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As shares of variable renewable energy (VRE) on the electric grid increase, sources
of grid flexibility will become increasingly important for maintaining the reliability
and affordability of electricity supply. Lithium-ion battery energy storage has been
identified as an important and cost-effective source of flexibility, both by itself and
when coupled with VRE technologies like solar photovoltaics (PV) and wind. In this
study, we explored the current and future value of utility-scale hybrid energy
systems comprising PV, wind, and lithium-ion battery technologies (PV-wind-
battery systems). Using a price-taker model with simulated hourly energy and
capacity prices, we simulated the revenue-maximizing dispatch of a range of PV-
wind-battery configurations across Texas, from the present through 2050.
Holding PV capacity and point-of-interconnection capacity constant, we
modeled configurations with varying wind-to-PV capacity ratios and battery-
to-PV capacity ratios. We found that coupling PV, wind, and battery technologies
allows for more effective utilization of interconnection capacity by increasing
capacity factors to 60%–80%+ and capacity credits to close to 100%, depending
on battery capacity. We also compared the energy and capacity values of PV-wind
and PV-wind-battery systems to the corresponding stability coefficient metric,
which describes the location-and configuration-specific complementarity of PV
and wind resources. Our results show that the stability coefficient effectively
predicts the configuration-location combinations in which a smaller battery
component can provide comparable economic performance in a PV-wind-
battery system (compared to a PV-battery system). These PV-wind-battery
hybrids can help integrate more VRE by providing smoother, more predictable
generation and greater flexibility.
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Highlights

• Coupling PV, wind, and battery technologies allows for more effective utilization of
interconnection capacity

• PV-wind-battery hybrids achieve capacity factors of 60%–80%+ and capacity credits
close to 100%

• Smaller batteries can provide comparable economic performance as larger batteries
when coupled with complementary PV-wind systems

• Stability coefficient is a reliable indicator of capacity factor but is not as reliable for
capacity credit

OPEN ACCESS

EDITED BY

Ellen B. Stechel,
Arizona State University, United States

REVIEWED BY

Helena Martín,
Universitat Politecnica de Catalunya,
Spain
Tomasz Górski,
University of Gdansk, Poland

*CORRESPONDENCE

Anna H. Schleifer,
anna.schleifer@nrel.gov

RECEIVED 04 September 2022
ACCEPTED 05 September 2023
PUBLISHED 19 September 2023

CITATION

Schleifer AH, Harrison-Atlas D, Cole WJ
and Murphy CA (2023), Hybrid renewable
energy systems: the value of storage as a
function of PV-wind variability.
Front. Energy Res. 11:1036183.
doi: 10.3389/fenrg.2023.1036183

COPYRIGHT

© 2023 Schleifer, Harrison-Atlas, Cole
and Murphy. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 19 September 2023
DOI 10.3389/fenrg.2023.1036183

https://www.frontiersin.org/articles/10.3389/fenrg.2023.1036183/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1036183/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1036183/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1036183&domain=pdf&date_stamp=2023-09-19
mailto:anna.schleifer@nrel.gov
mailto:anna.schleifer@nrel.gov
https://doi.org/10.3389/fenrg.2023.1036183
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1036183


Introduction

The first half of 2022 saw a record level of new investment in
renewable energy globally, with over half of the investment going
toward wind and solar energy (Sehgal, 2022). In the United States,
investments in wind, solar, and other clean-energy-enabling
technologies like energy storage and transmission are expected to
increase in the next decade (Gagnon et al., 2022; U.S. Energy
Information Administration, 2022), especially with the extension
and modification of federal tax incentives (Inflation Reduction,
2022; The Inflation Reduction Act Drives, 2022). More broadly,
renewable energy investment could accelerate due to ongoing
geopolitical conflicts driving interest in lowering energy costs and
increasing energy security (IEA. World, 2022). Increasing
deployment of variable renewable energy (VRE) resources poses
challenges to bulk power systems because of their variable and
uncertain nature.

The integration of growing shares of VRE generation can be
facilitated through a variety of strategies, such as enhanced flexibility
of supply (Mallapragada et al., 2020) and demand (Paterakis et al.,
2017; Mai et al., 2018), coordination and sharing of resources across
larger geographic areas (Denholm et al., 2021a; Bloom et al., 2022),
and improved generation forecasting for weather-based resources
(Sobri et al., 2018). Modeling suggests that energy storage will play
an important role in future grids (Weitemeyer et al., 2015; Denholm
et al., 2020; Blair et al., 2022; Marocco et al., 2023) as it can provide
multiple values to multiple locations in the grid, namely, at the
transmission and distribution levels and the demand side (Pearre
and Swan, 2015; Balducci et al., 2018). These values can be
categorized as bulk energy services (peak load reduction and
energy arbitrage), ancillary services, transmission services (e.g.,
congestion management), distribution services (e.g., upgrade
deferral), and customer services (e.g., bill management, load
shifting) (Akhil et al., 2016). The focus of this paper is values at
the transmission level.

Storage can alleviate stress on the transmission network by, for
example, storing energy at a location with forecast demand that will
exceed transfer limits before those limits are met (Wang et al., 2019;
Arteaga et al., 2021). Storage can also alleviate stress on the thermal
generation fleet by providing quick ramping in response to changes
in load conditions, reducing fuel costs and operations and
maintenance (O&M) costs (O’Dwyer and Flynn, 2015;
Shahmohammadi et al., 2018; Goteti et al., 2021). A well-known
use case for storage is to ramp up in the evening as solar output
declines in areas with high PV shares, as the rate at which system-
wide net load (load minus VRE generation) increases often requires
additional ramping of—and wear and tear on—the thermal
generation fleet (Wang and Hodge, 2017; Verástegui et al., 2021).
By reducing peak net loads, storage can defer investment in or
replace other peaking resources like natural gas generators, thus
providing capacity value to the grid (Denholm et al., 2020; West
et al., 2022). Storage can further facilitate the integration of higher
VRE shares by providing services to support grid stability on a sub-
second timescale (Johnson et al., 2020), balancing supply on sub-
hourly and hourly timescales (O’Dwyer and Flynn, 2015; Kargarian
et al., 2016; Hemmati et al., 2021), and capturing energy that would
otherwise be curtailed (de Sisternes et al., 2016; Jorgenson et al.,
2018; Johnson et al., 2021; Yang et al., 2021).

