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Bone is a dynamic organ that, once formed, undergoes a constant remodeling

process that includes bone resorption and synthesis. Osteoclasts and osteoblasts

are primarily responsible for controlling this process. X-box binding protein 1

(XBP1), a transcription factor, affects the metabolism of bones in various ways. In

recent years, numerous studies have revealed that XBP1 plays a vital role in bone

metabolism, including osteoclast and osteoblast development, as well as in

regulat ing immune cel l d i fferent iat ion that affects the immune

microenvironment of bone remodeling. In this review, we highlight the

regulatory mechanisms of XBP1 on osteoclasts and osteoblasts, how XBP1

affects the immune microenvironment of bone remodeling by influencing the

differentiation of immune cells, and predict the possible future research

directions of XBP1 to provide new insights for the treatment of bone-related

metabolic diseases.
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1 Introduction

Bone is a rigid and dynamic organ that experiences a phenomenon referred to as

remodeling (1, 2). In a typical state, there exists an equilibrium between the creation and

breakdown of bone, overseen by osteoblasts and osteoclasts, respectively (3). Nevertheless,

when these mechanisms become imbalanced, they can result in significant impairments to

the structure and functionality of bone, consequently giving rise to various bone metabolic

ailments, including osteoporosis, rheumatoid arthritis, and multiple myeloma (MM) (4–7).

Throughout the process of skeletal development, osteoblasts generate substantial

quantities of extracellular matrix proteins. Endoplasmic reticulum stress (ER stress) is

elicited by both endogenous and exogenous stimuli, leading to the activation of the

unfolded protein response (UPR) (8, 9). In mammalian cells, three transmembrane

proteins located in the endoplasmic reticulum serve as sensors for ER stress: protein

kinase R-like endoplasmic reticulum kinase (PERK), activating transcription factor 6

(ATF6), and inositol-requiring enzyme 1a (IRE1a) (10). These proteins mediate the three

branches of UPR signaling, namely PERK-eIF2a, ATF6, and IRE1a (11). Among these
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branches, the IRE1a/XBP1 pathway represents one of the most

highly conserved signaling pathways throughout evolution (12).

When IRE1a is activated, it facilitates the cleavage of unspliced

XBP1 mRNA into spliced XBP1, which subsequently participates in

the regulation of endoplasmic reticulum homeostasis, cell survival,

angiogenesis, and other biological processes (13–15).

As a transcription factor, x-box binding protein 1 (XBP1)

assumes a crucial function in the immune microenvironment of

bone remodeling by promoting osteoclast formation (8, 16–18),

osteoblast differentiation (19), and immune cell differentiation

through diverse cytokines or signaling pathways (20).

XBP1, a key transcription factor, is crucial in the response of

unfolded proteins under ER stress conditions and is associated with the

pathogenesis of bone metabolic diseases (16, 21). Therefore,

understanding the regulation of XBP1 in bone metabolism is crucial

and may lead to new advances in treating various bone metabolic

diseases. Current research on XBP1 has focused on the regulatory role

in various tumor diseases, and little is known about its role in bone

metabolic diseases. Herein, we summarize the critical roles of XBP1 in

the differentiation of osteoclasts, osteoblasts, and immune cells, as well

as in influencing the immune microenvironment of bone remodeling.

In addition, the review also predicts possible future research directions

of XBP1, providing new ideas for the treatment of various diseases.
2 XBP1

It is a distinctive transcription factor of base-region leucine

zipper (bZIP) that governs the regulation of human MHC class II

genes (22, 23). Subsequent to this discovery, numerous

investigations conducted approximately ten years later have

demonstrated that XBP1 is a downstream component of IRE1a, a
crucial transcription factor for the UPR in both invertebrates and

vertebrates, and is indispensable for cellular survival in reaction to

stressful stimuli (14, 24).

XBP1 can be produced by plasma cells (PCs), MM cells, and

bone marrow stromal cells (BMSCs) (25, 26). XBP1 is highly

expressed in PCs and alleviates ER Stress through UPR. XBP1

can also be induced in BMSCs in the MM microenvironment.

