL) and adults (2.72 ± 1.55 ng/mL). No month effect 
or interactions were found for this biomarker.

For fGCM, unlike serum cortisol, the overall trend was higher 
concentrations in summer and rainy seasons and lower concentrations 
in the winter (Figures 3C,D). In calves, the highest concentration was 
in June, with the lowest in October–December. In adults, 
concentrations were variable, with the highest concentrations in April, 
June and September, and lowest noted in both March and November. 
For the GLS analyses (Supplementary Table S4), there were no 
differences between calves (58.92 ± 14.92 ng/g) and adults 
(55.82 ± 17.19 ng/g, p > 0.05). Higher fGCM concentrations were found 
in April, May, June, and September when compared to the reference 
value (January, p < 0.01). No interactions were found (p > 0.05).

3.4. EEHV shedding

Data on EEHV shedding, including EEHV Ct and EEHV load are 
presented in Table 4, with annual patterns of biomarkers and EEHV 
shedding events for each individual elephant shown in 
Supplementary Figures S2–S9.

Eight elephants exhibited EEHV Type 1 shedding (34.8%), while 
five shed EEHV Type 3/4 (21.7%). No elephants shed both (i.e., no 
co-infection). EEHV shedding was observed in each month except 
January and generally not in consecutive months, with the exception 
of E12 that had 3 consecutive months of shedding (April–June) and 
E14 that shed Oct–Nov. Ten elephants never showed signs of EEHV 
shedding, although some samples were invalid due to lack of 
amplification, while five exhibited more than one episode during the 
study year. Shedders were generally younger than adults. Four male 
elephants (out of 6; 66.7%) and nine females (out of 17; 52.9%) were T
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observed shedding. Shedders were observed at all seven camps, 
including Camp A that had no prior cases of EEHV-HD.

3.5. Correlation matrix

A correlation matrix showing relationships among oxidative and 
antioxidant stress makers, glucocorticoid stress markers, EEHV 
shedding, and THI data is shown in Table  5. For oxidative stress 
markers, weak positive correlations were found between albumin and 
ROS, MDA, and 8-OHdG concentrations. Moderate positive 
correlations were found between catalase and GPx, while ROS and 
8-OHdG were weakly positively correlated to catalase. No other 
significant associations among oxidative stress markers were 
noted.  For stress markers, only fGCM showed a weak positive 

correlation to 8-OHdG. Interestingly, serum cortisol and fGCM 
concentrations were not correlated. EEHV Ct was negatively 
correlated to 8-OHdG concentrations. A number of biomarkers were 
correlated to THI (ROS, GPx), including fGCM that was moderately 
positively correlated.

4. Discussion

This is the first study to investigate seasonal fluctuations of 
multiple oxidative stress biomarkers in captive Asian elephants in 
Thailand. Significant age-related effects were observed for ROS and 
albumin, which agrees with a previous study on oxidative stress 
markers in this population (14). Different annual patterns of each 
biomarker were found, demonstrating varied dependence on month 

FIGURE 1

Box and line plots display monthly patterns of serum oxidant marker concentrations in calves (≤8  years old, N  =  12) and adult elephants (>8  years, 
N  =  11): reactive oxygen species, ROS (A, B); malondialdehyde; MDA (C, D); 8-hydroxydeoxyguanosine; 8-OHdG (E, F). Boxplots represent median, 
quartiles, and the 25th/75th percentiles, error bars represent the 10th/90th percentiles, and open circles indicate outliers. Different superscripts show a 
significant month effect (p  <  0.05) for calves (a,b,c,d) and adults (w,x,y,z). Bold black lines represent the overall mean trend line, and the shaded area is 
the 95% confidence interval. Pink solid lines represent the trendline for calves (N  =  12), solid blue lines represent the trendline for adults (N  =  11), and 
thin lines with dots represent monthly means (±SD) in each age group (pink: calves, blue: adults).
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or season. Based on overall trend lines, many of the oxidative stress 
markers had higher values in the summer months (ROS, MDA, 
8-OHdG, albumin), with lower values in the rainy/winter seasons 
(MDA, 8-OHdG, albumin, catalase). GPx differed by having 
markedly higher activity in the rainy season. These variations imply 
physiological adaptations associated with environmental changes 
among these biomarkers that might have implications to disease 
susceptibility and recovery throughout the year. In the context of 
EEHV viral loads, we consider results preliminary owing to the 
limited number of shedding events during the study. There were no 
obvious relationships with the majority of oxidative or adrenal 
stress markers, with the exception of 8-OHdG, suggesting cellular 
DNA damage might play a role in viral shedding processes 
associated with that disease in elephant calves. It is important to 

