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Comprehensive
immunophenotyping of solid
tumor-infiltrating immune cells
reveals the expression
characteristics of LAG-3
and its ligands
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Priyanka Mehta1, Miye K. Jacques1, Laurence Menard1,
Nataly Manjarrez-Orduno1, Sonia Dolfi 1, Piali Mukherjee1,2,
Sharmila Chamling Rai1, Ana Lako1, Jennifer D. Koenitzer1

and Justin M. David1*

1Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States, 2Epigenomics Core
Facility, Weill Cornell Medicine, New York City, NY, United States
Background: Immune cell expression profiling from patient samples is critical for

the successful development of immuno-oncology agents and is useful to

understand mechanism-of-action, to identify exploratory biomarkers

predictive of response, and to guide treatment selection and combination

therapy strategies. LAG-3 is an inhibitory immune checkpoint that can

suppress antitumor T-cell responses and targeting LAG-3, in combination with

PD-1, is a rational approach to enhance antitumor immunity that has recently

demonstrated clinical success. Here, we sought to identify human immune cell

subsets that express LAG-3 and its ligands, to characterize the marker expression

profile of these subsets, and to investigate the potential relationship between

LAG-3 expressing subsets and clinical outcomes to immuno-oncology

therapies.

Methods: Comprehensive high-parameter immunophenotyping was performed

using mass and flow cytometry of tumor-infiltrating lymphocytes (TILs) and

peripheral blood mononuclear cells (PBMCs) from two independent cohorts of

samples from patients with various solid tumor types. Profiling of circulating

immune cells by single cell RNA-seq was conducted on samples from a clinical

trial cohort of melanoma patients treated with immunotherapy.

Results: LAG-3 was most highly expressed by subsets of tumor-infiltrating CD8 T

central memory (TCM) and effector memory (TEM) cells and was frequently co-

expressed with PD-1. We determined that these PD-1+ LAG-3+ CD8 memory T

cells exhibited a unique marker profile, with greater expression of activation

(CD69, HLA-DR), inhibitory (TIM-3, TIGIT, CTLA-4) and stimulatory (4-1BB, ICOS)

markers compared to cells that expressed only PD-1 or LAG-3, or that were

negative for both checkpoints. In contrast to tumors, LAG-3 expression was
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more limited in circulating immune cells from healthy donors and solid tumor

patients. Additionally, we found abundant expression of the LAG-3 ligands MHC-

II and galectin-3 in diverse immune cell types, whereas FGL1 and LSECtin were

minimally expressed by immune cells in the tumor microenvironment (TME).

Lastly, we found an inverse relationship between baseline and on-treatment

levels of circulating LAG3 transcript-expressing CD8 memory T cells and

response to combination PD-1 and CTLA-4 blockade in a clinical trial cohort

of melanoma patients profiled by scRNAseq.

Conclusions: These results provide insights into the nature of LAG-3- and

ligand-expressing immune cells within the TME, and suggest a biological basis

for informing mechanistic hypotheses, treatment selection strategies, and

combination immunotherapy approaches to support continued development

of dual PD-1 and LAG-3 blockade.
KEYWORDS

Immunophenotyping, Immunotherapy, TIL, LAG-3, PD-1, CD8 memory T cell, MHC-II,
galectin-3
1 Introduction

The development of immuno-oncology (IO) agents in recent

years has revolutionized the treatment of cancer. Current approved

approaches include targeting T cell checkpoints, and these

therapies, alone or in combination, have led to remarkable

clinical benefits for many patients with previously untreatable

disease. However, there remains a proportion of patients whose

tumors do not respond or who relapse following an initial response

to these immunotherapies, and therefore require the development

of alternative treatment strategies (1).

One approach has been to combine programmed cell death 1

(PD-1) and/or cytotoxic T-lymphocyte associated protein 4 (CTLA-

4) checkpoint inhibitors with the targeting of additional distinct

immune pathways for novel IO-based combinations. In particular,

additional T-cell checkpoint inhibitory receptors, including

lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin

and mucin domain-3 (TIM-3), T cell immunoreceptor with

immunoglobulin (Ig) and ITIM domains (TIGIT), B and T

lymphocyte attenuator (BTLA), and V-domain immunoglobulin-

containing suppressor of T-cell activation (VISTA) have been

proposed as potential targets for therapeutic combination

development (2). Among these, LAG-3 became the third clinically

validated checkpoint target, with the recent RELATIVITY-047

(NCT03470922) data resulting in FDA approval of the anti-LAG-

3 antibody relatlimab in combination with the anti-PD-1 antibody

nivolumab for the treatment of unresectable or metastatic

melanoma (3, 4). LAG-3 is an inhibitory immune receptor known

to be expressed by activated CD4 and CD8 T cells, regulatory T cells

(Tregs), natural killer (NK) cells, and plasmacytoid dendritic cells

(pDCs) (5). It is a member of the Ig superfamily and exhibits

structural homology to CD4. Like CD4, it binds to major

histocompatibility complex (MHC)-II, but with a much higher
02
affinity (6). In addition to MHC-II, other known ligands of LAG-

3 include liver and lymph node sinusoidal endothelial cell C-type

lectin (LSECtin) (7), galectin-3 (8), and fibrinogen-like protein 1

(FGL1) (9). LAG-3 negatively regulates T cell activation (10), which

results in reduced proliferation, decreased cytokine production,

diminished cytolytic activity, and impaired memory formation (5,

6, 11). Although a full understanding of the downstream molecular

mechanism has yet to be obtained, recent advances have

determined that LAG-3 associates with the TCR-CD3 complexes

at immunological synapses and induces dissociation of the tyrosine

kinase Lck from CD4 or CD8 coreceptors, thereby dampening the

magnitude of TCR-induced signaling (12).

Elevated LAG-3 expression on tumor-infiltrating lymphocytes

(TILs) has been found broadly in various solid tumor types, and has

been significantly associated with unfavorable clinicopathological

characteristics (5). Targeting LAG-3 in combination with other

checkpoints to enhance antitumor immunity is a rational approach

as LAG-3 has often been found co-expressed with PD-1 on tumor-

infiltrating T cells in murine models (13–15) and human disease (16–

18), and persistent upregulation of both is connected to a state of T cell

dysfunction termed exhaustion in models of chronic viral infection

(19). Moreover, co-expression of LAG-3 and PD-1 in TIL CD8 T cells

has been associated with a greater level of dysfunction than that of cells

that express only PD-1 (20, 21). Although the antitumor activity of

LAG-3 inhibition alone is modest relative to PD-1 inhibition,

combination blockade demonstrates strong synergy in preclinical

models (13, 14, 22). Dual PD-1 and LAG-3 blockade was recently

approved in advanced or unresectable melanoma in 2022, and there are

currently numerous clinical trials evaluating the combination across a

diversity of solid tumor types, including non-small cell lung, colorectal,

hepatocellular carcinoma, and resected melanoma.

Extensive cellular heterogeneity necessitates the use of

comprehensive high parameter immunophenotyping to deeply
frontiersin.org
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characterize human immune cells, which may yield actionable

translational insights to inform upon target mechanism-of-action,

tumor type prioritization, and potential combination strategies. In

this study, we utilized mass and flow cytometry to perform high

parameter immunophenotyping of immune cells from two

independent sample sets representing a diversity of solid tumor

types to identify and characterize cell populations that highly

express LAG-3 and its ligands. We then used single cell RNA-

sequencing (scRNAseq) of circulating immune cells from a clinical

trial cohort of melanoma patients treated with immune checkpoint

inhibitors (ICI) to explore the potential relationship between LAG-

3-expressing cells and clinical outcomes. Our results provide

insights into the biology of LAG-3 and its ligands in the TME

and have implications for the continued development of dual PD-1-

and LAG-3-targeting agents in solid tumors.
2 Materials and methods

2.1 Sample acquisition

Human tumor and whole blood samples were commercially

procured from Avaden BioSciences (WA, USA), BioOptions (CA,

USA), Discovery Life Sciences (CA, USA), or MT Group (CA,

USA). For the CyTOF cohort, a total of 28 tumor samples from 7

tumors types and 7 matched PBMC samples were profiled. For

comparison, PBMCs from 10 healthy donors, isolated from whole

blood obtained from the BMS internal blood donor program (n=8)

or leukopaks commercially procured from Biospecimen Solutions,

Inc. (CA, USA) (n=2) were also included (Table 1). For the flow

cytometry cohort, a total of 18 tumor samples from 5 tumor types

were included (Table 2). One sample (TRD-012812) was utilized in

both cohorts. All patients gave written informed consent at time of

sample collection according to IRB protocols of each provider (23).
2.2 Sample processing