Guoshuang Xu et al. found that XBP1 mRNA levels are significantly

increased in BMSCs from MM patients compared to healthy donor.

Meanwhile, they found that BMSCs with elevated levels of XBP1

protein induced more osteoclast formation (16).

XBP1 plays a role as a transcription factor not only in osteoclast

differentiation but also in osteoblast differentiation. Initially, only

literature using Northern-blot analysis demonstrated that XBP1

expresses during osteoblast differentiation, which PTH influences

(27). A couple of years later, Takahide Tohmonda performed in

vitro osteoblast differentiation assays using mouse embryonic

fibroblasts (MEFs) and recombinant bone morphogenic protein 2

(BMP2) to detect the expression of early and late markers of

osteoblast differentiation. These experimental results demonstrate

that the IRE1a/XBP1 pathway is essential for BMP2-induced

osteoblast differentiation (19).

In macrophages, the promotion of inflammatory cytokine

production and M1-type macrophage polarization by XBP1 may
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play a role in osteoclast differentiation (28). Conversely, the

activation of IRE1a/XBP1 signaling by estrogen can inhibit M1-

type macrophage polarization (29). In CD4+ T cells, XBP1 can

contribute to Th-cell polarization, leading to the secretion of

various cytokines that impact osteoblast or osteoclast

differentiation processes. Additionally, XBP1 in CD8+ T cells can

regulate the expression of CD8+ T cell inhibitory receptors induced

by cholesterol and induce T cell exhaustion. Furthermore, the

activation of XBP1 by SIRT7 has been observed to selectively

regulate the expression and secretion of cytokines, thereby

exerting an influence on the process of bone remodeling. Within

B cells, the inhibition of osteoclastogenesis can be achieved through

the secretion of osteoprotegerin (OPG), which blocks the RANKL/

RANK pathway. However, in MM PCs, the potential to promote

osteoclastogenesis exists (30). Although XBP1 is abundantly

expressed in PCs, the precise mechanism through which it

impacts bone metabolism in this cell type remains unclear. It may

affect the immune microenvironment of bone remodeling by

influencing PCs differentiation and immunoglobulin (Ig) secretion.

Next, the review will discuss the role of XBP1 in regulating

osteoclast differentiation, osteoblast differentiation, and affecting

the immune microenvironment of bone metabol ism,

respectively (Figure 1).
3 Regulation of XBP1 in
osteoclast differentiation

3.1 XBP1 is involved in osteoclast
formation via the IRE1a/XBP1
pathway in the UPR branch

The researchers conducted in vitro experiments to investigate

the formation of osteoclasts using wild-type (WT) bone marrow

macrophages (BMMs), recombinant soluble RANKL (sRANKL),

and murine CSF1. The results demonstrated that the differentiation

of osteoclasts under physiological conditions led to transient

induction of ER stress (17). To further explore this phenomenon,

the authors employed siRNA-mediated gene silencing to inhibit the

IRE1a/XBP1 pathway in WT BMMs and conducted in vitro assays

to assess osteoclast formation in these cells. The experimental

results revealed that the IRE1a/XBP1 pathway plays a critical role

in the regulation of osteoclast differentiation and that the

termination of this pathway significantly inhibited osteoclast

formation in vitro (17, 31).

The researchers discovered that the involvement of IRE1a/
XBP1 in osteoclast formation can be attributed to a series of

processes. The activation of IRE1a, triggered by ER stress

induced by RANKL/RANK, leads to the splicing of XBP1u into

mature XBP1. Notably, the Nfatc1 plays a crucial role in regulating

osteoclast formation, and its promoter region contains potential

binding sites for XBP1. Consequently, the direct binding of mature

XBP1 to these sites stimulates the transcription of Nfatc1, thereby

facilitating the promotion of osteoclast formation (Figure 2).

Moreover, it was observed that ER stress was only transiently

induced following RANKL stimulation, indicating that the role of
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the UPR in maintaining mature osteoclast function is limited

(17, 32).