note that herpesvirus shedding itself does not necessarily equate to 
disease in the shedder, as it frequently occurs without any overt 
clinical signs. Rather, measures of variations in specific biomarkers 
associated with shedding might provide insight into the 
susceptibility of elephants to more severe primary infections. 
Interestingly, all studies to date measuring adrenal glucocorticoid 
(GC) activity in captive Thai elephants have found higher 
concentrations during the winter, which also is the high tourist 
season. The finding of the opposite pattern in this study, which was 
during the COVID-19 international tourism ban, suggests increases 
in GCs in earlier studies might have been due to tourist presence 
and associated activities, which could have welfare implications, or 
simply reflect more stimulation when people are present. Thus, this 
study serves as a nice control to examine health parameters in 

FIGURE 2

Box and line plots display monthly patterns of serum antioxidant marker concentrations in calves (≤8  years old, N  =  12) and adult elephants (>8  years, 
N  =  11): albumin (A, B); glutathione peroxidase; GPx (C, D); and catalase (E, F). Boxplots represent median, quartiles, and the 25th/75th percentiles, error 
bars represent the 10th/90th percentiles, and open circles indicate outliers. Different superscripts show a significant month variation at p  <  0.05 within 
group; calves (a,b,c,d) and adults (w,x,y,z). Bold black lines represent the overall mean trend line, and the shaded area is the 95% confidence interval. 
Pink solid lines represent the trendline for calves (N  =  12), solid blue lines represent the trendline for adults (N  =  11), and thin lines with dots represent 
monthly means (±SD) in each age group (pink: calves, blue: adults).
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elephants unaffected by tourist activities, setting up additional 
studies to examine these same parameters once tourism resumes.

4.1. Oxidant markers

For ROS, adult elephants had overall higher concentrations than 
calves. This finding is consistent with a previous study on Asian 
elephants by Kosaruk et al. (14); however, the reason is unclear. It is 
possible that captive adult elephants are exposed to factors that 
contribute to higher ROS productions compared to calves, such as 
tourist activities and breeding. However, our study was conducted 
during the COVID-19 tourism ban, so that could not account for this 
pattern. Alternatively, dissimilar ROS activity could be attributable to 
differences in growth and development processes between calves and 
adults. Studies conducted in humans and birds showed that both 
young and aged individuals tend to have higher ROS concentrations 
compared to middle-aged groups (50, 51). ROS in young individuals 
is important for normal growth and development (50, 52), whereas 
high ROS concentrations in older individuals are associated with 
age-related diseases and conditions (53). Regarding seasonality, 
concentrations of ROS trended higher during the summer in both age 
groups, which is comparable to our earlier findings in captive 
elephants (14). In cattle, elevated ROS also were observed during 
periods of high ambient temperature and THI in South Asia (38, 54). 

In northern Thailand, summer is characterized by dry, warm 
conditions, with maximum temperatures reaching up to 40°C with 
relative humidity around 60%. Cattle are susceptible to heat stress 
when the THI exceeds 72 (55, 56), leading to increased ROS 
production and oxidative stress, and so this could be a stressor for 
captive elephants as well. However, elephants may be more tolerant of 
hot weather compared to cattle because of more darkly pigmented 
skin (14), which acts as a physical barrier, perhaps reducing the impact 
of oxidative stress (38). The small magnitude of change observed 
might suggest a mitigation of ROS activity throughout the year in this 
population of elephants.