The focus of this study is on an emerging and increasingly
popular approach to enabling VRE integration through the
hybridization of VRE and energy storage technologies (Seel et al.,
2022). Commonly discussed hybrid renewable energy system
designs in the United States leverage the complementary nature
of VRE generation sources (Slusarewicz and Cohan, 2018; Clark
et al., 2022; Harrison-Atlas et al., 2022), synergies between
generation and storage technologies (Göransson and Johnsson,
2018; Frazier et al., 2020), regulatory and policy incentives
(Murphy et al., 2021; Stenclik et al., 2022), and reduced balance-
of-system (BOS) costs via the sharing of site preparation equipment
and labor, substation equipment, and interconnection costs (Barker
et al., 2021). A report by the Energy Systems Integration Group
(ESIG) ranks avoided transmission and distribution upgrades as the
second most important key driver of resource hybridization, behind
only tax incentives (whose importance will likely diminish with the
investment tax credit [ITC] for standalone storage that was
introduced by the Inflation Reduction Act) (Stenclik et al., 2022).

The most popular hybrids in interconnection queues today, in
terms of both number of plants and total capacity, combine solar
photovoltaics (PV) and lithium-ion battery storage technologies,
referred to as PV-battery systems (Bolinger et al., 2022). The
synergies of PV and storage technologies are well documented in
the literature, much of which applies for both independent and
hybrid systems (Frazier et al., 2020; Denholm et al., 2021b), but
additional synergies and efficiencies can be achieved through
hybridization (Denholm et al., 2017; DiOrio et al., 2020; Schleifer
et al., 2021). Wind-based systems are the second-most popular
proposed hybrids, though their combined capacity is less than a
10th that of all proposed PV-battery hybrids as of the end of 2021
(Bolinger et al., 2022).

In this work, we investigate how the values of PV-wind and PV-
wind-battery hybrid systems change under different grid conditions and
how these evolving values compare to those of PV and PV-battery
systems.We analyze the results in the context of the complementarity of
solar and wind resources at select locations in the conterminous
United States, although our results and methodology are relevant
globally. The focus of this work is on AC-coupled systems in which
each component has its own inverter(s). Furthermore, we allow these
systems to be oversized relative to their point-of-interconnection (POI)
capacity, which is held constant, in order to isolate the effects of
combining resource profiles (as opposed to, for example, increased
capacity value due to higher injection limits).

Studies on the value of combined PV, wind, and storage systems
are relatively common in the context of standalone applications for
microgrids and remote communities (Nandi and Ghosh, 2009;
Mahesh and Sandhu, 2015; Sawle et al., 2016; Al-falahi et al.,
2017; Khan et al., 2018). Analyses like these implicitly account
for resource complementarity through the optimization of
component sizing to meet demand. Analysis of PV-wind-battery
hybrid systems is less common in the context of utility-scale plants
providing energy and capacity value to the bulk power system.
Studies have shown that the addition of wind capacity to solar
capacity (either PV or concentrating solar power [CSP]) can reduce
the amount of storage capacity needed to provide more uniform
generation (Hoicka and Rowlands, 2011; Coker et al., 2013; Santos-
Alamillos et al., 2015; Prasad et al., 2017; Zhang et al., 2018) or to
meet a certain utility load profile (Solomon et al., 2010; Vick and
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Moss, 2013). Jurasz et al. analyzed very small PV-wind-battery
hybrids at 86 locations in Poland, but their focus was on how
resource complementarity contributes to reliably meeting a constant
load (Jurasz et al., 2018). Ren et al. proposed a novel metric to
analyze complementarity for PV-wind hybrids (without storage)
across China but did not extend their analysis to implications for the
power system (Ren et al., 2023). Li et al. performed a
technoeconomic analysis of the addition of an electrolyzer to a
single PV-wind-battery configuration for selling both electricity and
hydrogen, but the value of electricity was based on a static feed-in
tariff, and the analysis was performed for one low-complementarity
location (Li et al., 2023). Others have analyzed PV-battery, wind-
battery, and PV-wind-battery systems using a price-taker approach,
but they used historic prices to estimate the potential revenue of
hybrids operating in different markets (Montañés et al., 2022a;
Gorman et al., 2022; G et al., 2023; Cox et al., 2023; Prasad et al.,
2021).

This analysis expands on the existing literature by providing
insight into the system value of PV-wind-battery hybrid systems. We
evaluate the energy and capacity values of various PV-wind hybrid
system configurations—in the present day and over the coming
decades, as well as with and without a storage component. This
analysis allows us to determine which hybrid configurations provide
the highest value, in terms of their ability to reduce the investment
and production costs of the grid, considering both the current grid
mix and potential future grid mixes.

Another novel contribution of this work is our evaluation of the
site-specific and configuration-dependent complementarity of the
underlying PV and wind resources via the stability coefficient, which
reflects the degree to which combining resources reduces variation
in total output. This approach contrasts with the bulk of the
complementarity literature in two main ways. First, much of the
literature includes a spatial element and focuses on increasing
uniformity of system-wide VRE supply (Widen, 2011; Santos-
Alamillos et al., 2012). Studies have shown that the
spatiotemporal complementarity of wind and solar (i.e., the
extent to which siting wind and solar resources at multiple
different locations increases temporal complementarity) can
increase the total share of VRE generation on the bulk power
system (Nikolakakis and Fthenakis, 2011; Jerez et al., 2013;
Huber et al., 2014; Thomaidis et al., 2016) while reducing the
required backup capacity of conventional generators (Solomon
et al., 2016). Similar results are found in analyses of wind-hydro
and solar-hydro complementarity (Kougias et al., 2016; Jurasz and
Ciapała, 2017). The benefits of spatiotemporal complementarity are
enabled largely by transmission infrastructure (Knezović et al.,
2021). Since the components of our hybrid systems are all co-
located, our analysis focuses on the temporal complementarity of the
wind and solar resource at each location.

Second, most complementarity analyses have tended to focus on
correlation metrics, with the Pearson coefficient being the most
common (Jurasz et al., 2020). Kendall’s Tau and the Spearman rank
coefficient have also been used, but substantial overlap exists in the
insights provided by these metrics and the Pearson coefficient for
wind-solar complementarity throughout the conterminous
United States (Harrison-A et al., 2022). Cantor et al. assert that
correlation is required but not sufficient for complementarity and
that the scale of resources must be considered (Cantor et al., 2022a;

Cantor et al., 2022b), which we do through the use of the stability
coefficient. Jurasz et al. provide a comprehensive review of studies
that have used—and proposed—a wide range of complementarity
metrics, and they note the need for future studies to extend the
insights provided by complementarity assessments to practical
applications (Jurasz et al., 2020).

When combined with the previously described valuation
analysis, our complementarity analysis allows us to evaluate
whether the stability coefficient is a good predictor of the value
of a hybrid renewable energy system across multiple locations and
configurations. Targeted analysis allows us to explore the extent to
which complementarity can be used to inform hybrid design
choices, including the relative sizing of PV, wind, and battery
components; whether wind or battery capacity would be more
effective for smoothing PV generation at a given site; whether
wind capacity can provide incremental value to a PV-battery
project; and the highest-value location.