Additionally, a substantial body of evidence has demonstrated

that BMMs lacking IRE1a exhibit impaired ability to induce Nfatc1

after RANKL stimulation (17). Furthermore, in a study conducted

by Lavinia Raimondi et al., pre-osteoclast cells (pOCs) were treated

with MM cell-derived small extracellular vesicles (MM-EVs),

revealing an increased expression of XBP1 in pOCs after 3 days

of treatment with MM-EVs compared to untreated cells.

Subsequently, the researchers proceeded to suppress the IRE1a/
XBP1 pathway by employing a specific inhibitor of IRE1a.
Remarkably, the application of MM-EVs in conjunction with the

IRE1 inhibitor led to a significant decrease in the quantity of

osteoclasts within Raw264.7 cells (33). These findings serve to

further validate the significance of the IRE1a/XBP1 pathway in

the process of osteoclast formation.
3.2 XBP1 is involved in osteoclast
formation through regulation of the PTH/
PTHrP pathway

Furthermore, it has been postulated that parathyroid hormone

(PTH) and parathyroid hormone-related protein (PTHrP) exert
Frontiers in Endocrinology 03
pivotal regulatory functions in bone development and homeostasis.

The transcription of the PTH/PTH-related peptide receptor

(PTH1R) is regulated by the IRE1a/XBP1 pathway, as evidenced

by the direct interaction of XBP1 with the P2 promoter of Pth1r.

Consequently, the IRE1a/XBP1 pathway exerts a positive influence
on the expression of the PTH/PTHrP pathway, ultimately

facilitating the upregulation of PTH-induced RANKL expression

in osteoblasts. This, in turn, leads to the activation of

osteoclastogenesis through the interaction between RANKL and

RANK on osteoclasts (8, 34).
4 Regulation of XBP1 in
osteoblast differentiation

4.1 XBP1 regulates osteoblast
differentiation by promoting the
expression of Osterix

Osterix (Osx) is a novel zinc finger-containing transcription

factor specifically expressed in all growing bones. It is viewed as a

transcription factor essential for osteoblast differentiation (35).

Without Osx, there is no cortical and trabecular bone formation

via intramembranous or intracartilaginous osteogenesis. In the
FIGURE 1

Overview of the role of XBP1 in bone metabolism. During the process of osteoclast differentiation, the activation of endoplasmic reticulum stress by
RANKL/RANK leads to the activation of IRE1a, resulting in slicing Xbp1u into mature Xbp1. X-box binding protein 1 (XBP1) can induce the formation
of osteoclasts by promoting the transcription of Nfatc1 or by positively regulating the expression of the PTH/PTHrP pathway, which subsequently
leads to bone resorption. Conversely, during osteoblast differentiation, XBP1 can be activated by various factors including proteasome inhibition
(PI), bone morphogenic protein 2 (BMP2), lipopolysaccharide (LPS), and specific miRNAs such as Exo-miR-205-5p. XBP1 regulates the expression of
Osterix, thereby facilitating osteoblast differentiation and bone formation, regulated by PTH. In macrophages, XBP1 can be activated by toll-like
receptors (TLR), Annexin A2 (AnxA2), NF-kB, and estrogen. In T cells and B cells, XBP1 is highly expressed and thus may regulate bone metabolic
processes. Yellow arrows represent increased osteoclastogenesis and blue arrows represent increased osteoblastogenesis.
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progression of osteoblast differentiation, osteoblast progenitors in

intrachondral and interstitial cohesion of membranous bone

elements differentiate into preosteoblasts through regulation by

Runx2/Cbfa1, which in turn differentiate into mature osteoblasts

in one or more steps and express characteristic osteoblast marker

genes, a process that requires Osx (36, 37).