For MDA, no age effect was observed, which aligns with previous 
research conducted on Asian elephants (14), as well as other species 
such as chimpanzees (57), horses (58), and humans (59). Regarding 
seasonal patterns, MDA concentrations remained relatively stable 
throughout the year except for 3 months during the rainy season 
(June, July, August) when lower concentrations were observed. A 
previous study in elephants showed no seasonal effect on MDA based 
on seasonal calculations (14), and although not significant, the overall 
mean was higher during the summer season. Studies in Asian cattle 
reported higher MDA concentrations during the summer, which also 
had the highest THI (40, 48), again demonstrating how cattle are 
susceptible to heat stress (56). In addition to summer, elephants in this 
study had higher MDA concentrations in the winter. The grasses that 
constitute the elephants’ diets tend to grow rapidly during the rainy 

FIGURE 3

Box and line plots display monthly patterns of stress biomarkers in calves (≤8  years old, N  =  12) and adult elephants (>8  years, N  =  11): serum cortisol (A, 
B) and fecal glucocorticoid metabolites (C, D). Boxplots represent median, quartiles, and the 25th/75th percentiles, error bars represent the 10th/90th 
percentiles, and open circles indicate outliers. Different superscripts show a significant month variation at p  <  0.05 within group; calves (a,b,c,d) and 
adults (w,x,y,z). Bold black lines represent the overall mean trend line, and the shaded area is the 95% confidence interval. Pink solid lines represent the 
trendline for calves (N  =  12), solid blue lines represent the trendline for adults (N  =  11), and thin lines with dots represent monthly means (±SD) in each 
age group (pink: calves, blue: adults).
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TABLE 4 Monthly shedding data of elephant endotheliotropic herpesvirus (EEHV) types EEHV1 or EEHV3/4 in participating elephant calves.

ID Age Sex Camp Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
E1 1y9m M B iv v/EEHV3/4 

(23.25, 1,109,459)

v/neg v/EEHV3/4 

(29.69, 18,345)

v/neg v/neg v/neg v/neg v/neg iv v/EEHV3/4 

(36.72, 208)

v/neg

E2 4y6m F C iv v/neg v/EEHV1 

(38.22, 9)

v/neg v/neg v/neg v/neg iv NA NA NA NA

E3 3y7m M C iv v/neg iv v/neg v/neg iv v/neg v/neg v/neg iv iv v/neg
E4 3y4m F C iv v/neg v/neg v/neg NA v/neg v/neg v/neg iv NA NA NA
E5 7y5m M A v/neg v/neg v/neg v/neg v/neg v/neg v/neg v/neg iv iv iv iv
E6 7y2m F A iv v/neg NA v/EEHV1 

(29.11, 6,211)

v/neg v/neg NA v/neg iv iv iv v/neg

E7 7y11m F A iv v/neg v/neg v/EEHV1 

(28.04, 13,364)

v/neg v/EEHV1 

(31.31, 1,286)

v/neg v/neg iv v/neg v/neg v/EEHV1 

(35.65, 17,004)
E8 7y10m F E iv v/neg NA v/neg v/EEHV1 

(27.35, 21,902)

v/neg v/neg v/neg v/neg NA v/EEHV1 

(32.74, 39,156)

NA

E9 5y4m F F v/neg v/EEHV3/4 

(36.03, 323)

iv v/EEHV3/4 

(35.84, 365)

v/neg NA NA NA NA NA NA NA

E10 7y8m F E iv v/neg NA v/neg v/neg v/neg v/neg iv v/EEHV3/4 

(37.68, 113)

v/neg v/neg v/neg

E11 7y10m M G v/neg v/EEHV1 

(35.98, 45)

NA v/neg v/neg v/neg v/neg v/neg v/neg iv iv v/neg

E12 2y10m M D v/neg v/neg v/EEHV1 

(34.15, 168)

v/EEHV1 

(28.74, 

8,096)

v/EEHV1 

(35.59, 60)

v/neg v/neg v/neg iv v/neg v/EEHV1 

(37.84, 334)

iv

E13 9y11m M G v/neg v/neg NA v/neg v/neg v/EEHV1 

(31.43, 1,180)

v/neg v/EEHV1 

(33.98, 190)

v/neg iv v/neg v/neg

E14 14y6m F G v/neg v/neg v/neg iv v/neg v/neg v/neg iv v/neg v/EEHV3/4 

(38.09, 87)

v/EEHV3/4 

(33.95, 1,216)