Tumor samples and matching blood were received and processed

within 24hr of collection, as detailed previously (24). To isolate

tumor-infiltrating lymphocytes, tumors were enzymatically digested

to generate single-cell suspensions. Briefly, tumors were minced with

scalpels in an enzyme cocktail, consisting of 50 U/mL Collagenase I,

17.7 U/mL Collagenase II, 52 U/mL Collagenase IV, 0.1 U/mL

Elastase (Worthington Biochemical, Lakewood, NJ), and 0.5 mg/

mL DNase I (Sigma-Aldrich, St. Louis, MO). Isolated cells were then

cryopreserved in FBS + 10% DMSO until use. On the day of use, TIL

samples were thawed in a 37°C water bath for 30 sec, resuspended in

1X CTLAnti-AggregateWash Supplement (ImmunoSpot, Cleveland,

OH, USA) in serum-free media, incubated for 15min at 37°C, and

resuspended in complete medium. Cell viability post-thaw ranged

from 29% - 75% as assessed by acridine orange and propidium iodide

(AOPI) staining using a Cellaca MX cell counter (Nexcelom

Bioscience, Lawrence, MA, USA).
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PBMCs were isolated from peripheral blood and leukopaks by

density gradient centrifugation and resuspended in FBS + 10%

DMSO for cryopreservation until use. For flow cytometry profiling,

PBMCs were thawed and stimulated for 3 days with 10µL/mL

ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator

(StemCell Technologies, Vancouver, Canada) and 50U/mL IL-2

(R&D Systems, Minneapol is , MN, USA) cul tured in

ImmunoCult™ XF T Cell Expansion Medium (StemCell

Technologies) for use as a positive control for marker expression.
2.3 Mass cytometry data acquisition

An antibody panel recognizing a total of 37 proteins (18 lineage

and 19 target proteins), was used to profile marker expression

among the major lymphocyte and myeloid lineages (Supplementary

Table 1). Additionally, each sample was also stained with a mass-

minus-many (MMM) panel consisting of only the 18 lineage

markers for background correction. Sample staining and

acquisition was performed in a total of 9 batches, with samples

from 3 – 4 individuals being included in each batch. To reduce

batch effects, subject-matched PBMC and TIL were included in the

same batch, and all samples in a batch were uniquely barcoded and

pooled prior to acquisition. Each batch included an aliquot of

normal healthy PBMC (NHV-000851) to monitor reproducibility

among batch runs (Supplementary Figure 1).

The staining methods for each batch were as follows: after

gentle thawing, samples were first stained with a pre-fix antibody

mix containing anti-CD16-209Bi (clone 3G8) and anti-CD112-

APC (clone TX31), and then stained for viability with Cell-ID

Cisplatin (Fluidigm). Cells were then fixed in 1.5% formaldehyde

and stored at 4°C overnight. The next day, samples were aliquoted

and washed with ice-cold 0.04% Saponin/PBS and incubated with

their unique barcode from the Cell-ID™ 20-Plex Pd Barcoding Kit

(Fluidigm) in 0.5 mL ice-cold barcoding solution containing 0.04%

Saponin/PBS for 15 minutes. Following barcoding, samples were

pooled together based on staining panel, and the resulting 2 pools of

samples (1 pool for each panel) were blocked with human IgG,

stained with a surface antibody cocktail in Maxpar® Cell Staining

Buffer (Fluidigm), washed, and then blocked with mouse serum in

Perm Buffer (Invitrogen eBioscience). Samples were then stained

with an intracellular antibody cocktail in Perm Buffer (Invitrogen

eBioscience). The antibody composition of surface and intracellular

cocktails is found in Supplementary Table 1. Next, the 2 pools were

washed in Perm Buffer (Invitrogen eBioscience), combined into 1

pool, and the resulting pool was incubated with 1X Cell-ID™

Intercalator-Ir (Fluidigm) in 2% formaldehyde/PBS overnight at

4°C. The following day, the pool of cells was washed and split into

multiple wells of a 96 deep well plate (2 million cells per well).

Immediately prior to data acquisition, the cells in each well were

adjusted to a cell concentration of 1.0 x 106 cells/mL in 0.1X EQ

beads (1 part EQ Four Element Calibration Beads (Fluidigm), 9 part

Maxpar® Cell Acquisition Solution (Fluidigm), and were read on a

Helios™ CyTOF® mass cytometer (Fluidigm®) with WB injector.
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TABLE 1 CyTOF cohort specimen metadata and patient demographics.

Patient Iden-
tification

Healthy
PBMC

Patient
PBMC

Patient
TIL

Tumor Type Histology Stage T N M Grade Age Sex

TRD-001817 N/A X X Kidney Oncocytoma (benign) N/A N/A N/A N/A N/A 63 M

TRD-011400 N/A X X Melanoma Metastasis (bile duct) IV N/A N/A N/A N/A 78 F

TRD-011409 N/A N/A X Gastrointestinal
Gastrointestinal stromal
tumor (GIST)

IIB N/A N/A N/A 2 68 M

TRD-011425 N/A N/A X Kidney
Collecting duct
carcinoma

N/A pT3 pNx N/A 3 81 M

TRD-012134 N/A N/A X Endometrial
Endometrioid
carcinoma

IIIC2 pT2 pN2a N/A 3 67 F

TRD-012194 N/A X X
Neuroendocrine
carcinoma

Carcinoid IV N/A N/A N/A 1 45 M

TRD-012236 N/A N/A X Kidney
Clear cell renal cell
carcinoma

I pT1b pNx pM0 2 46 M

TRD-012764 N/A N/A X Colon
Mucinous
adenocarcinoma

IIC pT4b pN0 pM0 2 70 F

TRD-012812 N/A N/A X Endometrial Adenocarcinoma IA pT1a pNx pMx N/A 70 F

TRD-012814 N/A N/A X Kidney
Clear cell renal cell
carcinoma

I pT1b pNx pMx N/A 61 M

TRD-012824 N/A N/A X Colon N/A N/A N/A N/A N/A N/A N/A
N/
A

TRD-012827 N/A N/A X Colon Adenocarcinoma pT3 pN0 N/A 3 61 F
N/
A

TRD-012832 N/A N/A X Colon Adenocarcinoma IV pT4b pN2a pMx 2 64 M

TRD-012868 N/A N/A X Colon Adenocarcinoma I pT2 pN0 pMx 2 63 F

TRD-012880 N/A N/A X Endometrial Carcinosarcoma IB pT1b pN0 N/A High 72 F

TRD-012887 N/A N/A X Colon
Mucinous
adenocarcinoma

II pT4b pN0 pM0 2 44 F

TRD-012895 N/A N/A X Endometrial
Endometrioid
carcinoma

I pT1a pN0 pM0 N/A N/A F

TRD-012897 N/A X X Melanoma Metastasis (left groin) IV pT4b pN3 pM1b N/A 87 F

TRD-012924 N/A N/A X Endometrial
Endometrioid
carcinoma

IB pT1b pN0 N/A 2 57 F

TRD-012955 N/A X X Endometrial Adenocarcinoma IIIC1 pT1a pN1 N/A 1 69 F

TRD-012970 N/A N/A X Colon N/A N/A N/A N/A N/A N/A 52 M

TRD-012975 N/A X X Endometrial Carcinosarcoma IA pT1a pN0 N/A 1 68 F

TRD-012988 N/A N/A X Colon N/A N/A N/A N/A N/A N/A 45 M

TRD-013012 N/A N/A X Endometrial
Squamous cell
carcinoma

I pT1b pNx pMx 2 72 F

TRD-013013 N/A N/A X Colon Adenocarcinoma IIB pT4a pN0 pM0 2 33 M

TRD-013023 N/A X X Endometrial
Dedifferentiated
carcinoma

IB pT1b pN0 N/A N/A 68 F

TRD-013064 N/A N/A X Colon Adenocarcinoma I pT1 pN0 N/A 1 76 F

TRD-013073 N/A N/A X Lung N/A N/A pT2a pN0 N/A 3 70 F

NHV-000036 X N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A M

NHV-000060 X N/A N/A N/A N/A N/A N/A N/A N/A N/A 39 F

NHV-000094 X N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A F

NHV-000143 X N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A M

(Continued)
F
rontiers in Immu
nology
 04
 fr
ontiers
in.org

https://doi.org/10.3389/fimmu.2023.1151748
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Garman et al. 10.3389/fimmu.2023.1151748
2.4 Mass cytometry data analysis

Following data acquisition, FCS files generated in the same

batch were concatenated, bead-normalization was performed on the

concatenated FCS file using Fluidigm CyTOF software, debris was

removed by manual gating in FlowJo version 10.6.2, and pooled
Frontiers in Immunology 05
data was de-barcoded using Fluidigm CyTOF software. De-

barcoded FCS files for each sample were then manually gated to

remove EQ beads, CD45- cells, doublets, and dead cells

(Supplementary Figure 2A). New FCS files containing single,

viable CD45+ cells were generated for each sample and used for

subsequent analysis.
TABLE 1 Continued

Patient Iden-
tification

Healthy
PBMC

Patient
PBMC

Patient
TIL

Tumor Type Histology Stage T N M Grade Age Sex

NHV-000173 X N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A F

NHV-000177 X N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A M

NHV-000604 X N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A F

NHV-000850 X N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
N/
A

NHV-001511 X N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
N/
A

NHV-000851 X N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
N/
A

fr
ontiers
TABLE 2 Flow cytometry cohort specimen metadata and patient demographics.