Takahide Tohmonda et al. discovered through several in vitro

experiments that the osteoblast-specific transcription factor Osx is

the direct target of XBP1, not Runx2. Researchers cultured

multipotent, uncommitted MEFs and committed preosteoblasts in

vitro and found that XBP1 regulates Osx expression by binding

directly to the XBP1 binding site in the Osx promoter (38). Besides,

using UPR signaling released by thapsigargin, a potent inducer of

ER stress, could promote Osx transcription in BMP2-treated

fibroblasts and osteoblast cell line MC3T3-E1, but this process

was dependent on IRE1a/XBP1 (19). In addition, it has been shown

that mutant reporter constructs analysis and a luciferase assay,

based on data from the promoter region of Osx encoding a UPR

element (TGACGTGG/A)-like sequence (TGAGCTGG) (39)and

XBP1-binding sequence (ACGT) (40), reveals that the IRE1a/XBP1
pathway stimulates Osx expression and thus promotes the

differentiation of preosteoblasts into osteoblasts (19).
4.2 XBP1 can be activated by proteasome
inhibition and involved in bone formation

Over the past decade, the medical community has introduced

several new drugs for treating MM, of which proteasome inhibition

(PI) is the most important class. PI has been shown to promote
Frontiers in Endocrinology 04
bone formation in vivo and vitro (41). Three PIs have been

approved for the treatment of MM: bortezomib, carfilzomib, and

ixazomib (42), which can reduce bone resorption and increase bone

formation in MM patients (43, 44). Studies have shown that

bortezomib counteracts the osteoclast regulators, RANKL and

OPG, leading to osteoclast inhibition and reduced bone

destruction. It also stimulates osteoblast differentiation, as

evidenced by elevated bone-specific alkaline phosphatase (BSP)

and osteocalcin (OCN) (45).

In vitro studies have provided evidence that myeloma cells

possess the ability to hinder the differentiation of osteoblast

precursors and trigger apoptosis in fully developed osteoblasts

(46). A particular study demonstrated that the administration of

bortezomib resulted in the expression of markers associated with

osteogenesis, as observed through the assessment of calcium

deposition in bortezomib-treated mouse BMSCs using Alizarin

Red S (ARS) staining (47). Recent investigations involving ARS

staining and Western blot analysis of IRE1a inhibitor-treated

bortezomib-induced MSCs and MC3T3-E1 cells have indicated

that the inhibition of XBP1 disrupts the osteogenic differentiation

process induced by bortezomib (44). Moreover, the study revealed

that the upregulation of XBP1 in MSCs and MC3T3-E1 cells

through the utilization of Tet-On-inducible lentiviral vectors

substantially augmented the expression of molecules associated

with osteogenesis (48). Additionally, the authors observed that the

inhibition of IRE1a/XBP1 effectively counteracted the

bortezomib-induced bone formation in mice, as evidenced by

micro CT analysis. These findings provide compelling evidence

for the pivotal role of the XBP1 signaling pathway in bone

formation induced by PI (44).
FIGURE 2

Regulation of XBP1 in Osteoclast Differentiation. RANKL/RANK can trigger endoplasmic reticulum stress (ER stress), which activates three typical
branches of the unfolded protein response: PERK-eIF2a, ATF6, and IRE1a. Among them, IRE1a/XBP1 is the most evolutionarily conserved pathway,
and IRE1a can splice Xbp1u into mature Xbp1. XBP1 can directly bind to the binding sites of NFATc1, a major regulator associated with osteoclast
formation, to induce transcription of Nfatc1, thereby promoting osteoclast formation. In addition, XBP1 can also bind directly to the promoter of
Pth1r to positively regulate PTH/PTHrP expression and participate in PTH-induced RANKL expression, which interacts with RANK, thereby inducing
differentiation of osteoclast precursor into osteoclast.
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4.3 XBP1 is highly expressed in PDLCs and
is involved in alveolar bone formation

Periodontal ligament cells (PDLCs) are the cytological basis for

periodontal tissue damage repair and regeneration (49), and their

osteogenic potential is particularly critical. Disturbances in tissue

homeostasis can initiate the osteogenic differentiation of PDLCs.