v/neg

E15 28y8m F G v/neg v/neg v/neg v/neg v/neg v/neg iv v/EEHV1 

(39.22, 4)

v/neg iv v/neg v/neg

E16 41y10m F G iv iv v/neg v/neg v/neg v/neg v/neg v/neg v/neg iv NA iv
E17 11y4m F C v/neg v/neg v/neg v/neg NA v/neg iv NA v/neg iv v/neg v/neg
E18 14y11m F C iv iv NA iv v/neg v/neg v/neg v/neg v/neg iv v/neg v/neg
E19 18y1m F C NA NA NA NA v/neg v/neg v/neg v/neg v/neg iv NA iv
E20 19y7m F C iv iv v/neg v/neg v/neg v/neg v/neg iv iv iv v/neg v/neg
E21 50y2m F B iv iv v/neg iv v/neg iv v/neg v/neg v/neg v/neg iv v/neg
E22 45y5m F B NA NA NA NA v/neg v/neg v/neg v/neg v/neg iv NA NA
E23 28y3m F A v/neg v/neg v/neg v/neg v/neg v/neg v/EEHV3/4 

(37.01, 173)

v/neg iv v/neg v/neg v/neg

Numbers in parentheses represent threshold cycles (Ct) and EEHV viral load as viral genome copies/mL. Data in bold represent shedding associated with EEHV-HD. Table modified from Ackerman et al. (45). iv, invalid sample, TNF not amplified; v, valid sample, TNF 
amplified; NA, no sample available; neg, EEHV not detected.
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season (60), so harvesting young grass may result in higher antioxidant 
content compared to dry season grasses that are usually harvested at 
a more mature stage (lower antioxidants) and could contribute to 
higher MDA in late rainy/winter season (61). Thus, the presence of 
higher antioxidants inhibiting the activity of free radicals (62, 63) 
could explain the lower MDA concentrations observed during 
this period.

For 8-OHdG, there was an age difference, with calves displaying 
higher concentrations than adults. Although there is a widely accepted 
connection between oxidative stress, DNA damage, and aging (29, 30), 
findings for 8-OHdG have been varied. With respect to aging, reports 
have shown no change (64) or a decrease (65) in 8-OHdG in humans, 
with increases observed in dogs (66), and decreases in ungulates (67), 
and chimpanzees (57). Decreases in 8-OHdG with aging may 
be attributed to reduced energy metabolism, as suggested in humans 
and ungulates studies (65, 67). For seasonality, elevated concentrations 
of 8-OHdG were found in elephants during the warmer months 
(March and May), aligning with studies in humans (68–70) showing 
higher 8-OHdG in summer to cope with high ambient temperature-
induced oxidative stress. However, this contrasts with human studies 
in Netherlands (71) and China (72), which reported no seasonal effect 
on 8-OHdG, thus indicating possible environmental effects. A number 
of studies have demonstrated increased 8-OHdG responses to air 
pollution exposure (69, 73, 74). Summer months in northern Thailand 
are characterized by poor air quality due in part to crop burning, 
vehicular emissions, and temperature inversions that favor the 
stagnation of air (75, 76). Thus, heightened air pollution exposure 
could be leading to oxidative stress. If so, this study may be the first to 
demonstrate an impact of air pollution on biological functioning in 
captive elephants, which deserves further investigation.

4.2. Antioxidant markers

For serum albumin, adults had higher concentrations compared 
to calves, not unlike a previous study (14). By contrast, in humans, 
serum albumin concentrations peak at around 20 years and gradually 

decrease with age (77), potentially due to liver degeneration, as that 
is the primary site of albumin production (78), or to protein intake 
reduction, known as geriatric anorexia (79). Those conditions are 
unlikely causes of high albumin in elephants, but rather could 
be  related to hydration. During the COVID-19 pandemic, both 
adults and calves were kept in confined spaces (80), which limited 
their activity and access to water. The highest albumin concentration 
(3.57 ± 0.27 g/dL) was in a 9 year-old calf (E13) that was mostly 
tethered (>16 h a day) and only occasionally offered water. Hydration 
status could also be related to seasonal patterns in water content of 
grasses, being higher during the rainy season in Thailand (61, 81). 
Dietary intake of protein also can increase albumin concentrations 
in humans (82, 83). The diet of elephants consists primarily of 
grasses (e.g., Napier grass), which have a relatively low protein 
content (<10%) (61, 84). Thus, the combination of low-protein 
foodstuffs with a higher fluid load during the rainy season may 
contribute to the relatively lower serum albumin concentrations 
observed during this period.