Patient Identifica-
tion

Patient
TIL

Tumor
Type

Histology Stage T N M Grade Age Sex

TRD-012125 X Colon Adenocarcinoma I T2 N0 Mx 2 89 M

TRD-012730 X Colon Adenocarcinoma IIIA T2 N1 M0 2 63 M

TRD-012812* X Endometrial Adenocarcinoma IA pT1a pNx pMx N/A 70 F

TRD-012101 X Endometrial Adenocarcinoma IIIC1 pT1a N1a N/A 1 65 F

TRD-013068 X Endometrial Undifferentiated carcinoma IIIC2 pT1a N2a N/A high 62 F

TRD-013117 X Endometrial Adenocarcinoma II pT1b N0 N/A 2 60 F

TRD-012809 X Liver N/A N/A
N/
A

N/A N/A 76 M

TRD-012914 X Lung Adenocarcinoma N/A pT2b N0 N/A 2 72 F

204-Y001 X Lung Invasive Adenocarcinoma IA T1c N2 M0 3 58 F

TRD-011622 X Kidney N/A N/A
N/
A

N/A N/A 64 M

TRD-011045 X Kidney
Clear cell renal cell
carcinoma

II pT2a
N/
A

N/A 2 73 M

TRD-012144 X Kidney N/A N/A
N/
A

N/A N/A 66 M

TRD-013010 X Kidney
Papillary Renal Cell
Carcinoma

I T1a Nx Mx 2 53 M

TRD-013070 X Kidney N/A N/A
N/
A

N/A N/A 53 M

TRD-013072 X Kidney N/A N/A
N/
A

N/A N/A 70 M

TRD-013134 X Kidney Papillary Renal Cancer N/A N/A
N/
A

mT1a 2 57 M

TRD-013014 X Lung Invasive Squamous Cell IIIA T4 N0 Mx N/A 62 M

TRD-013076 X Colon Adenocarcinoma II T3 N0 M0 2 77 F
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Computational analysis using a combination of nonlinear

dimensionality reduction and clustering analysis was performed.

First, live, CD45+ cells from each sample were down-sampled such

that individual samples were equally represented within sample types,

and each sample type contained a total of 49,560 events. Next, the

down-sampled events were concatenated into a single FCS file, and the

opt-SNE implementation of the tSNE algorithm (25) was performed in

FlowJo using the default parameters (learning configuration: auto,

learning rate: 7% of analyzed events, perplexity: 30, K-nearest

neighbors algorithm: Exact (vantage point tree), and gradient

algorithm: Barnes-Hut). Cells were then clustered by implementing

the FlowSOM v. 2.9 (26) algorithm using the following parameters: 11

metaclusters and a self-organizing map grid size of 10x10. All lineage

markers on the CyTOF panel (Supplementary Table 1) were used for

running the opt-SNE and FlowSOM algorithms, except for CD45

which was excluded. The resulting FCS file was manually gated to

export 3 separate FCS files (one for each sample type), and these files

were imported into OMIQ software from Dotmatics (www.omiq.ai,

www.dotmatics.com) for data visualization. FlowSOM metaclusters

were overlaid on the t-SNE maps, and the metaclusters were

annotated by visual inspection of marker expression within each

metacluster on the t-SNE map. Manual merging of highly similar

metaclusters was performed following r2 correlation analysis and

consideration of biological relevance. Findings from this analysis

were confirmed by calculating percent positive frequencies of a

similar set of 10 broad lymphocyte and myeloid populations

identified by manual gating in FlowJo. Manual gating was also used

to determine frequencies of T cell subsets and the percent positive

frequency of LAG-3 within each subset (Supplementary Figure 2A, B).

A similar machine learning approach was employed to visualize

co-expression of various markers among T cell metaclusters and to

identify T cell metaclusters with the highest expression intensity of

LAG-3. Live CD45+/CD3+/CD14-/CD15- T cells from each sample

were manually gated (Supplementary Figure 2A, B), and equal

down-sampling of the T cell population was performed, resulting in

each sample type containing a total of 14,308 events. The opt-SNE

algorithm (25) was performed using default parameters, and

FlowSOM (26) was run using 10 metaclusters and a self-

organizing map grid size of 10X10. Additionally, for running both

the opt-SNE (25) and FlowSOM (26) algorithms, twenty two

markers known to be expressed on T cells (4-1BB, CCR7,

CD112R, CD226, CD25, CD27, CD28, CD4, CD45RO, CD73,

CD8, CD96, Eomes, FOXP3, HLA-DR, ICOS, Ki67, LAG-3, PD-

1, Tbet, TIGIT, and TIM-3) were used.

To quantify the co-expression of LAG-3 and PD-1 among CD8

TCM and TEM cell subsets in TIL samples, percent positive

frequencies of PD1-/LAG3-, PD1-/LAG3+, PD1+/LAG3-, and

PD1+/LAG3+ subsets of CD8 TCM and TEM T cells were

calculated in FlowJo using Boolean gating after performing the

manual gating described in Supplementary Figures 2A, B.

Expression/co-expression of target markers in these TIL CD8

TCM and TEM PD1/LAG3 subsets was quantified by both

arcsinh-transformed (co-factor of 5) median ion count signal

intensity and percent positive frequency. Percent positive
Frontiers in Immunology 06
frequencies were derived from Boolean gating after performing

the manual gating described in Supplementary Figures 2A, B.
2.5 Flow cytometry data acquisition

Two high-parameter flow cytometry panels (21 fluorophores

each) were developed to characterize immune cells expressing LAG-

3 and its ligands, focusing on T cells (T cell-focused panel;

Supplementary Table 2) and broad immune lineages (T/B/NK/

Myeloid panel; Supplementary Table 3), respectively. In order to

define positive and negative gates, fluorescence minus one (FMO)

samples were included for the respective T cell checkpoint markers

and LAG-3 ligands. All samples were stained and acquired in a

single experiment to avoid batch effects.

The staining methods were as follows: The T cell-focused panel

included staining with a pre-fix antibody CCR7 (BV605), while the T/

B/NK/Myeloid panel was first stained with 5µL of BD Human Fc IgG

block to prevent nonspecific staining. Cells were sequentially stained

for viability and then surface markers, fixed and permeabilized using

the Foxp3 Transcription Factor Staining Buffer Set (ThermoFisher

Scientific), and stained for intracellular markers. All samples were

then fixed with 2% PFA and stored at 4°C until acquisition on the

cytometer. Sample data were acquired using a BD FACSymphony A5

flow cytometer (BD Biosciences, San Jose, CA) and data analysis was

performed in FlowJo (Version 10.6.2) using the manual gating

strategy depicted in Supplementary Figures 3 and 4.
2.6 Unsupervised analysis of T cell
flow cytometry

FlowAI (27) was used to clean flow cytometry data for

unsupervised analysis, followed by manual gating to exclude duplets,

a time gate was used to further clean data, and manually gating was

performed to select for live CD45+CD3+CD19- T cells. T cells were

equally down-sampled to 1,453 T cells per sample. Fluorescence

intensity values were transformed using arcsinh transformation with

co-factors manually set for each channel as described by Melson et al.

(28). The opt-SNE algorithm (25) was performed using default

parameters, and FlowSOM (26) was run using 14 metaclusters and a

self-organizing map grid size of 10X10. One metacluster with a total of

47 events (most of which were from a single sample), was deemed an

artifact and excluded. All markers on the T cell flow cytometry panel

(Supplementary Table 2), except for CD45, CD3, and CD19, were used

to run both the opt-SNE (25) and FlowSOM (26) algorithms.
2.7 Clinical cohort

Peripheral blood samples for scRNAseq were obtained from

patients enrolled in the phase 2 Checkmate 069 trial

(NCT01927419) for patients with previously untreated,

unresectable stage III or IV melanoma. Details of the study design
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and trial results have been published previously (29, 30). Briefly,

patients were randomized 2:1 to receive nivolumab 1 mg/kg plus

ipilimumab 3 mg/kg or ipilimumab 3 mg/kg plus placebo, every 3

weeks for four doses. Subsequently, patients assigned to nivolumab

plus ipilimumab received nivolumab 3 mg/kg every 2 weeks until

disease progression or unacceptable toxicity, whereas patients

allocated to ipilimumab alone received placebo every 2 weeks

during this phase. Response was determined by Response

Evaluation Criteria in Solid Tumors (RECIST), version 1.1.

Patients from the nivolumab plus ipilimumab arm were profiled

for best overall response, with 15 patients in the complete responder

(CR), 8 patients in the progressive disease (PD) and 3 patients in the

stable disease (SD) subgroups.
2.8 Single cell RNA-sequencing

Banked patient PBMCs from either Baseline (cycle 1, day 1;

C1D1) or on treatment (cycle 3, day 1; C3D1) were thawed, washed

to remove serum and dead cells, and resuspended in PBS with

0.04% BSA for emulsion. Single cell suspensions targeting 104 cells/

sample were generated with the ChromiumNext Gen 5’ V2 kit from

10x Genomics (Pleasanton, CA, USA). cDNA and libraries were

generated according to the 10x Genomics published user guide

protocol (CG000331). Libraries were sequenced to target 100,000

reads/cells. The experiment yielded 816,122 profiled cells across 100

samples with an average of 8,161 cells/sample and median 1,500

genes/cell post filtering.