Methods

The methodology used for this analysis combines several existing
electricity sector modeling tools to examine the value-maximizing
operation of PV-wind-battery hybrid systems under a range of
conditions, based on the methodology presented in (Schleifer
et al., 2021; Schleifer et al., 2022), which is summarized in the left
column of the flowchart shown in Figure 1. The middle and right
columns provide an overview of the additional contribution of the
current work, which is the analysis of wind and solar resource
complementarity to provide context for hybrid system value.

Electricity sector modeling tools and
approach

The evolution of the grid mix from present day to 2050 is
determined by the Regional Energy Deployment System (ReEDS)
capacity expansion model, which optimizes for the least-cost build-
out of generation, storage, and transmission capacity for the
conterminous United States (Ho et al., 2021). For this analysis, we
used the Low Renewable Energy (RE) Cost case from the 2020 Standard
Scenarios (Cole et al., 2020), which assumes advanced-innovation
trajectories for the performance and costs of utility-scale and
distributed PV, land-based and offshore wind, concentrating solar
power with thermal energy storage (CSP-TES), and geothermal
generation technologies. We used the Low RE Cost case to
investigate the value of PV-wind hybrids under a wide range of
conditions, from relatively low PV and wind shares in the near term
to higher PV andwind shares in the future. The large increase in PV and
wind shares in the Low RE Cost case allows us to analyze the value of
PV, wind, and storage technologies as the increasing deployment of one
technology reduces its own value and the value of other technologies
(López Prol et al., 2020). More details of the Low RE Cost case can be
found in the 2020 Standard Scenarios (Cole et al., 2020).

The ReEDS model provides the grid build-out of generation,
transmission, and storage assets for every even year from 2020 to
2050. In turn, the hourly operational data for each even year are
provided by Energy Exemplar’s PLEXOS production cost model
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based on the ReEDS results. These hourly data can be found in
NREL’s Cambium dataset (Gagnon et al., 2023) and reflect
performance of the generation fleet as well as constraints within
the transmission network. These hourly data provided the marginal
energy costs and net loads used to create price signals.

Hourly capacity prices were created by distributing the annualized
cost of natural gas combustion turbine (NGCT) capacity over the 3% of
hours in each year with the highest net loads. Based on NREL’s
2020 Annual Technology Baseline (ATB) Mid cost trajectory
(Annual Technology Baseline, 2020), a 20-year amortization period,
and a discount rate of 6.2% (consistent with ReEDS modeling),
annualized NGCT capacity costs are $95.39/kW in 2022, $89.62/kW
in 2030, $86.79/kW in 2040, and $84.09/kW in 2050.

The distribution of capacity prices is described by Equation 1, in
which pcapacity

i is the capacity price in hour i, ACOCNGCT is the
annualized cost of NGCT capacity, andNLi is the net load in hour i.

The denominator of Eq. 1 is the sum of all net loads in the 3% of
hours (0.03 × 8,760 h = 263 h) with the highest net loads.

pcapacity
i � ACOCNGCT ×

NLi

∑263
i�1NLi

( ) (1)

These net loads account for existing variable renewable
generation and discharge of pumped hydro storage and battery
storage, meaning that the total values of the hybrid systems studied
are marginal to all existing PV, wind, and storage technologies.
While the energy prices are specific to each model balancing area
(BA), the net loads that inform the capacity prices cover the entire
model regional transmission operator (RTO), discussed further in
the Study Locations section and in the Supplementary Material. As
shown in (Schleifer et al., 2021), the capacity value of the hybrid
systems is sensitive to the presence of capacity prices in the price

FIGURE 1
Flowchart describing the modeling process in this analysis.
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signals but not to the number of hours over which they are
distributed, and the presence of capacity prices has a negligible
effect on energy value.

The combined energy and capacity prices are used as inputs to a
price-taker optimization, the Revenue, Operation, and Device
Optimization (RODeO) tool, to find the revenue-maximizing dispatch
of a range of PV-battery and PV-wind-battery configurations. In this
framework, maximizing the revenue of a hybrid plant is equivalent to
maximizing its value to the grid, or its ability to prevent costs associated
with fuel consumption, operations and maintenance (O&M), and
deployment of peaking capacity. In this analysis, the price-taker
optimization was run with an 8,760-h optimization window and with
perfect foresight of price signals and PV and wind generation.

The effects of battery self-discharge were excluded, and cycle and
calendar degradation were incorporated using a static variable O&M
(VOM) cost of $5/MWh for both charging and discharging
(Montañés et al., 2022a), which discourages cycling the battery
for very small arbitrage opportunities. This VOM value is not
included in net energy value calculations. These assumptions
potentially result in optimistic estimates of hybrid system value
but maintain the fast solve times required for the number of
configurations, locations, and years studied.

The energy prices used throughout this work are not market
prices. They are the modeled marginal cost of providing electricity to
meet a given demand, assuming perfect knowledge and perfect
competition among all generation and storage technologies
operating in the system. Therefore, in this work, the value of PV-
wind and PV-wind-battery systems reflects avoided energy and
capacity costs and not market revenue.

Configurations

All the configurations explored in this analysis have a POI
capacity of 100 MWAC, a PV capacity of 100 MWAC, and a
storage duration of 4 h. We vary the wind and battery
capacities—while holding the PV capacity constant—to study a)
how wind and battery systems increase the value of PV and b) to
what extent these systems have competitive or synergistic effects.
This approach means that, as the wind capacity increases, the
oversizing of the total VRE capacity relative to the POI capacity
increases; such a strategy is effective for smoothing total output
(Perez et al., 2019), and, as VRE deployment increases, new
additions of VRE generators are likely to be located in more
remote locations with potentially higher interconnection costs
(Stenclik et al., 2022). Limiting the POI capacity can help avoid
expensive network upgrades (Vander Vorst and Stern, 2022). See
Table 1 for a list of configurations used in this study.

We chose to vary the wind capacity while holding the PV capacity
constant—and not vice versa—to limit the scope of the analysis and to

allow for comparison with previous analyses of PV-battery hybrids
since they are presently the most common utility-scale hybrids.

Our configurations are somewhat similar to the Wheatridge
Renewable Energy Facility, the first utility-scale project in North
America with co-located wind and solar generation and battery
storage, in that the wind capacity is generally greater than the PV
and battery capacity. The plant includes 300MWof wind, which began
operation in December 2020, and 50MW of PV and 30MW of 4-h
battery storage, which began operation in the spring of 2022 (Flaccus,
2022). However, the PV and battery were added to the existing wind
plant, which is the opposite of our approach. The plant’s location in
Oregon has wind and PV generation that are generally in the middle
tertile of mean capacity factors—and exhibit a similar level of
complementarity—relative to other regions throughout the
conterminous United States for the period 2007–2013 (Harrison-A
et al., 2022). Future work could provide insight into how resource
quality and complementarity influence the value proposition of adding
wind to existing PV compared to adding PV to existing wind.