RT-PCR of osteogenesis-induced PDLCs revealed that PDLCs

undergo upregulation of ER stress levels during the osteogenic

differentiation process and that XBP1 plays a role in it (50, 51).

BMP2 is a highly conserved functional protein of the TGF-b
family, promoting osteogenesis (52, 53). It was shown by

immunofluorescence that XBP1 highly expresses in human

periodontal ligament cells (hPDLCs). At the same time, BMP2

could co-localize with XBP1 in hPDLCs and jointly improve the

osteogenic ability of hPDLCs, suggesting that XBP1 has a positive

role in the proliferation and osteogenesis of hPDLCs XBP1 have a

positive role in both proliferation and osteogenesis of hPDLCs (54).

Lipopolysaccharide (LPS), a potent toll-like receptors (TLR) 4

agonist (55), has been shown to induce activation of the UPR in

hPDLCs. When the UPR is activated, PERK, ATF6, and IRE1 are

released from GRP78 to transduce the signal through the ER

membrane to the cytoplasm and nucleus. Many studies have

shown that LPS induces GRP78 expression in various cell types

(56), activating the UPR. A previous study showed that qrt-PCR

analysis of human periodontal ligament fibroblasts (hPDLFs)

treated with LPS showed that LPS increased the expression of

XBP1 mRNA level and promoted the splicing and activation of

XBP1 in hPDLFs, thus participating in the regulation of the alveolar

bone formation process (57).

It has also been shown in the literature that XBP1 is involved in

a range of inflammation-related diseases by acting as a target gene

for specific miRNAs. Exo-miR-205-5p inhibits inflammation in

chronic periodontitis by targeting XBP1 (58). Whether it

promotes osteoblast differentiation has not been reported.
5 Regulation of XBP1 in the
immune microenvironment
of bone remodeling

Bone and immune cells co-exist in the bone marrow cavity and

share a common progenitor cell and a diversity of regulatory

molecules. Immune cells regulate bone homeostasis, and bone

cells, in turn, influence the proliferation and differentiation of

immune cells (59). Tissue injury triggers an immediate immune

response, and the initial immune response consists primarily of the

innate immune system, including neutrophils, mast cells,

monocytes, and macrophages. The later immune response

consists primarily of the adaptive immune system, including T

cells and B cells. Immune cells have two main effects on bone

regeneration: the anabolic function of acute inflammation and the

catabolic function of chronic inflammation (60). The following

focuses on the regulatory role of XBP1 in several common

immune cells.
Frontiers in Endocrinology 05
Macrophages are innate immune cells in almost all tissues and

play a key role in maintaining normal tissue homeostasis. During

acute inflammation, macrophages promote the restoration of tissue

homeostasis by phagocytosing invading microorganisms,

amplifying the inflammatory response, and recruiting extra

immune cells (61). When tissue damage is cleared, macrophages

promote tissue regeneration by secreting anti-inflammatory factors,

recruiting progenitor cells, and producing growth factors. This

functional plasticity of macrophages is defined as macrophage

polarization (62). Macrophages during inflammation are referred

to as M1-type macrophages, whereas macrophages active in tissue

regeneration are M2-type macrophages (29, 63). Numerous studies

have demonstrated the critical role of macrophages in abnormal

bone metabolism.

T cells belong to the adaptive immune system with great

specificity and immune memory for their targets (64). T cells are

divided into two categories according to their T cell receptors: ab T

cells and gd T cells. ab T cells are subdivided into CD4-positive (CD4

+) and CD8-positive (CD8+) T cells. CD4+ T cells, also known as T

helper (Th) cells, are divided into several subpopulations, including

Th1, Th2, Th9, Th17, Th22, and follicular helper T cells (Tfh) and

Tregs, which can be indirectly involved in clearing infections by

regulating the activity of other immune cells (65).While CD8+ T cells

are known as cytotoxic T lymphocytes (CTLs), CTLs target virus-

infected cells to induce their death (64), both of which have dual

functions of promoting and inhibiting regeneration. gd T cells, a small

subpopulation of T cells (66), are thought to have a regeneration-

promoting role, but their mechanisms are unknown. Thus, the

regulatory effect of T cells in bone regeneration may be associated

with T cell subsets, cytokines, and other agents (60).