To analyze the scRNAseq dataset, filtered count matrices were

generated using the 10X Genomics cellranger count pipeline and

normalization per sample using SCTransform. Cell type allocation

was determined using the SingleR Bioconductor package and the

Blueprint/ENCODE reference. The sample data was then queried

for count and feature distributions and filtered to remove cells that

had >25% mitochondrial gene transcripts and <200 or >10,000

genes expressed. The samples were then integrated using the

Harmony package and annotated for downstream analysis in R

(v. 4.2.1) using the Seurat package (v. 4.1.1) (31–34; 35).

To visualize the multi-dimensional data, the function

“RunPCA” computed principal components (PCs) on the

integrated assay, the first 30 of which were selected, based on the

Seurat elbow plot, and specified as the dims argument to the

“FindNeighbors” and “RunUMAP” functions. UMAP plots were

then used to visualize cell type distributions and feature

distributions. To look at expression distributions for selected

genes we used dot plots and violin plots via Seurat. ANOVA p-

values were furnished in Violin plots using the ggpubr R package.
2.9 Statistical analysis

For mass cytometry and flow cytometry analysis, Mann-

Whitney tests were performed in Prism version 8.4.1 (GraphPad)
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to determine statistically significant differences in arcsinh-

transformed median ion count (mass cytometry) or median

fluorescence (flow cytometry) intensities and target percent

positive frequencies among TIL subsets. For multiple

comparisons, Bonferroni correction was applied to adjust raw p

values. For all analyses, p <0.05 was considered statistically

significant. Sample populations with <150 events were excluded

from analysis to reduce potential spurious artifacts.

For scRNAseq analysis, ANOVA p-values were furnished in

Violin plots using the ggpubr R package. Differential gene

expression was assessed using the Wilcoxon rank sum test (as

implemented by FindMarkers in Seurat). Genes with an adjusted p-

value (based on Bonferroni correction) < 0.05 were considered

significantly differentially expressed.
3 Results

3.1 Characterization of peripheral and
tumor infiltrating immune cell populations
using mass cytometry

High parameter immunophenotyping was used to broadly

characterize various immune cell types from patients with cancer.

We accomplished this using cytometry by time-of-flight (CyTOF) to

analyze marker expression from a commercial cohort comprised of

seven different solid tumor types. These commercially obtained

samples consisted of 28 TILs isolated from fresh tumor tissue, with

matched PBMCs from 7 of the patients. PBMCs from 10 healthy

donors were also included for comparison. These samples were derived

from 7 different solid tumor types that included a range of stages and

grades to ensure broader applicability of profiling results. (Table 1).

To generate a broad and comprehensive view of the immune

compartment, we utilized the opt-SNE (25) dimensionality

reduction algorithm, which is based on t-distributed stochastic

neighbor embedding (t-SNE), to generate two-dimensional maps

of CD45+ cells from all sample types. The data were then clustered

into distinct immune cell types using the FlowSOM algorithm (26)

and overlaid onto the t-SNE maps. For both algorithms, only the

lineage markers listed in Supplementary Table 1 were considered to

identify 9 major immune cell lineages (Figures 1A-C). In parallel,

we also used manual gating based on immune lineage marker

expression to identify a similar set of 10 broad lymphocyte and

myeloid lineages and 11 distinct subsets of T cells (Supplementary

Figures 5A, B). The composition of broad immune cell lineages was

similar between the healthy donor PBMCs, cancer patient PBMCs,

and TIL samples (Figure 1C; Supplementary Figure 5A). However,

T cell subsets among TIL samples showed an expected enrichment

of the median frequency of CD4 TEM cells (19.7% vs. 10.6 - 10.8%),

CD8 TEM cells (24.0% vs. 5.4 - 7.4%), and Tregs (8.9% vs. 1.7 -

2.5%), and reduction of naïve T cells (0.9% vs. 18.3 - 38.4%;

Supplementary Figure 5B) compared to peripheral T cells from

heathy donors and cancer patients.
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3.2 CD8 memory T cells were the
predominant LAG-3+ immune cell type in
human solid tumors

Our CyTOF investigation utilized a single LAG-3 antibody for

total staining (surface and intracellular). The tSNE analysis showed

that the LAG-3 expression was enriched in TILs compared to

PBMCs from either healthy donors or cancer patients

(Figure 1D). Among the TILs, the greatest levels of LAG-3

expression were observed within the CD4 and CD8 T cells, with

some expression noted in classical monocytes (Figures 1A, D).

Similarly, manual gating showed the highest median frequency of

LAG-3 expression on TIL CD8 TEM (18.2%) and TCM (13.5%) T

cells (Supplementary Figure 5C). In contrast, among the CD4 T cell

subsets, the highest median frequency of LAG-3 expression was

observed on the CD4 Th EM cells (6.8%) and Tregs (5.7%;

Supplementary Figure 5C). When we assessed LAG-3 expression

in each subset as a proportion of the total tumor infiltrating T cells,

the CD8 TEM cells were found to constitute the bulk of LAG-3+ T

cells within the tumor microenvironment, with a median frequency
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of 3.6% (range = 0.2% – 32.9%; Supplementary Figure 5D). Notably,

these LAG-3+ CD8 TEM cells accounted for ≥10% of the total

tumor-infiltrating T cells in one quarter (7/28) of the samples. CD4

TEM cells were the next highest frequency LAG-3+ T cell subset,

with a median frequency of 1.5% (range = 0.1% - 6.1%). All other

subsets exhibited a lower median frequency (≤ 0.6%) and a lower

upper limit to their range (≤ 8.4%; Supplementary Figure 5D).

Taken together, these results confirm that most of the LAG-3

expression in patients with solid tumors is found on tumor

infiltrating, but not circulating, CD8 and CD4 memory T cells.
3.3 LAG-3 expression was associated with
a unique marker profile among solid
tumor-infiltrating T cells

Since we observed enrichment of LAG-3 expression primarily

among T cells, we sought to employ further nonlinear

dimensionality reduction and clustering analysis of only the T cell

compartment to gain a global view of the marker profile of LAG-3-
A

B

D

C

FIGURE 1

Broad immunophenotyping and LAG-3 expression profiling in the CyTOF cohort. (A) FlowSOM-overlaid tSNE maps for healthy PBMC (n=10), patient
PBMC (n=7), and patient TIL (n=28) samples that were generated using the opt-SNE dimensionality reduction and FlowSOM v2.9 clustering
algorithms. NK, natural killer; PMN MDSC, polymorphonuclear myeloid-derived suppressor cell; pDC, plasmacytoid dendritic cell. (B) Heatmap
depiction of z-score normalized, arcsinh-transformed (co-factor of 5) median ion count signal intensity values for the indicated lineage markers
among metaclusters identified in (A) from all samples. (C) Frequencies of the FlowSOM-derived metaclusters identified in (A) from all samples. Black
and gray lines denote median and quartile values, respectively. (D) Localization of LAG-3 signal intensity on the t-SNE maps generated in (A). Red
box denotes the regions with the highest expression of LAG-3.
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expressing cells. This analysis resulted in 9 distinct metaclusters of T

cell subsets based on the expression of 22 markers (Figures 2A , B).

Like manual gating analysis, the frequencies of specific metaclusters

differed among TILs vs. peripheral samples (Figure 2C). In

particular, the metaclusters 7 (CD8 TEM 1) and 3 (CD4 Th

TEM) were only found in the TILs (Figure 2A, C).

Analysis of LAG-3 signal intensity revealed substantial

expression in metaclusters 7 (CD8 TEM 1) and 5 (Treg), and

limited expression in the other metaclusters (Figure 2B). Indeed,

visualization of LAG-3 in the TIL T cell tSNE map (Figure 2D)

confirmed the most enrichment of LAG-3 within a focal region of

metacluster 7. Other markers expressed at a relatively high intensity

by metacluster 7 included the checkpoints PD-1, TIM-3, and

TIGIT, the activation marker HLA-DR, as well as the

costimulatory receptors 4-1BB and ICOS (Figures 2B, D).