PV and wind generation profiles

The raw hourly PV and wind generation profiles used to develop
combined PV-wind profiles for this analysis came from ReEDS PV and
wind resource profile inputs, which came from NREL’s Renewable
Energy Potential (reV) model (Maclaurin et al., 2019; reV, 2022). The
reV model uses weather resource data from the National Solar
Radiation Database (NSRDB) and the Wind Integration National
Dataset (WIND) Toolkit in combination with the System Advisor
Model’s (SAM’s) technology performance simulation capabilities to
create generation profiles for a range of VRE technology configurations
(Maclaurin et al., 2019). The generation profile data are based on
2012 weather data, have a spatial resolution of 11.5 km by 11.5 km, and
account for siting exclusions (e.g., protected areas, urban areas, areas
with difficult terrain, setbacks, etc.) (Brown et al., 2020). Throughout the
paper, we refer to these spatially aggregated data as supply-curve data.

The hourly PV and wind profiles are normalized AC generation
profiles, so they include inverter and other losses. The wind generation
profiles represent systems with 90-m hub heights and 121-m rotor
diameters (Annual Technology Baseline, 2020), and they include
derating factors that account for unforced outages for maintenance
and forced outages due to icing of turbine blades. The PV profiles
represent single-axis tracking systems with an inverter loading ratio
(ILR) of 1.3 (i.e., there is 1.3MWDC of PV capacity for every 1.0 MWAC

of inverter capacity). More details about the PV and wind resource
profiles can be found in the reV documentation (Maclaurin et al., 2019)
and the ReEDS documentation (Brown et al., 2020).

For each location and configuration, the PV and wind profiles
were combined to create total VRE profiles, normalized by the total
VRE capacity.

TABLE 1 Configuration parameters explored in this analysis.

Parameter Value

Wind Capacity (MWAC) 0, 50, 100, 200

Battery Capacity (MWAC) 25, 100

In the results section, these configurations are compared to similar configurations of PV-wind systems without battery capacity.
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Complementarity metrics

The complementarity analysis in this study quantifies temporal
synergies of co-located VRE generation, in terms of whether combining
PV and wind systems produces generation that is less variable
(i.e., smoother) than the generation of PV or wind alone. As
previously discussed, correlation coefficients do not account for the
absolute magnitude of PV and wind generation; so, for example, a PV-
wind systemwith 100MWAC of PV and 1MWAC of wind will have the
same correlation coefficient value as a PV-wind systemwith 100MWAC

of PV and 100MWAC of wind in the same location—even though these
systemswill have very different outputs. To overcome this limitation, we
focus our complementarity analysis on the stability coefficient, which
reflects the degree to which adding wind generation to baseline PV
generation reduces the diurnal variation in a plant’s total output (Sterl
et al., 2018). A stability coefficient of 0 indicates that the diurnal
variation in output of a PV plant is not reduced at all by the added
wind generation, while a stability coefficient of 1 indicates that the
added wind generation results in a perfectly uniform output.

The stability coefficient can be used to capture effects of system
configuration (i.e., sizing) on hybrid synergies (Sterl et al., 2018). The
diurnal variation is determined by the coefficient of variation, the ratio
of the standard deviation to the mean of the generation profile
(Equation 2). The stability coefficient for a given day is then
determined by comparing the coefficient of variation of the
combined PV-wind generation profile, cv,mix, to the coefficient of
variation of the PV-only generation profile, cv,ref (Equation 3). The
overall stability coefficient presented in the Results section is the average
of the daily stability coefficients over the course of a year or a season.

cv � σ/μ (2)
Cstab � 1 − cv,mix/cv,ref (3)

For this analysis, the stability coefficient was calculated using the
combined PV-wind generation profile output to the grid, meaning that
themixed profile was not allowed to exceed the POI limit of 100MWAC.
The effects of this assumption are shown in Figure 2: for a single site in
Texas, the black line shows the stability coefficient of a PV-wind plant as
the wind capacity is increased from 1MWAC to 1000MWAC, holding
the PV capacity constant at 100 MWAC. With increasingly higher wind
capacities, the stability coefficient plateaus because the wind generation
cannot reduce the total output variation to exactly zero. As shown in
blue, a smaller POI capacity would cause a more rapid increase in
stability coefficient with wind capacity and a higher plateau.

The red line shows the stability coefficient of a PV-wind plant as
both the wind capacity and the POI capacity increase such that the POI
capacity is the sum of the PV and wind capacities. As the capacity of the
wind component growsmuch larger than that of the PV component, the
variability of the combined PV-wind generation profile approaches the
variability of the wind-only generation profile (SupplementaryMaterial).
So, the stability coefficient of the mixed profile, where the POI capacity
equals the total VRE capacity, begins to decrease at very high wind
capacities. We chose to use the stability coefficient with consideration of
the POI limit because the configurations modeled in this work all have a
constant POI capacity of 100MWAC and because this definition of
stability coefficient results in a monotonically increasing relation (i.e., for
a given set of possible PV and wind generation profiles, each possible
PV-wind configuration results in a unique stability coefficient, even if the
difference is vanishingly small at higher wind capacities).

Study Locations

This analysis focuses on select locations of Texas that provide
the greatest insights into the current and future value of PV-wind-
battery hybrids, as well as the relationship between value and

FIGURE 2
Increase in the stability coefficient at a single site as wind capacity from 1 MW to 1,000 MW is added to PV capacity of 100 MW, with the baseline POI
capacity of 100 MW in black, a lower POI capacity of 50 MW in blue, and a varying POI capacity that is the sum of the wind and PV capacities in red.
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complementarity. Considering expected VRE deployment, current
curtailment levels, and complementarity, we focus on three regions
of Texas: Southwestern Texas, Northeastern Texas, and Southern
Texas (Supplementary Material for more details). These regions
reflect a range of grid conditions, as shown by the generation shares
of PV, wind, and battery in the top row of Figure 3. While each
region has a relatively low (and slowly increasing) share of battery
generation (in terms of discharge only), they vary widely in their
shares of PV and wind generation in 2022 and how they change over
time. The bottom row of Figure 3 shows the subsequent impact on
the average energy value of the existing PV, wind, and battery fleet.

Out of the thousands of supply-curve sites in Texas for which PV
or wind generation data exist, we filtered the data to include only
those sites with both PV and wind generation data. Not every
supply-curve site has both PV and wind generation data because
of technology-specific constraints for exclusion areas. From these
sites, we selected up to 6 sites in each study region that reflect a wide
range of complementarity, including the minimum and maximum
stability coefficient values based on the PV-wind configuration with
100 MW of PV capacity and 100 MW of wind capacity
(Supplementary Material for more details).