B cells belong to the adaptive immune system and are

characterized by their ability to differentiate into plasma cells to

produce antibodies. These antibodies permeate extracellular spaces,

where they protect against infection (67). After their generation, B

cells assume various functions in immune regulation and host

defense (68). The development of B cells occurs in the bone

marrow (BM) from hematopoietic stem cells (HSCs), progressing

through a sequence of stages involving common lymphoid

progenitors (CLP), progenitor (pro), precursor (pre), and

immature B cells. Subsequently, their migration from the BM is

triggered, and upon activation, B lymphocytes can either become

terminal B cells that secrete Ig-secreting PCs or antigen-specific

memory B cells that may eventually reenter the BM (69). There is a

large body of literature that shows that B lymphocytes, through the

secretion of inflammatory cytokines, matrix metalloproteinases,

and RANKL, as well as the production of pathogenic

autoantibodies, play a skeletal disease role (70).
5.1 Regulatory role of XBP1
in macrophages

5.1.1 XBP1 promotes the production of pro-
inflammatory cytokines

TLRs are a class of transmembrane proteins with a type I

membrane structure, characterized by an ectodomain comprised
frontiersin.org
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of leucine-rich repeat sequences (LRRs) responsible for the

recognition of pathogen-associated molecular patterns (PAMPs)

(71, 72). In a scholarly study, the utilization of a Phos-tag reagent,

which selectively binds to phosphorylated amino acid residues, was

employed to investigate the activation of mouse J774 macrophages

cultured in polyacrylamide gels containing Phos-tag acrylamide

upon stimulation with the TLR agonist LPS. The presence of IRE1a
was detected in these stimulated macrophages. Additionally, the

activation of TLRs was also observed in primary macrophages

derived from WT mice (C3H/HeOuJ) under LPS stimulation, as

evidenced by the presence of TLR-activated XBP1 (20). XBP1 has

been observed to fulfill a positive feedback function in macrophages,

thereby preserving the integrity of the TLR pathway. Furthermore,

the absence of Xbp1 in mice resulted in impaired secretion of

inflammatory mediators, as evidenced by ELISA and RT-PCR

assays conducted on TLR4 or TLR2 agonist-stimulated

macrophages. This impairment serves as a demonstration of

XBP1’s role in augmenting the production of pro-inflammatory

cytokines through TLR activation. In line with this discovery, the

activation of XBP1 was also found to synergistically enhance the

regulation of cytokines by TLR in M1-type macrophages

(20) (Figure 3).

Annex in A2 (AnxA2) i s a mu l t i compar tmen t a l

compartmentalized protein. It is thought to mediate the linker

protein of the membrane-associated protein complex to regulate the

recruitment of leukocytes and the release of inflammatory
Frontiers in Endocrinology 06
mediators (73, 74). Currently, a large body of literature shows

that AnxA2 is associated with ER stress and is located upstream of

XBP1 involved in the inflammatory response (75). Some scholars

have used siRNA technology to silence AnxA2, and transcript and

protein levels of XBP1 were significantly reduced in mouse alveolar

macrophage cell line (MH-S) and THP-1 cells with silenced AnxA2

after P.aeruginosa infection, indicating that AnxA2 deletion can

impair P.aeruginosa-induced macrophage ER stress. Original

studies have shown that AnxA2 promotes the production of pro-

inflammatory cytokines (76) and may play a role in M1-type

macrophages. Moreover, overexpression of XBP1 in MH-S

stimulated the transcription of TNFa, IL-1b, and IL-6 in response

to P.aeruginosa infection, suggesting that XBP1 could stimulate the

transcription of pro-inflammatory cytokines. However, by

measuring the levels of p38 and phospho-p38, it was found that

AnxA2 could inhibit the maturation of XBP1 through the p38

MAPK pathway, thereby regulating the formation of inflammatory

cytokines (75).