Notably, compared to the more tightly regionally localized LAG-3

signal, these markers exhibited more broadly distributed expression

profiles across other metaclusters (Figure 2D). Metacluster 7 also

displayed a higher median signal intensity for the Eomes
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transcription factor versus the Tbet transcription factor

(Figure 2B), which has been associated with T cell exhaustion and

dysfunction in chronic infection (36, 37) and cancer (38, 39),

respectively. We also evaluated the activation marker CD25 and

the proliferation marker Ki67 and observed only a partial overlap

with the LAG-3 signal in metacluster 7 (Figure 2B, D). Taken

together, these results indicate that LAG-3 expression may

discriminate a subset of TIL CD8 memory T cells with a unique

marker expression profile characterized by simultaneous expression

of multiple inhibitory and stimulatory receptors.
3.4 PD-1 was highly co-expressed by TIL
LAG-3+ CD8 memory T cells

Given the apparent regional co-localization of LAG-3 with

other inhibitory receptors, we utilized additional manual gating to

confirm these findings by first profiling the frequency of PD-1 and

LAG-3 co-expression in CD8 memory T cells. Representative flow
A

B

D

C

FIGURE 2

T cell immunophenotyping and LAG-3 expression profiling in the CyTOF cohort. (A) FlowSOM-overlaid t-SNE maps for healthy PBMCs (n=10),
patient PBMCs (n=7), and patient TIL (n=28) samples generated using the opt-SNE dimensionality reduction and FlowSOM clustering algorithms.
(B) Heatmap depiction of z-score normalized, arcsinh-transformed (co-factor of 5) median ion count signal intensity values for the indicated T cell
markers among metaclusters identified in (A) from patient TIL samples. (C) Frequencies of the FlowSOM-derived T cell metaclusters as a percentage
of total T cells from all samples. Black and gray lines denote median and quartile values, respectively. (D) Left, localization of LAG-3 signal intensity
on the patient TIL t-SNE map generated in (A). Red box denotes the region with the highest expression of LAG-3. Right, colocalization of the
indicated inhibitory, stimulatory, and activation markers with LAG-3 signal intensity on the patient TIL t-SNE map generated in (A). Red box denotes
the overlapping region of highest LAG-3 expression. .
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plots are shown in Supplementary Figure 6A, in which four different

PD-1/LAG-3 subsets could be identified in TIL samples from 6 of

the 7 tumor types included in this study. By using Boolean gating,

we found that the majority of both CD8 TCM and TEM cells were

positive for only PD-1 (median frequencies of 49.0% and 54.4%,

respectively), but a sizeable proportion were found to be PD-1+ and

LAG-3+ (median frequencies of 31.5% and 18.65%, respectively;

Figure 3A). This double positive subset was found in 4/28 TIL

samples from CD8 CM cells (2/9 endometrial and 2/2 melanoma),

and 20/28 TIL samples from the CD8 EM cells (7/10 colon, 8/9

endometrial, 2/4 kidney, 1/1 lung, and 2/2 melanoma).
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Interestingly, there was a near total lack of cells that only

expressed LAG-3 but not PD-1 (Figure 3A). When we analyzed

the PD-1+ LAG-3+ CD8 TCM and TEM subsets as a proportion of

the total tumor infiltrating CD8 T cells, we found that the double

positive TEM cells constituted a sizeable minority of the population,

with a median frequency of 14.0% (range = 4.1% – 42.1%;

Figure 3B). Furthermore, median PD-1 expression intensity was

significantly greater in the PD-1+ LAG-3+ subset vs. the PD-1+

LAG-3- subset from both CD8 TCM and TEM cells (Figure 3C).

Altogether, these data indicate that the majority of LAG-3+ CD8

memory T cells highly co-express PD-1.
A B

D
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C

FIGURE 3

Characterization of PD-1/LAG-3 subsets of TIL CD8 memory cells in the CyTOF cohort. (A) Frequencies of PD-1/LAG-3 subsets in TIL CD8 TCM
(left) and TEM (right) cells. CD8 TCM and TEM populations were manually gated, and Boolean gating was performed from those populations to
derive PD-1/LAG-3 subsets of each. Sample populations with <150 events were excluded from the analysis. Lines indicate median values.
(B) Frequencies of PD-1+ LAG-3+ TCM and TEM subsets as a percentage of total TIL CD8 T cells. Sample populations with <150 events were
excluded from the analysis. Lines indicate median values. (C) Arcsinh (co-factor of 5)-transformed median ion count signal intensities of PD-1
among TIL CD8 TCM (left) and TEM (right) cells. Mann-Whitney tests were performed to determine statistically significant differences in PD-1 signal
intensity. Bonferroni adjusted p values < 0.05 were considered statistically significant. Sample populations with <150 events were excluded from the
analysis. Lines indicate median values. (D) Heatmap depictions of z-score normalized, arcsinh-transformed (co-factor of 5) median ion count signal
intensity values for the indicated markers among PD1/LAG3 subsets of TIL CD8 TEM cells. Each column represents a different sample and is
annotated with PD-1/LAG-3 subset, tumor type, and event count. Colors are as indicated. Sample populations with <150 events were excluded from
the analysis. (E) Frequencies of TIGIT, TIM-3, and TIGIT + TIM-3 co-expression among the TIL CD8 TEM PD-1/LAG-3 subsets. (F) Frequencies of 4-
1BB, ICOS, and 4-1BB + ICOS co-expression among PD-1/LAG-3 subsets of TIL CD8 TEM cells. Boolean gating was performed to determine TIGIT,
TIM-3, 4-1BB, and ICOS expression/co-expression in each subset. To determine statistically significant differences among subsets, Mann-Whitney
tests were performed, and p values were adjusted using Bonferroni correction. Adjusted p values <0.05 were considered statistically significant.
Sample populations with <150 events were excluded from the analysis. Lines indicate median values.
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3.5 Tumor infiltrating PD-1+ LAG-3+ CD8
memory T cells highly co-expressed
multiple inhibitory and
stimulatory checkpoints

After separating the CD8 TCM and TEM cells into subsets

based on PD-1 and LAG-3 presence, we then profiled these subsets

for the co-expression of additional markers. Marker signal intensity

profiles of the PD-1+ LAG-3+ subset from both CD8 TCM and

TEM were distinct from that of the profiles of cells that expressed

either PD-1 or LAG-3, or were negative for both, which was

observed across tumor types (Supplementary Figure 7A;

Figure 3D). Manual gating was used to confirm marker co-

expression (Supplementary Figures 6B–E). Analysis of the

expression of the inhibitory receptors TIGIT and TIM-3 revealed

that the PD-1+ LAG-3+ subsets from both CD8 TCM and TEM cells

also exhibited the greatest expression of each marker, alone and in

combination, compared to the subsets that possessed either PD-1 or

LAG-3, or were negative for both (Supplementary Figure 7B;

Figure 3E). Similarly, analysis of the expression of the co-

stimulatory receptors 4-1BB and ICOS also revealed that the PD-

1+ LAG-3+ CD8 TCM subset expressed more ICOS, and the CD8

TEM subset expressed more 4-1BB (Supplementary Figure 7C;

Figure 3F). When assessed together, we found that 4-1BB and

ICOS were co-expressed at a significantly higher frequency in the

PD-1+ LAG-3+ TCM subset (Supplementary Figure 7C). We also

found significantly higher expression of Ki67 and HLA-DR, but not

CD25, in the PD-1+ LAG-3+ CD8 TCM subset, but not the CD8

TEM subset (Supplementary Figures 8A, B). Altogether, these data

demonstrate that PD-1+ LAG-3+ CD8 memory T cells highly co-

express additional inhibitory (TIGIT, TIM-3) and stimulatory (4-

1BB, ICOS) receptors, and that their marker profile is distinct

compared to the cells that express either PD-1 or LAG-3, or are

negative for both.
3.6 Characterization of an independent
cohort of TILs by flow cytometry
confirmed the unique marker profile of
PD-1+ LAG-3+ CD8 memory T cells

Next, we sought to broaden our investigation by profiling tumor

infiltrating T cells from an independent commercially-obtained

patient cohort of 18 TIL samples from 5 different tumor types

from various stages and grades to ensure broad comparability with

the CyTOF cohort. (Table 2). Samples were profiled by high

parameter flow cytometry using a panel of 21 markers focused on

T cells (Supplementary Table 2). This panel had some changes from

the mass cytometry panel, with the addition of CD69, CTLA-4,

TCF1, and TOX, and removal of ICOS, TIM-3, Tbet and Eomes.

We employed further nonlinear dimensionality reduction and

clustering analysis from only the T cell compartment, which

yielded 13 distinct metaclusters of T cell subsets (Figure 4A, B).

The clustering analysis showed substantial heterogeneity within the

CD4 and CD8 T cell subsets, with 4 discrete subsets each of CD4

TCM cells and CD8 memory cells, respectively (Figure 4A, B).
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These CD8 subsets appeared to be a mixture of both TCM and TEM

cells (negative for CD45RA expression and variable CCR7

expression) and may reflect a range of exhausted/dysfunctional

differentiation states based on their respective variable expression of

the transcription factor TOX (40–42). The highest median

frequency subsets included metaclusters 8 (CD4 TCM 1 - Non-

Proliferating, TCF1+; 25.99%), 5 (CD8low Memory - Non-

Proliferating; 16.72%), and 4 (CD8 memory 3 - Non-

Proliferating, TCF1+; 11.77%; Figure 4C).

To gain additional insights into LAG-3 expression

characteristics, we profiled our flow cytometry cohort samples

using antibodies that could discriminate surface LAG-3 and

intracellular LAG-3. When we profiled LAG-3 signal intensity in

the T cell metaclusters, we observed the highest expression of

surface LAG-3 expression in a region of the tSNE map

corresponding to two CD8 memory subsets that could be defined

by differential expression of Ki67 and TOX (metaclusters 2: CD8

Memory 1 - Proliferating, TOXhigh and 3: CD8 Memory 2 - Non-

Proliferating, TOXmed; Figure 4B, D). These subsets represented a

median frequency of 0.10% (range = 0% - 6.47%) and 5.23% (range

= 0.21% - 37.85%), respectively, of the total TIL T cell population

(Figure 4C). Some surface LAG-3 expression was also observed in

metacluster 11 (CD4 TCM 3 - Non-Proliferating TCF1+ TOX+).