For GPx, no differences were observed between age groups, 
similar to studies on other species including mice (85), seabirds (86), 
goats (87), and Asian elephants (14). Although in humans, GPx 
concentrations decrease with age, especially after 65 years (88), the age 
range of elephants in this study was not broad enough to fully examine 
this effect. Regarding the seasonal pattern of GPx, activity was highest 
during the late summer to mid-rainy season (May to August), which 
contrasts with a previous study on elephants that showed no seasonal 
effect (14). Studies on deer and cattle have indicated that GPx activity 
is highest during the summer months, which can be attributed to the 
need to mitigate the impact of heat stress (39, 89, 90). In this study, the 
THI showed relatively constant values from March to November, 
indicating it alone may not explain the observed increase in GPx 
activity. Further investigations are necessary to identify other potential 
factors contributing to the seasonal variation in GPx activity 
among elephants.

For catalase, no age effect was found, consistent with previous 
studies of cattle (91), horses (92, 93), and also elephants (14). However, 
a human study by Casado and López-Fernández (94) found higher 

TABLE 5 Repeated measures correlations among oxidative stress status biomarkers, elephant endotheliotropic herpesvirus (EEHV) shedding, and the 
temperature-humidity index (THI).

Biomarkers ROS MDA 8-OHdG Albumin GPx Catalase Serum 
cortisol

fGCM EEHV shedding THI

Ct vgc/ml

ROS

MDA 0.099

8-OHdG 0.066 0.055

Albumin 0.144* 0.350** 0.215**

GPx −0.029 −0.016 0.051 −0.009

Catalase 0.136* 0.067 0.198** 0.123 0.416**

Serum cortisol −0.027 0.049 −0.052 0.099 0.062 0.080

fGCM 0.085 0.005 0.134* −0.095 0.050 0.103 0.076

EEHV Ct −0.177 0.492 −0.608* −0.140 0.362 −0.016 0.099 −0.441

EEHV vgc/ml −0.239 0.002 0.569 0.005 0.087 0.040 −0.104 0.192 −0.591*

THI 0.195** −0.073 0.117 −0.162* 0.229** 0.028 −0.004 0.334** −0.157 −0.130

ROS, reactive oxygen species; MDA, malondialdehyde; 8-OHdG, 8-hydroxydeoxyguanosine; GPx, glutathione peroxidase; fGCM, fecal glucocorticoid metabolites; EEHV Ct, threshold cycles; 
EEHV vgc, viral genome copies. Asterisks indicate significance differences at p < 0.05 (*) and p < 0.01 (**).
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catalase activity in newborns (infants to 3 years) and the elderly (over 
70 years). Supportive of that is the finding that the youngest elephant 
in this study (1 year and 9 months) had the highest catalase 
concentrations overall (18.80 ± 7.58 U/mL), although more animals 
across a broader age range are needed to confirm an age effect on this 
marker. Annual patterns showed the lowest concentrations between 
September and November, which marks a transition from rainy to 
winter seasons. Concentrations of 8-OHdG also were lower during 
those months, but it remains unclear what the significance of this 
seasonal effect is on elephant health.

4.3. Stress markers

For serum cortisol, no age effect was found in this study, which 
differs from previous studies that found concentrations can increase 
with age in some zoo-housed bull elephants (95, 96). No annual 
change in serum cortisol was observed, and the concentrations 
remained relatively stable throughout the year. A previous study of 
salivary cortisol reported an annual pattern for tourist camp elephants 
in Thailand (2), with higher concentrations exhibited during 
the winter.