Value streams and metrics

The value streams analyzed in this work are energy value and
capacity value, where the former represents avoided fuel and operating
costs and the latter represents avoided costs of new generator capacity
due to the presence of the added hybrid system. The energy value is the

energy revenue minus the cost of charging the battery from the grid, as
shown in Eq. 4, where penergy

i is the energy price in hour i, Eout,i is the
electricity sent to the grid in hour i, andEin,i is the grid electricity used to
charge the battery in hour i.

Energy value � ∑8760
i�1

penergy
i × Eout,i − Ein,i( ) (4)

The capacity value is the product of a configuration’s capacity
credit (in MW) and the annualized cost of NGCT capacity (in
$/MW-year), as shown in Eq. 5. This approach for estimating the
avoided cost of new capacity is common in the context of grid
planning (Cutter et al., 2014). The capacity credit of a configuration
reflects its ability to provide firm capacity, or its contribution to
maintaining adequate system-wide supply to meet demand
throughout the year. We calculate the capacity credit using the
incremental net load duration curve (INLDC) approach, in which
the capacity credit of a given plant is the average amount by which it
reduces the net load over a set of hours with the highest net loads
(Frew et al., 2017). Given the uncertainty around the number of
highest-net-load hours that result in the most accurate
approximation (Mills and Rodriguez, 2020), we average the
INLDC capacity credit approximations using 10–100 h (for a
total of 91 individual approximations), as shown in the second
part of the right-hand side of Eq. 5, where CCn indicates the capacity
credit approximated with the n highest-net-load hours.

Capacity value � ACOCNGCT ×
∑100

n�10CCn

91
(5)

FIGURE 3
Generation share (A) and average energy value (B) of existing wind, PV, and battery systems for years evaluated in this work; battery generation share
includes discharge only, and battery average value includes energy revenue only (not grid-charging costs).
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The total value of a configuration is the sum of the energy value and
capacity value, and it represents the reduction in energy and capacity
costs to the bulk power system from the perspective of a central planner
and operator. The values reported in this analysis are the system values of
themodeled configurations, not market values, and do not include other
potential value streams such as renewable energy credits, operating
reserves and other essential reliability services, avoided emissions, or
resilience. Energy and capacity costs comprise most electric system
operating costs (Denholm et al., 2019), and price-taker modeling is not
appropriate for value streams with shallow requirements, like operating
reserves, as additional operating supply would likely influence prices
(i.e., act as a price-maker) (Ikechi Emmanuel and Denholm, 2022).
Additionally, transmission representation is exogenous to price-taker
modeling, represented only through the hourly price signals, so
transmission-related value streams also require a different modeling
approach (Martinek et al., 2018; Ikechi Emmanuel and Denholm, 2022).

We compare the value increase associated with the addition of
battery capacity to PV and PV-wind systems, in terms of $/kW-year, to
the estimated cost of battery capacity from the 2020 ATB. To annualize
the battery capacity costs, we assume a 15-year battery lifetime and a
discount rate of 6.2% (consistent with ReEDS (Ho et al., 2021)). The 15-
year lifetime is taken from the literature review performed by Cole et al.
(Cole et al., 2021). A shorter lifetime would increase the cost of adding
battery storage to the PV or PV-wind system and could result from, for
example, extreme hot or cold ambient temperatures, excessive cycling,
greater depth of discharge, and increased charge/discharge rates (Smith
et al., 2017). Cycle life could improve dramatically in the coming years

as degradation mechanisms become better understood and depending
on funding of research and development (Few et al., 2018). We do not
adjust the battery costs to account for any potential cost savings
associated with co-location of the battery with the PV and wind
capacity (Ramasamy et al., 2021).

Results and analysis

In the following sections, we explore the relationship between
seasonal complementarity and performance metrics (i.e., capacity
factor and capacity credit) for all PV-wind and PV-wind-battery
configurations. Then we focus in on select sites and configurations to
explore the influence of PV-wind complementarity and grid
conditions on the dispatch behavior of PV-wind-battery systems
in the near term and in future years.

Complementarity and performance metrics
of PV-wind systems by season

Increasing the wind capacity of a PV-wind system increases the
stability coefficient, but the magnitude depends on location.
Therefore, we present the capacity factors of PV-wind systems in
Figure 4 as a function of both wind capacity (Figure 4B) and stability
coefficient (Figure 4A). PV systems without any wind capacity are
shown as having a stability coefficient of zero.

FIGURE 4
Winter and summer maximum capacity factors, with no curtailment, for each PV and PV-wind configuration as a function of stability coefficient (A)
and wind capacity (B); in (B), lines connect configurations located at the same site.
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Within a given region, there is at least one site where a PV-wind
systemwith 200MWofwind capacity has a lower capacity factor than a
PV-wind system with half the wind capacity at a different site. For
example, in southwesternTexas, there is one site where adding 200MW
ofwind to 100MWof PV behind a 100-MWPOI increases the capacity
factor by less than 10%. At sites like these, the stability coefficient does
not increase as quickly with increasing wind capacity as it does at other
sites—either because the wind by itself has a low capacity factor or
because the wind generation coincides with the PV generation and,
therefore, gets clipped because it exceeds the POI capacity.

These results show that the stability coefficient is a more reliable
indicator of a PV-wind system’s capacity factor in these regions of
Texas, whereas wind sizing can bemisleading when it comes to the joint
PV-wind capacity factor. This conclusion is also true when considering
curtailment: although curtailment reduces the capacity factors of PV-
wind configurations in all years in this study (but not standalone PV in
2022 in northeastern and southern Texas), the trends in the top row of
Figure 4 remain generally the same (Supplementary Material for
capacity factors with curtailment in 2022 and later).

Figure 5 presents the summer andwinter capacity credits of the PV-
wind configurations in 2022. These results illustrate the seasonal
variation in both a) the capacity credit of standalone PV and b) the
effect of added wind capacity. The relatively high summer capacity
credit of standalone PV (~80% and higher at all but one site) means that
there is less opportunity for added wind capacity to increase the total
capacity credit. As a result, the summer capacity credits of PV-wind
systems are not well predicted by either wind capacity or stability

coefficient. For example, in southwestern Texas, the site and
configuration with the highest summer stability coefficient has one
of the lowest summer capacity credits, while the sites and configurations
with summer stability coefficients as low as 0.2–0.4 have some of the
highest summer capacity credits. Similarly, some sites with only 50MW
of wind have higher capacity credits than other sites with 200MW
of wind.

In the winter, the effect of adding wind to PV varies strongly
based on location. At certain sites, adding wind can increase the
capacity credit from less than 15% of the POI capacity to nearly 80%;
at other sites, adding 200 MW of wind increases the winter capacity
credit by less than 10% of the POI capacity. The winter capacity
credits have a clearer relationship to the winter stability coefficients,
although the relationship is nonlinear, as opposed to the more linear
relationship seen with the capacity factors.