Intracellular LAG-3 expression was the highest in metaclusters 2

(CD8 Memory 1 - Proliferating, TOXhigh) and 1 (DN or CD8low -

Proliferating), with lower expression observed in metaclusters 3

(CD8 Memory 2 - Non-Proliferating, TOXmed) and 12 (CD4 TCM

4 - Proliferating, TOX+ and 1; Figure 4B). Interestingly, metacluster

2 expressed the highest intensity of both surface and intracellular

LAG-3, but the other subsets showed expression of either surface or

intracellular LAG-3, but not both (Figure 4B, D). Other markers

expressed at a relatively high intensity by the two highest surface

LAG-3-expressing CD8 T cell metaclusters included other

checkpoints (PD-1, CTLA-4, and TIGIT) and the costimulatory

receptor 4-1BB (Figure 4B), which agrees with our CyTOF analysis

(Figure 2B). These metaclusters also displayed the highest intensity

expression of TOX, which indicates a dysfunctional differentiation

state (43). Assessment of other markers on the tSNE map showed

apparent co-localization of this LAG-3+ region with several

activation, stimulatory, and inhibitory markers (CD69, 4-1BB,

HLA-DR, PD-1, TIGIT, CTLA-4, TOX) and a relative dearth of

other markers (CD25, TCF1; Figure 4E). Notably, the LAG-3

surface signal was more tightly regionally localized compared to

the LAG-3 intracellular signal (Figure 4D). Most other markers,

including all checkpoints assessed here, exhibited more broadly

distributed expression profiles across other areas of the tSNE map

compared to the LAG-3 surface signal (Figure 4E).

Next, we used manual gating in our flow cytometry cohort

(Supplementary Figures 3A, B) to select the four different PD-1/

LAG-3 subsets (Supplementary Figure 6F), finding that the majority

of both CD8 TCM (CCR7+ CD45RA-) and TEM (CCR7- CD45RA-)

cells were positive for only PD-1 (median frequencies of 27.2% and

17.4%, respectively), but a sizeable proportion were found to be

both PD-1+ and LAG-3+ (median frequencies of 22.2% and 12.9%,

respectively; Figure 5A). This double positive subset was found in 4/

18 TIL samples from CD8 TCM cells (3/4 endometrial and 1/3
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lung), and 12/18 TIL samples from the CD8 TEM cells (2/3 colon,

3/4 endometrial, 4/7 kidney, 1/1 liver, and 2/3 lung). The double

positive subset of CD8 TCM and TEM cells was once again a

sizeable minority of the total TIL CD8 population, with a median

frequency of 22.2% and 9.9%, respectively (Figure 5B). Median PD-

1 expression intensity was equivalent between the double positive

subsets and the PD-1+ LAG-3- subsets from both CD8 TCM and

TEM cells (Figure 5C). We then profiled these subsets for the co-

expression of additional markers. As shown in Figures 5D, E, the

marker profiles of both CD8 TCM and TEM cells that co-expressed
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both PD-1 and LAG-3 exhibited generally robust signal intensities

for several activation, stimulatory, and inhibitory markers, which

was observed across differing tumor types. The median marker

intensities were largely equivalent between the PD-1+ LAG-3+

subsets compared to the PD-1+ LAG-3- subsets. Taken together,

these results appear to be consistent with the results from our

CyTOF cohort and indicate that co-expression of PD-1 and LAG-3

in tumor infiltrating CD8 T cells could be used as a simple way to

detect and/or enrich for cells with this unique marker profile

suggestive of T cell dysfunction/exhaustion.
A

B D

E

C

FIGURE 4

T cell immunophenotyping and LAG-3 expression profiling in the flow cytometry cohort. (A) FlowSOM-overlaid tSNE maps for patient TIL (n=18)
samples generated using the opt-SNE dimensionality reduction and FlowSOM clustering algorithms. (B) Heatmap depiction of z-score normalized,
arcsinh-transformed median fluorescence signal intensity values for the indicated T cell markers among metaclusters identified in (A) from patient
TIL samples. (C) Frequencies of the FlowSOM-derived T cell metaclusters as a percentage of total T cells from all samples. Black and gray lines
denote median and quartile values, respectively. (D) Localization of surface (left) and intracellular (right) LAG-3 signal intensity on the patient TIL
tSNE map generated in (A). Red box denotes the region with the highest expression of LAG-3. (E) Colocalization of the indicated markers with LAG-
3 signal intensity on the patient TIL tSNE map generated in (A). Red box denotes the overlapping region of highest LAG-3 expression. Green text
indicates activation-related markers, red text indicates inhibitory markers, and black text indicates transcription factors.
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3.7 Characterization of LAG-3 ligand
expression among immune cells from
human solid tumor TIL

Finally, we applied a separate flow cytometry panel of 21

markers for broader immunophenotyping of TILs for the

expression of LAG-3 and its ligands (Supplementary Table 3). We

used manual gating based on immune lineage marker expression to

identify a set of 7 broad lymphocyte and myeloid lineages

(Supplementary Figures 4A, B). As shown in Figure 6A, the

highest median frequency TIL cell type by far were T cells
Frontiers in Immunology 13
(67.5%), in agreement with the results observed in the CyTOF

cohort (Supplementary Figure 5A). Minimal LAG-3 expression was

observed in the broad lymphoid populations, with T cells and NKT

cells expressing the highest median frequencies of intracellular

LAG-3 (both 4.3%) and NKT cells expressing the highest median

frequency of surface LAG-3 (2.9%; Figure 6B). Neither intracellular

nor surface LAG-3 was detected in myeloid cell populations (data

not shown). Assessment of LAG-3 ligands included surface

detection for HLA-DR and LSECtin, and intracellular detection of

galectin-3 and FGL1 because these are secreted proteins. As shown

in Figure 6B, lymphoid populations widely expressed HLA-DR
A B

D

E

C

FIGURE 5

Characterization of PD-1/LAG-3 subsets of TIL CD8 memory cells in the flow cytometry cohort. (A) Frequencies of PD-1/LAG-3 subsets in TIL CD8
TCM (left) and TEM (right) cells. CD8 TCM and TEM populations were manually gated, and Boolean gating was performed from those populations to
derive PD-1/LAG-3 subsets of each. Sample populations with <150 events were excluded from the analysis. Lines indicate median values.
(B) Frequencies of PD-1+ LAG-3+ TCM and TEM subsets as a percentage of total TIL CD8 T cells. Sample populations with <150 events were
excluded from the analysis. Lines indicate median values. (C) Arcsinh -transformed median fluorescence signal intensity of PD-1 among TIL CD8
TCM (left) and TEM (right) cells. Mann-Whitney tests were performed to determine statistically significant differences in PD-1 signal intensity.
Bonferroni adjusted p values < 0.05 were considered statistically significant. Samples population with <150 events were excluded from the analysis.
Lines indicate median values. (D) Heatmap depictions of z-score normalized, arcsinh-transformed median fluorescence signal intensity values for the
indicated markers among PD1/LAG3 subsets of TIL CD8 TCM cells. Each column represents a different sample and is annotated with PD-1/LAG-3
subset, tumor type, and event count. Colors are as indicated. Sample populations with <150 events were excluded from the analysis. (E) Heatmap
depictions of z-score normalized, arcsinh-transformed median fluorescence signal intensity values for the indicated markers among PD1/LAG3
subsets of TIL CD8 TEM cells. Each column represents a different sample and is annotated with PD-1/LAG-3 subset, tumor type, and event count.
Colors are as indicated. Sample populations with <150 events were excluded from the analysis.
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(median frequency of ≥44.5% for all populations), whereas the

other ligands were only minimally expressed (median frequency of

<5% in all populations for FGL1, galectin-3, and LSECtin;

Figure 6B). LAG-3 ligand expression was more abundant in

myeloid cells, as all DCs and monocytes were HLA-DR+ (gating

factor), and all populations expressed galectin-3 at a median

frequency of 19.5% - 22.9% (Figure 6C). Expression of LSECtin

was also observed in a minority of all myeloid populations (median
Frontiers in Immunology 14
frequency of 4.7% - 10.5%), as was FGL1 in DCs (median frequency

3.8%, range = 0.8 - 20.6%; Figure 6C). For comparison, PD-L1 was

found at relatively low levels, with a median frequency of ≤ 5.3% for

all myeloid populations. As expected, target MFI values for all

markers except FGL1 were positively correlated with expression

frequency across the various immune cell populations

(Supplementary Figure 9). This result for FGL1 is likely due to

the very low expression observed for this marker.
A

B

C

FIGURE 6

Expression profiling for surface LAG-3, intracellular LAG-3, and LAG-3 ligands in the flow cytometry cohort. (A) Frequencies of major TIL immune
cell populations. Immune cell populations were defined by manual gating as determined in Supplemental Figure 4. Reported values are expressed as
Frequency (%) of CD45+ cells for each population. (B) Target expression from the TIL lymphocyte populations. Shown are panels for B Cells, NK
Cells, NKT Cells and T Cells. (C) Target expression from the TIL myeloid populations. Shown are panels for Dendritic Cells, Myeloid Derived
Suppressor Cells (MDSC) and Monocytes. Gal-3, galectin-3; LAG3-S, surface LAG-3 expression; LAG3-IC, intracellular LAG-3 expression; NKT,
natural killer T cell. Sample populations with <150 events were excluded from the analysis. All boxplot visualizations show the median, first and third
quartiles as well as 1.5* IQR (interquartile range). Colored dots indicate individual samples and their corresponding tumor type. Positive gates were
determined using control samples stained without the respective target markers and a frequency cut-off of 2% (dashed lines).
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3.8 Elevated LAG3 transcript expression in
peripheral CD8 memory T cells was
associated with disease progression in
melanoma patients treated with
combination immune checkpoint inhibition