For fGCM concentrations, there was no age effect similar to that 
previously reported in Thailand (14) and Myanmar (97). However, 
a notable finding was that the seasonal pattern of fGCM 
concentrations differed significantly from previous studies of this 
population that clearly showed higher rather than lower fGCM 
during the winter (2, 42, 98, 99). Because winter is also the high 
tourist season when elephants participate in activities like riding, 
bathing and feeding of high energy fruits (e.g., sugarcane, banana), 
it had not been possible to tease apart seasonal versus tourist effects 
on fGCM excretion. This study was conducted during the 
COVID-19 pandemic when all international flights were banned, 
and elephant tourist camps in Thailand closed (80). Thus, the results 
of this study strongly suggest it is tourist activities that are having a 
stimulatory effect on adrenal activity. The reason for higher fGCM 
between April and September could instead be due to temperature 
or THI effects, this is particularly relevant to elephants, as their low 
surface area-to-volume ratio and limited capacity for evaporating 
heat make them susceptible to overheating, potentially leading to 
heightened adrenal activity during these periods as suggested by 
Mumby et al. (100). It is unclear why serum cortisol and fGCM 
were not correlated, although that has been noted in other studies 
(101, 102). Serum reflects an immediate snapshot of circulating 
cortisol levels, and could be affected by the stress of blood sampling, 
whereas fGCM provides a summary of adrenocortical activity 
24–48 h prior to sample collection (103, 104). Thus, minor 
fluctuations in circulating cortisol would not be  evident in 
fecal profiles.

4.4. EEHV shedding

Previous studies have shown that EEHV-HD survivors can 
become shedders of the virus later in life, as it enters a latency stage (7, 
43, 45, 105, 106). Our results confirmed elephants that survived EEHV 
infection intermittently shed the virus via saliva throughout the study 

period, Additionally, the same subtype of EEHV was detected in 
sheddings, consistent with the previous infection. Notably, this study 
also revealed that elephants without a history of EEHV or residing in 
camps with no previous EEHV cases still shed the virus, a finding 
noted before (11, 45). No seasonality was observed as EEHV shedding 
occurred throughout the year. This is consistent with a report by Yun 
et al. (10) that showed EEHV cases are found in every month of the 
year in Thailand.

The specific triggers for activating or shedding EEHV have yet to 
be clearly identified, but are presumed to be associated with stress 
events (7). Thus, stress-induced oxidative imbalances might play a role 
in EEHV shedding or reactivation of the virus (7, 14, 105). 
Considering high oxidant and low antioxidant activity makes animals 
more prone to disease (13, 33, 34), we expected to see significant 
patterns with EEHV shedding. However, our results were not 
consistent across elephants, possibly due to the infrequent occurrence 
of shedding events and limited sample numbers. Those with higher 
MDA concentrations were more likely to show EEHV shedding, but 
this was only observed in six elephants (E1, E2, E7, E8, E12, and E14). 
Unlike ROS and MDA, patterns of 8-OHdG were fairly consistent 
throughout the year, and only two elephants (E2 and E11) with high 
8-OHdG exhibited EEHV shedding. Predicting EEHV shedding 
patterns based on albumin levels proved difficult, as both high and low 
concentrations were observed during viral shedding events. The 
shedding pattern for catalase, similar to albumin, was also challenging 
to clarify. Notably, in E12, high catalase concentrations from March to 
May corresponded to EEHV shedding, which also was associated with 
highly fluctuating ROS and MDA concentrations. These findings 
highlight the complexity of the relationship between oxidative stress 
markers and EEHV shedding. It appears that ROS and MDA may have 
a stronger association with viral shedding, while the relationship with 
8-OHdG, albumin, GPx, and catalase requires further investigation.

4.5. Correlation matrix

There were significant associations among some of the oxidative, 
antioxidative and stress markers in this study. There were positive 
relationships between albumin and oxidative stress markers (ROS, 
MDA, and 8-OHdG), which was unexpected because higher 
concentrations of antioxidants are typically linked to lower oxidative 
stress levels (107, 108). However, serum albumin possesses a number 
of physiological properties that are not directly related to oxidative 
stress (109). Rather, the elevated serum albumin observed in this study 
could be a result of reduced fluid intake (110), which in turn may 
contribute to the modulation of other oxidant markers. The association 
between catalase and GPx activity was not surprising, as these two 
enzymatic antioxidants work to control hydrogen peroxide production 
by converting it to water (34, 111). The positive association between 
catalase and oxidant markers (ROS and 8-OHdG) was not unexpected, 
as increased catalase activity can be a compensatory mechanism for 
excessive production of ROS, as described in human and cattle studies 
where catalase positively correlated with ROS and 8-OHdG 
concentrations (112, 113).