In later years (Supplementary Material), the winter and summer
capacity credits of all the configurations at all the sites are lower than
in 2022 (because of the growing deployment of PV and wind
generation over time), but many of the same trends hold. For
example, wind capacity continues to be a poor predictor of the
capacity credits of PV-wind systems, and winter capacity credits
follow the same patterns (but with an overall shift downward).
However, the summer capacity credits have a different pattern with
more random variation in later years. The sources of this random
variation likely arise from unintuitive nuances in the stability
coefficient calculation. First, by the definition of the stability
coefficient, a PV-wind system with a seasonal stability coefficient

FIGURE 5
Winter and summer capacity credits in 2022 for each PV-wind configuration as a function of stability coefficients (A) and wind capacity (B); in (B),
lines connect configurations located at the same site.
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of exactly 1.0 would provide uniform generation over all hours of the
season, regardless of the magnitude of that uniform generation. So, a
PV-wind generation profile could have a stability coefficient of
exactly 1.0 but still not have a capacity credit of 100% if that
uniform profile does not equal the full POI capacity.

Second, consider the extreme case in which a PV-wind system’s
output profile is uniform at the POI capacity for the highest 100 net
load hours in a season, but PV and wind generation are perfectly
overlapping in all other hours. In that case, the stability coefficient
would be close to zero, but the system would have a 100% capacity
credit based on the capacity credit approximation used in this
analysis. Conversely, if the added wind generation perfectly
complements the PV generation for all hours in a season except
for the 100 h with the highest net loads, then the stability coefficient
would be close to 1.0, but the capacity credit would equal that of
standalone PV. So, there is a mismatch in temporal scope between
the stability coefficient (for which >2,000 h in a season are relevant)
and the capacity credit (for which only 100 h in a season are relevant
in this analysis). This temporal mismatch does not exist for the
relationship between stability coefficient and capacity factor, which
explains their more linear relationship.

While the stability coefficient predicts capacity factor relatively
well, regardless of wind capacity, it does not predict the amount of
energy clipped behind the POI very well. This clipped energy is an
important factor in the role and value of the battery component of
PV-wind-battery hybrid systems.

Complementarity and performance metrics
of PV-wind-battery systems by season

The addition of a battery component improves the plant-level
capacity factor and capacity credit by capturing generation that
would otherwise by clipped or curtailed and allowing more energy to
be available during the highest-net-load hours of the year. The
increases in summer and winter capacity factors when battery
capacity is added to PV-wind systems are shown in Figure 6 as a
function of stability coefficient for each configuration and site.

Adding a 25-MW battery leads to a <5 percentage point increase
in the summer and winter capacity factors of PV and PV-wind
systems (with a 100-MW POI), regardless of stability coefficient (or
site). The influence of a 100-MW battery on the capacity factors of
PV and PV-wind systems scales with stability coefficient. For sites
with relatively low stability coefficients, a larger battery results in a
greater capacity factor increase (on the order of 10–15 percentage
points). For sites with relatively high stability coefficients
(approaching 0.8), the effects of adding a 25-MW or 100-MW
battery are comparable, especially during the summer months.
This result is intuitive because a high stability coefficient
indicates that wind production is high during non-solar hours,
such that there is limited POI capacity available for the battery to
discharge to the grid—the battery cannot shift as much PV
generation because the wind generates during the hours to which
the generation would be shifted.

FIGURE 6
The percentage-point increase in capacity factor when 25-MW (lighter markers) and 100-MW (darker markers) batteries are added to PV-wind
configurations in the summer (A) and winter (B) in 2022.
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The increases in summer and winter capacity credits when battery
capacity is added to PV-wind systems are shown in Figure 7 as a
function of stability coefficient for each configuration and site. When
PV by itself has relatively high capacity credit, the effect of added battery
capacity on capacity credit is limited by the POI capacity. In 2022, all the
PV-wind-battery systems with 100-MW batteries achieve full summer
capacity credit, and all configurations with 25-MW batteries achieve
summer capacity credits greater than 90%, but the firm capacities of
these systems could be higher with higher POI capacities.

As with the capacity factor results, the capacity credit results
show that the stability coefficient is a good indicator of both how
adding wind to PV increases capacity credit and how it reduces the
opportunity for additional battery capacity to increase capacity
credit. Similarly, adding battery capacity to standalone PV or to
PV-wind systems with lower wind capacities reduces the
opportunity for additional wind capacity to increase capacity
credit. With PV as the reference profile, wind and battery
capacity play the same role in increasing generation (or being
available to provide generation) during hours when PV
generation is low.

Dispatch of PV-wind-battery systems with
highest and lowest stability coefficients

Figure 8 shows the dispatch of a PV-battery configuration (top
row) and two PV-wind-battery configurations (middle and bottom

rows) during a modeled week with weather from August of 2022 at a
site with a high summer stability coefficient (based on a 1:1 wind:PV
ratio). The wind generation is shown in 50-MW segments, and the
battery capacity is shown in two segments (the first 25 MW of
capacity and then the addition of 75 MW for a total of 100 MW).
The horizontal grey lines indicate the POI capacity of 100 MWAC.
These plots include the energy discharged from the battery but not
the energy used to charge the battery.

The top row shows that, in the absence of the wind generation,
the battery cycles once per day to supplement the PV generation
during the day. During this year, high electricity prices and high net
loads coincide with solar insolation, so the PV generation does not
need to be shifted by the battery to maximize value. The first
increment of battery capacity discharges during the hours with
the highest insolation, while subsequent increments of battery
capacity discharge during shoulder hours as the sun rises and
sets. With a lower battery VOM, the battery would discharge
more during some of the lower-priced shoulder hours.

The bottom row shows that a system with 100 MW of PV
capacity and 200 MW of wind capacity provides uniform generation
at the capacity of the POI, and thus has a daily stability coefficient of
1.0, during the first 5 days of this period. During these days, the
battery does not discharge at all, and there is a significant amount of
energy clipped at the POI.