Finally, we sought to understand the potential relationship of

LAG-3-expressing cells to the clinical outcomes of patients treated

with immune checkpoint inhibitors (ICI). Peripheral, blood-derived

samples are more accessible than tumor tissues, so we utilized single

cell RNA-sequencing (scRNAseq) of PBMC samples as a highly

sensitive orthogonal technique to identify and characterize rare

circulating immune cells that express LAG-3. Sequencing and

analyses were conducted on paired baseline (cycle 1, day 1;

C1D1) and on-treatment (cycle 3, day 1; C3D1) blood samples

from 52 melanoma patients treated with ICI in the phase 2

CheckMate 069 trial (29, 30). As visualized in Figure 7A,

scRNAseq profiling identified 30 different cell types that included

7 different T-cell subsets. Consistent with the results of our TIL

profiling by flow and mass cytometry, we observed the majority of

LAG3 transcript expression in CD8 TCM and TEM cells (10.7% and
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14.4.%, respectively) and a minority expressed in hematopoietic

stem cells (HSC, 7.8%) and NK cells (7.0%; Figure 7B). Comparison

of the top differentially expressed genes between LAG3+ and LAG3-

CD8 memory T cells revealed increased expression of cytotoxicity

genes (GZMA, GZMB, GZMH, GZMK, and NKG7) and specific

cytokines/chemokines (IL32 and CCL5) in the LAG3+ cells

(Figure 7C). Co-expression of TIGIT (13.4% in TCM, 11.4% in

TEM) and TOX (12.9% in TCM, 16.2% in TEM), and to a lesser

extent PDCD1 (encoding PD-1; 4% in TCM, 5.8% in TEM),

HAVCR2 (encoding TIM-3; 4.1% in TCM, 3.8% in TEM), and

TNFRSF9 (encoding 4-1BB; 3.0% in TCM, 2.6% in TEM), was also

observed in LAG3+ CD8 memory T cells (Figure 7D).

To investigate potential associations between LAG3-expressing

CD8 memory T cells and clinical outcomes, we focused on 23

patients that were treated with combination nivolumab and

ipilimumab whose disease was classified as complete response

(CR, n=15) or progressive disease (PD, n=8). We observed an

elevated baseline median frequency of circulating LAG3+ CD8 TEM

cells in patients who exhibited PD compared to CR (18.1% vs.

11.1%, respectively), but not for LAG3+ CD8 TCM cells (10.7% vs.

9.1%, respectively; Figures 8A, B). Furthermore, the level of baseline
A B
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C

FIGURE 7

Peripheral scRNAseq and LAG3 expression analysis from the CheckMate 069 cohort (n=52 patients). (A) UMAP visualization of 30 identified cell
populations from the CheckMate 069 scRNAseq cohort (n=100 samples). (B) Frequency of LAG3 transcript expression in each of the identified cell
populations. (C) Top differentially expressed genes between LAG3+ and LAG3- cells from CD8 TCM cells (top) and TEM cells (bottom). (D) Expression
of selected genes in LAG3+ CD8 TCM cells (top) and TEM cells (bottom). Dot size corresponds to the frequency of the indicated cell population.
Blue gradient bars display the average z-score normalized transcript expression level of the indicated gene in each respective cell population.
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LAG3 transcript expression in TCM and TEM cells was significantly

higher in patients with PD compared to CR (Figures 8C, D). We

also observed an on-treatment increase in the median frequency of

circulating LAG3+ CD8 TCM and TEM cells in all patients at the

cycle 3 timepoint. However, the median frequency was even more

elevated in patients with PD compared to CR for both LAG3+ CD8

TCM cells (21.5% vs. 12.5%) and TEM cells (24.7% vs. 16.5%;

Figures 8A, B). Similarly, patients with PD showed a greater on-

treatment increase in the level of LAG3 transcript expression in

circulating LAG3+ CD8 TCM and TEM cells compared to those

with CR (Figures 8E, F). These results suggest that a relatively

higher level of LAG3+ CD8 memory T cells at baseline, and a larger

increase on-treatment, may be associated with poorer outcomes in

melanoma patients treated with combination ICI.
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4 Discussion

The use of comprehensive high-parameter immunophenotyping

to characterize peripheral and tumor-infiltrating immune cells can

yield translational insights that aid the development of IO therapies

for solid tumors. In the present study, we utilized both mass and

fluorescence cytometry to profile immune cell populations that

express LAG-3 from two separate commercial cohorts from a

diversity of solid tumor types. As expected, we found that the

majority of LAG-3 was expressed by tumor-infiltrating, but not

circulating, CD8 memory T cells, with lower, but detectable, levels

of LAG-3 on tumor-infiltrating CD4 T-helper cells and Tregs. These

results are supported by findings reported by others in melanoma and

hepatocellular carcinoma (20, 44, 45). Others have also reported
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FIGURE 8

LAG3 transcript expression analysis from peripheral CD8 TCM and TEM cells at baseline and on-treatment from the nivolumab + ipilimumab arm of
the CheckMate 069 cohort (n=26 patients). (A) Frequency of LAG3 transcript expression from CD8 TCM cells. (B) Frequency of LAG3 transcript
expression from CD8 TEM cells. (C) Comparison of the magnitude of LAG3 transcript expression from LAG3+ CD8 TCM cells at baseline (C1D1)
between subjects with CR vs. PD. (D) Comparison of the magnitude of LAG3 transcript expression from LAG3+ CD8 TEM cells at baseline (C1D1)
between subjects with CR vs. PD. (E) Comparison of the magnitude of LAG3 transcript expression from LAG3+ CD8 TCM cells at baseline (C1D1) and
on-treatment (C3D1) between subjects with CR and PD. (F) LAG3 transcript expression from LAG3+ CD8 TEM cells at baseline (C1D1) and on-
treatment (C3D1) between subjects with CR and PD. Dot size corresponds to the frequency of the indicated cell population and color corresponds
to average expression. Violin plots display z-score normalized LAG3 transcript expression in each respective patient population. C1D1, cycle 1 day 1;
C3D1, cycle 3 day 1; CR, complete response; PD, progressive disease; SD, stable disease.
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LAG-3 expression on human plasmacytoid DCs (46) and NK cells

(47), but we did not observe appreciable expression of LAG-3 in any

of these cell types which may reflect the relative paucity of such cells

among TIL. These results indicate the importance of tumor-

infiltrating CD8 memory and CD4 T cells as potential targets of

therapeutic LAG-3 blockade.

In seeking to characterize the marker profile of the LAG-3-

expressing cells, we utilized both unsupervised analysis and manual

gating. These complimentary approaches determined that CD8

memory T cells that express LAG-3 exhibit a unique marker

profile, with robust expression of multiple co-inhibitory receptors

(PD-1, CTLA-4, TIGIT, and TIM-3), co-stimulatory receptors (4-

1BB and ICOS), and activation markers (CD69 and HLA-DR). This

is highlighted by the similar expression profiles of specific

FlowSOM-derived metaclusters and the manually gated PD-1+

LAG-3+ subsets of CD8 memory T cells. Although the absolute

number of TIL samples profiled across both cohorts here was

somewhat limited (total n=45), this marker co-expression profile

was generally consistent across both cohorts and was consistent

with other reports focused on NSCLC and melanoma (16, 17).

Taken together, this indicates that the association between LAG-3

expression and this distinct surface marker phenotype may be a

general feature of solid tumor biology. Additionally, analysis of the

tumor-infiltrating T cell tSNE maps revealed a much more localized

and focal pattern of expression for LAG-3 (particularly surface

LAG-3) compared to the other co-inhibitory and co-stimulatory

receptors, which were more broadly expressed. It is tempting to

speculate that expression profiling of LAG-3, together with PD-1,

may be a simple way to enrich for tumor-infiltrating T cells that

highly co-express multiple checkpoints and co-stimulators, as has

been reported for PD-1high CD8 T cells from NSCLC (18, 48) and

ovarian cancer (38). Since we found that PD-1 and LAG-3 were

frequently co-expressed in CD8 memory T cells, and that PD-1

expression intensity was equivalent or higher in cells that also

expressed LAG-3, it seems likely that the PD-1high CD8 T cell subset

identified in these prior investigations is comparable to the PD-1+

LAG-3+ CD8 memory T cell subsets reported here.