For stress markers, as described above, no correlation was found 
between serum cortisol and fGCM concentrations, but high fGCM 
concentrations were associated with increased 8-OHdG 
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concentrations, similar to a study conducted on zoo grizzly bears 
(114). That finding suggests a potential relationship between adrenal 
activity and rates of DNA damage. The environmental factor THI was 
positively associated with ROS and GPx in agreement with previous 
studies in other species (35, 38, 115). In addition, a higher THI was 
associated with increased fGCM concentrations, most likely due to 
higher ambient temperatures effects on adrenal activity (116, 117). 
This is the first study to reveal a seasonal environmental effect on 
fGCM in elephants, and provides compelling evidence that high 
concentrations during the winter season in prior studies is mostly due 
to elephant activities during the high tourist season (2, 42, 98).

Interestingly, the only relationship between oxidative stress 
markers and EEHV was a positive correlation between 8-OHdG and 
shedding (Ct). This finding suggests the presence of higher 8-OHdG 
concentrations may reflect activation of oxidative stress pathways as 
a result of EEHV infection, potentially playing a role in the 
pathogenesis of this disease. The precise mechanism by which 
increased 8-OHdG contributes to viral shedding remains to be fully 
elucidated, however, it is possible that DNA damage caused by the 
viral replication and shedding process triggers the activation of 
oxidative stress pathways, leading to the generation of ROS. While 
this current study did not find a direct association between ROS 
levels and viral shedding, it is important to note that oxidative stress 
encompasses a broader range of cellular responses beyond ROS 
production (13, 14, 22). Other mechanisms involving 8-OHdG could 
be involved, perhaps reflecting the presence of ongoing inflammation 
and cellular damage (29, 31) associated with viral shedding. The 
release of viral particles from infected cells can induce an immune 
response and inflammatory processes, which then can contribute to 
oxidative stress and subsequent DNA damage (118, 119). Further 
research is needed to unravel the precise mechanisms involved and 
explore the importance of monitoring 8-OHdG as a predictive 
marker for EEHV shedding and disease progression in captive Asian 
elephants. As mentioned earlier, shedding alone does not always 
correlate with disease signs. However, it might be  possible that 
fluctuations in oxidative stress markers with or without shedding may 
indicate elephants’ vulnerability to severe primary infections, 
providing another analytical tool.

5. Conclusion

This study is the first to investigate seasonal patterns of biomarkers 
indicating oxidative stress in captive elephants in Thailand. The results 
revealed significant age effects on ROS and albumin, with adults 
showing higher concentrations than calves. Seasonal effects were clearly 
observed for several biomarkers; high values in summer for ROS, MDA, 
8-OHdG, and albumin, and low values in the rainy/winter season for 
MDA, 8-OHdG, albumin, and catalase. Thus, there may be physiological 
adaptations in oxidative stress conditions due to seasonal or other 
environmental changes. Interestingly, the seasonal pattern of fGCM 
concentrations differed from a number of previous studies suggesting it 
is largely driven by tourist activities that mask a more subtle seasonal 
climate effect. Rather, without tourists during the COVID-19 lockdown, 
higher fGCM concentrations occurred during high THI months, 
indicating a stimulatory effect of high temperature and humidity on 
adrenal function in the absence of tourists. Continued research over an 

extended time period would offer further insights to confirm and refine 
the findings of this study. As previously reported, intermittent shedding 
of EEHV was observed through the year, and in this study, regardless of 
prior history or camp residency. The relationship between studied 
biomarkers and EEHV shedding was inconsistent, and not in a 
predictive way, likely due to the limited occurrence of shedding events 
in this study. The results highlight the complexity of this association, 
although its status as a genuine cause-and-effect relationship remains 
uncertain. Consequently, ongoing research and vigilant monitoring, 
utilizing larger sample sizes, are imperative to gain a more comprehensive 
understanding of this connection between oxidative stress and EEHV.
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