To highlight the effects of PV-wind-battery configuration,
Figure 9 summarizes 2022 dispatch results for each configuration
at the sites with the lowest (teal bars) and highest (magenta bars)

FIGURE 7
The percentage-point increase in capacity credit when 25-MW (lighter markers) and 100-MW (darker markers) batteries are added to PV-wind
configurations in the summer (A) and winter (B) in 2022.
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annual stability coefficient. Both sites are in the Southwestern Texas
BA, so the comparison of configurations is not influenced by
different price signals. Figure 9 shows the total generation from
the PV and wind components of each PV-wind-battery system and
whether the generation is used (i.e., sent to the grid or used to charge
the battery) or wasted (i.e., curtailed or clipped). Power-limited
clipping occurs when the rate of electricity generation exceeds the
combined power capacities of the battery and POI. Power-limited
clipping depends on the sizing of the hybrid system components
only, so it does not change from year to year as grid conditions
change. Energy-limited clipping occurs when the rate of electricity
generation exceeds the POI capacity and cannot be sent to the
battery because the battery is fully charged. Energy-limited clipping,
like curtailment, could be reduced with longer storage duration,
whereas power-limited clipping requires both higher battery
capacity and longer storage duration to be reduced.

The PV-only system at the high-stability site has lower total
generation and fewer hours at full POI output than the PV-only
system at the low-stability site, so part of the reason this site has a
higher stability coefficient is that the baseline PV generation profile
has higher variation (i.e., the denominator in Eq. 3 is greater). At this
site, there is greater potential for wind to reduce variation in the total
combined output.

As the wind capacity increases, the total energy output increases
more at the site with the higher stability coefficient than at the site
with the lower stability coefficient, and the same is true for the
number of hours at full POI output (Supplementary Material). For
both battery sizes, some of this increased generation leads to
increased clipped and curtailed energy. Even with wind capacity
as high as 200 MW, systems with 100 MW of battery capacity can
capture a large portion of the energy that would be clipped (though
not energy that is curtailed).

FIGURE 8
Dispatch of PV-battery (A) and PV-wind-battery (B,C) systems over a week period in August.
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Figure 10 shows the amount of energy the battery component
charges and where the energy comes from—the grid or the coupled
PV-wind. Comparing PV-battery systems at the low- and high-
stability sites (far left bars in each panel), the difference in where the
battery gets its energy is minimal. But as wind capacity increases, the
portion of the battery’s energy that comes from the coupled PV-
wind increases at both sites because the battery charges more from
the wind generation that would otherwise be clipped by the POI
limit. At the low-stability site, the battery charges about the same
amount of energy (total bar height) regardless of wind capacity. At
the high-stability site, the battery charges less total energy with
higher wind capacity, indicating that the battery component
provides less energy overall because it is displaced by the wind
generation. In other words, at the high-stability site, greater sizing of
the wind components leads to reduced utilization and cycling of the
battery component.

The amount of energy used to charge the battery is greater in all
modeled years after 2022 for each configuration, but the patterns
remain the same (Supplementary Material).

Performance of select PV-wind-battery
configurations at high-stability sites

In this section, we focus on the operation of select PV-wind-
battery configurations at the highest-stability site in each BA for each
year modeled. We first compare systems with different wind
capacities (wind:PV ratios of 1:1 and 2:1) but the same battery
capacity (battery:PV ratio of 1:1). Then we compare systems with
fixed wind capacity (wind:PV ratio of 1:1) and different battery
capacities (battery:PV ratios of 1:4 and 1:1) to demonstrate the
battery’s role in providing firm capacity to the grid.

FIGURE 9
Total used and unused energy for PV-battery and PV-wind-battery systems at the sites with the lowest (cyan bars) and highest (purple bars) stability
coefficients.

FIGURE 10
Source of energy for battery charging for PV-battery and PV-wind-battery systems at the sites with the lowest (cyan bars) and highest (purple bars)
stability coefficients in the year 2022.
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Figure 11 shows how the PV and PV-wind generation is used (by
being sent directly to the grid or used to charge the battery) and how
it is wasted through clipping and curtailment. The dotted portions of
the bars in Figure 11 indicate energy from the coupled PV system.
Each PV-wind-battery system with 200 MW of wind capacity has
very high clipping and curtailment in every year, regardless of
battery size. As shown previously in Figure 9, curtailment
contributes greatly to wasted energy even when power-limited
and energy-limited clipping are relatively low. In areas and years
studied here, 4-h storage duration is insufficient to overcome
curtailment related to insufficient transmission capacity, which is
consistent with previous research (e.g., Jorgenson et al., 2018).

Similar to previous results of PV-battery systems, a growing
portion of PV generation is used to charge the battery in future years,
with less going directly to the grid, as PV shares increase over time
and decrease the value of new PV generation. Energy sent to the
battery is basically the same over time, with decreases in 2050 across
all three areas because of greater storage capacity in that year.

Because of the amount of energy wasted by configurations with
200 MW of wind capacity, we limit our focus on capacity credit
results to systems with 100 MW of wind capacity in Figure 12. This
figure reiterates that stability coefficient does not have as clear a
relationship with capacity credit as it does with capacity factor. The
low-stability site in southwestern Texas has higher PV-only capacity
credit than (and similar wind-only capacity credit to) the high-
stability site, so it also has higher PV-wind capacity credit. The high-

stability site in southern Texas has higher wind-only capacity credit
than (and similar PV-only capacity credit to) the low-stability site, so
it has higher PV-wind capacity credit.

As the capacity credits of standalone PV and wind approach
zero, the PV-wind-battery system capacity credit is set by the
battery. When we calculate PV-only and wind-only capacity
credits with their full generation (i.e., ignoring curtailment), the
results do not change, so the capacity credits of these systems are not
limited by transmission constraints (i.e., these site-specific wind and
PV generation profiles just are not coincident with the highest net
loads in the broader RTO region). So, while more transmission
capacity would reduce curtailment and improve energy value, it
would not necessarily improve capacity value within the broader
RTO region (although greater export outside of the studied RTO
region could contribute to resource adequacy in other RTO regions).
Longer-duration storage is needed for higher capacity credit.

Discussion and limitations

The results of this work are similar to previous results involving
PV-battery systems with high inverter loading ratios (ILRs), or ratios
of DC PV capacity to AC inverter capacity: greater degrees of
oversizing of the VRE generation increase a hybrid system’s
capacity factor but not necessarily its capacity credit, especially as
PV and wind generation shares increase and reduce their marginal

FIGURE 11
Amount of PV-wind generation that goes to the coupled battery, to the grid, and to clipping and curtailment at each BA’s highest-stability site for
systems with 1:1 wind:PV (A) and 2:1 wind:PV (B).
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capacity credit. Oversizing the generation capacity results in greater
amounts of clipped energy, but a quick analysis (Supplementary
Material) reveals that increasing the POI capacity to reduce this
clipped energy for configurations with 50 MW and 100 MW of wind
capacity would be economic if the cost of doing so would be less than
~$200 per kW of added POI capacity. Given increasingly higher
interconnection costs in the United States in recent years, it is likely
that increasing the POI at more remote locations would not be cost
effective. However, the Federal Energy Regulatory Commission and
U.S. ISOs are working on interconnection reform (St. John, 2022), so
the economics of oversizing VRE might change in the long term.