Persistent antigen stimulation and immunosuppressive signals

in the TME result in the dysfunction of T cells (43, 49) akin to the

exhaustion model that was first described in chronic viral infection

(50, 51). A key feature that identifies exhausted/dysfunctional T

cells is relatively high expression of TOX compared to TCF1 (40–

42), which we observed in the high LAG-3-expressing CD8 T cell

metaclusters from the flow cytometry cohort. Exhausted and

dysfunctional CD8 T cells also exhibit chronic upregulation of

multiple inhibitory checkpoints (19), which was reported in the PD-

1high CD8 T cell subsets (18, 38) and was also observed in the PD-1+

LAG-3+ CD8 memory T cell subsets described in our study.

Dysfunction in tumor infiltrating CD8 T cells is also associated

with marker characteristics indicative of tumor reactivity, including

CD4/CD8 double positivity (24), co-expression of CD103 and

CD39 (52), expression of CXCL13 (53), and upregulation of 4-

1BB, which reflects recent antigen encounter (54) and was reported

to aid in discriminating tumor-reactive CD8 T cells from bystander

CD8 T cells in the TME (55). Elevated 4-1BB expression was

observed in the PD-1+ LAG-3+ CD8 memory T cell subsets
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profiled here, and in the PD-1high CD8 T cell subsets described

previously (18, 38). A potential association between LAG-3 and

tumor reactivity is also suggested by a murine study that reported

co-expression of LAG-3 and 4-1BB was sufficient to identify tumor

antigen-specific yet dysfunctional CD8 T cells from syngeneic

tumors, and that combination treatment with anti-LAG-3 and

anti-4-1BB antibodies resulted in potent inhibition of tumor

growth (56). The unique marker phenotype of the tumor-

infiltrating PD-1+ LAG-3+ CD8 memory T cell subsets

characterized here indicates that this subset of cells may similarly

possess tumor-reactive yet dysfunctional features and may be

amenable to reinvigoration by combination PD-1 and LAG-3

blockade. Retrospective analyses for any potential association(s)

between this subset and patient responsiveness to dual PD-1 and

LAG-3 blockade could be undertaken to determine the exploratory

biomarker potential of this subset (as was recently shown for PD-

1high CD8 T cells from NSCLC (48)) and complement experimental

efforts to determine whether this subset is a primary mechanistic

target of dual blockade. This notion is further supported by recent

exploratory subgroup analyses from the RELATIVITY-047 trial, in

which the overall response rate (ORR) for the nivolumab +

relatlimab arm was greater in patients whose tumors expressed

both PD-L1 ≥ 1% + LAG-3 ≥ 1% (52.7%) compared to both the

intention-to-treat (ITT) population (43.1%) and the PD-L1 < 1% +

LAG-3 < 1% population (30.7%) (57). Additionally, novel

approaches to safely target 4-1BB co-stimulation to the tumor

and circumvent previously observed severe liver toxicity (58) may

represent an attractive IO combination strategy to further augment

PD-1 and LAG-3 dual blockade.

We also characterized the expression of LAG-3 ligands by broad

immunophenotyping of tumor-infiltrating lymphocyte and myeloid

populations. We observed relatively high expression of MHC-II

across most immune populations, and galectin-3 and LSECtin

expression in a minority of cells among the myeloid cell lineages.

FGL1 was largely not expressed, with only a minimal signal seen in

DCs. The diversity of LAG-3 ligands coupled with their observed

expression on various immune cells (often at higher levels than what

was observed for PD-L1) suggest that theoretically there would be

abundant opportunities for LAG-3 to engage at least one of its

receptors within the TME and signal accordingly. Recent

investigations have detailed apparent contradictions in the ligand-

dependency of the LAG-3 inhibitory mechanism: whereas Maruhashi

et al. (59) and Wang et al. (9) first reported a requirement for LAG-3

engagement with either stable peptide:MHC-II (pMHCII) complexes

or FGL1, respectively, a subsequent study by Guy et al. (12) reported

an inhibitory mechanism for LAG-3 that was seemingly entirely

independent of ligand engagement. Concurrently, a follow-up study

by Maruhashi et al. (60) presented data reiterating the requirement

for stable pMHCII engagement but found that engagement with

FGL1 was dispensable for LAG-3-dependent inhibition. Further

investigation will be necessary to resolve these apparent

contradictions and yield a more complete understanding of the

relative importance of the various ligands in potentially mediating

antitumor T-cell responses through LAG-3.

Peripheral blood is much more accessible than solid tumor

tissue, which can be difficult to collect, process, and preserve, and
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may not be as practical for routine clinical biomarker testing and/or

repeated longitudinal sampling. We therefore pivoted from TIL to

peripheral blood samples to explore the potential contribution of

the LAG-3-expressing cell subsets to clinical outcomes of patients

treated with ICI. Because we found very low levels of peripheral

LAG-3 expression by CyTOF, we utilized scRNAseq as a highly

sensitive orthogonal technique to profile and identify these rare

circulating immune cell populations as they traffic to and from the

tumor. Using samples from the phase 2 CheckMate 069 trial, we

found that CD8 TEM and TCM cells expressed the majority of

LAG3, which was entirely consistent with our TIL profiling results,

and that the level of circulating LAG3-expressing CD8 memory T

cells at baseline and on-treatment was inversely related to clinical

response to combination PD-1 and CTLA-4 blockade. The putative

association described here is supported by results reported by Shen

et al., which identified a pre-treatment peripheral LAG+

immunotype that was defined in part by a LAG-3+ CD8 T cell

population and predicted poorer outcomes to ICI in patients with

melanoma and urothelial carcinoma (61). Taken together, these

results are consistent with LAG-3 playing a key role in PD-1 and/or

CTLA-4 blockade resistance, and provides additional rationale for

targeting LAG-3 (in combination with PD-1) as a strategy to

overcome ICI resistance in melanoma and possibly other solid

tumor types.

Limitations related to the cytometry portions of this study

include the use of TIL samples from a range of solid tumor types

and stages, which may have influenced the observed immune

phenotypes. The TIL samples also underwent digestion,

processing, and freeze/thaw procedures. Membrane proteins such

as LAG-3 can be sensitive to enzymatic digestion, thereby altering

detection of the target protein. In situ techniques such as

immunohistochemistry (IHC) and multiplex-immunofluorescence

(IF) could be used in the future to complement the observations

obtained by this study. Another technical limitation is that the

unsupervised analysis, by necessity, utilized equal random down-

sampling to the sample with the lowest event count, which could

theoretically increase the probability of excluding very low

frequency cell populations. Additionally, the immunophenotyping

presented here focused exclusively on immune cells. Further studies

would be needed to ascertain the expression characteristics of LAG-

3 and its ligands on non-immune cell types, such as stromal,

vascular, and tumor cells. Finally, our findings are consistent with

the notion that the addition of LAG-3 blockade to PD-1 blockade

could enhance the activity of tumor-reactive yet dysfunctional CD8

memory T cells in the TME, but our findings do not preclude a

potential role for combination blockade in also augmenting T cell

priming in the context of cancer (62). Future efforts could assess

patients treated with combination PD-1 and LAG-3 blockade

compared to only PD-1 blockade for changes in TCR clonality

post-treatment to address this possibility.

Study limitations related to the scRNAseq portion of this study

include the potential for discrepancies between transcript and

protein expression, as distinct modes of regulation may

independently control the expression levels of each type of

molecule. For example, ectodomain shedding of LAG-3 protein
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by ADAM10 and ADAM17 (44, 63) may result in the absence of

surface protein expression in cells that otherwise abundantly

express LAG3 transcript. While we did not observe abundant

PDCD1 transcript co-expression from the LAG3-expressing CD8

TCM and TEM cells, substantial co-expression of TIGIT and TOX

transcripts was observed, suggesting that these circulating cells may

be phenotypically similar to the populations that we described in

the TIL compartment. In addition, the known scRNAseq “dropout

effect” in which read-depth is limited resulting in failure to detect

rarely expressed transcripts implies that the absence of detectable

co-expression of a given transcript may not necessarily mean that

there was in fact no expression in the target cell population. Our

analyses of distinct datasets utilizing different methodologies

converged on the significance of the LAG-3+ memory CD8 T cell

populations, which highlights the potential importance of

conducting further studies to scrutinize the dynamics of LAG-3

transcript vs. protein expression and regulation, and how these

factors relate to CD8 T cell phenotype, function, and response to

checkpoint inhibition.

In summary, we conducted a detailed pan-tumor expression

profiling study of immune cells that express LAG-3 and its ligands.

We found enrichment of LAG-3 protein expression in subsets of

TIL CD8 memory T cells, which was associated with a unique

phenotypic profile with elevated expression of multiple inhibitory

and stimulatory markers. We also observed abundant expression of

MHC-II, and variable expression of galectin-3 and LSECtin, among

various TIL populations. Lastly, we observed in inverse relationship

between baseline and on-treatment levels of circulating LAG3-

expressing CD8 memory T cells and response to combination

PD-1 and CTLA4 blockade in a clinical trial cohort of patients

with melanoma. These results provide insights that can inform

mechanistic hypotheses, treatment selection strategies, and novel

combination therapy approaches to support continued

development of dual PD-1 and LAG-3 blockade.
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