Across potential locations, the stability coefficient can indicate
where it might be most valuable to build new PV-wind or PV-wind-
battery systems. The stability coefficient provides a clearer trend
with capacity factor and capacity credit than the relative sizing of PV
and wind components; however, the stability coefficient’s ability to
predict performance metrics becomes limited as higher shares of
wind and PV on the grid increase curtailment.

At higher PV and wind shares, coupled battery capacity plays a
larger role in providing firm capacity. Figure 13 shows the value
(energy and capacity value) of battery capacity added to PV and PV-
wind configurations in present value terms, assuming a 15-year
lifetime, a discount rate of 6.2%, and that the year-one incremental

value is the same for each year of the plant’s life. The values in
Figure 13 can be interpreted as an approximate upper bound for the
upfront incremental battery costs that could be justified by the added
value of the battery. We exclude the year 2030 in this figure because
2040 and 2050 sufficiently show the future trends.

The first 25 MW of battery capacity has higher per-kilowatt value
than subsequent battery capacity additions in years with lower PV
shares and higher standalone PV value, but the per-kilowatt values of
the smaller and larger batteries converge as the larger battery becomes
more necessary for providing higher capacity credit and capacity value.
So, in the near term, a smaller battery is preferred because it provides
similar incremental energy and capacity value as a larger battery but at a
lower cost. Over the long term, a larger battery becomes preferred as the
battery’s role in providing firm capacity increases. There is no
meaningful relationship between the incremental value of the battery
capacity and the stability coefficient of the underlying PV-wind resource
due to the influence of capacity value.

Adding wind capacity with a relatively high stability coefficient
increases energy value more effectively than adding battery capacity.
Given that wind capacity and battery capacity both serve to increase
total combined output during times when PV generation is low, the
additional energy value that wind capacity provides is always lower
when considered as an addition to a PV-battery system with a larger

FIGURE 12
Capacity credits of PV-only and wind-only systems (A), PV-wind systems with 1:1 PV:wind capacity (B), and PV-wind-battery systems with 1:1 PV:
wind capacities and 100-MW (square markers) and 25-MW (plus markers) batteries (C).
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battery capacity. So, adding wind capacity to PV reduces the value of
adding battery capacity, and adding battery capacity to PV reduces
the value of adding wind capacity.

Solar’s low capacity factor means lower utilization of
transmission infrastructure and thus higher costs per unit of
energy delivered (Solar Futures Study, 2021), and wind can have
a similar obstacle to development despite its higher typical capacity
factors. Combining solar, wind, and storage at one location and
behind one POI increases transmission infrastructure utilization and
reduces per-kWh investment costs. Our results show that sites with
higher stability coefficients can increase capacity factor and
transmission utilization more than sites with lower stability
coefficients, for a given wind capacity, but the same is true of the
amount of clipped and curtailed energy, which presents competing
interests in the current landscape of clean energy policy.

This analysis did not attempt to find the optimal PV-wind or
PV-wind-battery configuration, which would be a function of not
just the energy and capacity values analyzed in this study but also the
configuration-dependent capital and operations and maintenance
costs. Furthermore, we used just 1 year of weather data, but multiple
years of weather data are needed to more fully understand the effects
of the interannual variability of PV and wind generation on the value

proposition of PV-wind and PV-wind-battery hybrids. While the
interactions of PV-wind-battery systems with the evolving bulk
power system were studied, the potential deployment of these
systems and their subsequent effects on the bulk power system
were not analyzed.

Finally, in this analysis, we focused on how reducing the variability
(or increasing the uniformity) of a plant’s total output can increase its
value to the bulk power system by lowering energy and capacity costs,
but reducing the variability of VRE generation can also reduce other
system costs. For example, lower output variability could reduce the
required total capacity of reliability services products like frequency
regulation and spinning reserves. Hybrid systems with more predictable,
uniform output could also provide these reliability services instead of
being a reason for their procurement (Seel et al., 2018). However, market
participation models need to be studied, developed, and adopted for the
full value of hybrid resources to be realized in electricitymarkets (Goggin
et al., 2018; Stenclik et al., 2022). Markets and regulations would need to
adapt to enable and incentivize participants to adopt enterprise
architectures that position them to be able to respond more nimbly
to both evolving trends and disruptive technologies in the electricity
sector (Gorski, 2018; Wu et al., 2021). Market reform and its potential
impact on hybrid system value is left for future work.

FIGURE 13
The value of battery storage added to PV and PV-wind configurations, in terms of $ per kW of battery capacity, in 2022, 2040, and 2050.
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Conclusion

In this analysis, we used a price-taker dispatch optimization tool
to determine how the energy and capacity values of PV-wind-battery
hybrid systems with a range of wind and battery capacities could
evolve over time in locations with varying degrees of
complementarity between solar and wind resources. We used the
stability coefficient, a measure of resource complementarity, to
assess the degree to which complementarity is an indicator of the
value of hybridizing solar, wind, and storage resources.

The results for various PV-wind configurations showed that the
stability coefficient, which reflects both complementarity of resource
profiles and their relative magnitudes, is a reliable indicator of
capacity factor and capacity credit. However, while the stability
coefficient (as defined in this analysis) reflects the reduced variation
in generation at the POI, it does not reflect as well what happens
behind the POI (namely, the amount of clipped energy and the
associated loss in value), and it does not predict the interactions of
the output generation with energy prices or curtailment.

Because the stability coefficient provides an indication of the
ability of wind capacity to “fill in” during hours when PV generation
is low or zero, it also predicts circumstances, or configuration-
location combinations, in which a smaller battery can achieve
comparable economic performance in PV-wind-battery system
compared to a PV-plus-battery system. Within the context of a
PV-only baseline, adding wind or battery capacity fulfills essentially
the same role with respect to energy and capacity value: each one
provides output to the grid at times when energy prices and/or net
loads are high but PV generation is low.

More broadly, the combination of diverse resources behind
one point of interconnection can mitigate the risk of a plant’s
value declining due to changing grid conditions. This feature of
hybrid systems will become increasingly more important as the
electricity sector responds to and integrates new technologies,
innovative applications of existing technologies (e.g., aggregation
of demand-side resources into virtual power plants) (Uslar et al.,
2019), and new market participation models. Additionally, the
modular nature of VRE and storage technologies could enable
incremental additions of component capacity to respond to
changing conditions. While this analysis compared many
configurations of PV-wind and PV-wind-battery systems, it
did not optimize any configurations. Future work should
consider how the optimal configuration of a hybrid system
might evolve over its lifetime by incremental additions of PV,
wind, and battery capacity and storage duration, considering
both changing grid conditions and component costs. Future work
should also consider how the optimal configuration of a hybrid
system might evolve based on different starting configurations
(e.g., by starting with predetermined wind capacity instead of
with predetermined PV capacity).
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