The nuclear factor NF-kB pathway has long been considered

the classic pro-inflammatory signaling pathway, mainly based on

the role of NF-kB in the expression of pro-inflammatory genes,

including cytokines, chemokines, and adhesion molecules (77). NF-

kB dimers can bind to related target DNA sequences, called kB sites,

to regulate gene expression (78). A large body of literature shows

that NF-kB is associated with ER stress (79). XBP1 expression was

downregulated in MH-S cells using siRNA technology. qPCR,
FIGURE 3

Regulatory role of XBP1 in macrophages. In macrophages, XBP1 can be activated by toll-like receptor (TLR) and maintain the TLR pathway. Second,
XBP1 can be activated by Annexin A2 (AnxA2), which is involved in inflammatory responses, and AnxA2 can also inhibit XBP1 maturation through the
p38 MAPK pathway. In addition, XBP1 can be activated by NF-kB pathway, and in turn, XBP1 can enhance the expression, phosphorylation, and
nuclear transport of NF-kB pathway. These processes can increase the formation of pro-inflammatory cytokines, which could potentially be involved
in bone resorption. In contrast, XBP1 can also be activated by estrogen to increase anti-inflammatory cytokines and inhibit the expression of pro-
inflammatory cytokines, which may ultimately play an essential role in bone formation.
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immunoblot analysis, and imaging analysis showed that XBP1

enhanced NF-kB pathway’s expression, phosphorylation, and

nuclear translocation. At the same time, this pathway can

enhance the formation of pro-inflammatory cytokines (75).

5.1.2 XBP1 promotes the production of anti-
inflammatory cytokines

In contrast to the aforementioned findings, evidence suggests

that the activation of IRE1a/XBP1 signaling by estrogen can impede

M1-type macrophage polarization and potentially contribute to the

anti-inflammatory mechanism. Estrogen, classified as a steroid

hormone, assumes a crucial function in preserving immune

homeostasis within the body (80). Predominantly present as

estradiol (81), in vivo studies have demonstrated that estrogen

can modulate the proliferation and differentiation of immune

cells through its interaction with estrogen receptors located on

these cells (82). Several researchers have administered estrogen

stimulation exclusively to mouse macrophages and observed an

upregulation in the expression of anti-inflammatory molecules,

such as TGF-b and IL-10. Additionally, the activation of IRE1a
signaling was significantly observed in macrophages following

estrogen treatment, and this activation was hindered by the

introduction of estrogen receptor antagonists. However, when

both estrogen and IRE1a inhibitors were concurrently present, an

upregulation in the expression of pro-inflammatory cytokines,

including TNF-a and IL-6, was demonstrated. This experiment

demonstrates that estrogen inhibits M1-type macrophage

polarization by activating IRE1a/XBP1 signaling (29), thereby

suppressing the inflammatory response.
5.2 Regulatory role of XBP1 in T cells

5.2.1 XBP1 is upregulated in CD4+ T cells
Activated and differentiated helper T cells can secrete a large

number of cytokines. It has been shown that after treatment with

LPS and cecal ligation and puncture (CLP) in vivo and in vitro

sepsis models, respectively, the ER stress levels and downstream

markers increased in CD4+ T cells. At the same time, apoptosis of

CD4+ T cells was significantly increased. This phenomenon was

improved with the application of ER stress inhibitors (83). In

addition, measuring the expression of IRE1a mRNA and protein

in differentiated and reactivated Th2 cells in vitro using qPCR and

Western blot showed that the IRE1a/XBP1 pathway is upregulated
during helper T cell activation in vitro. Meanwhile, infecting

C57BL/6 mice with the parasite Nippostrongylus brasiliensis

demonstrated that the pathway is also active in vivo (84).

Analysis of blood samples from patients with allergic rhinitis

revealed that XBP1 might play an essential role in the

development of Th2 polarization.

5.2.2 XBP1 is upregulated in CD8+ T cells
Cholesterol is a key constituent of membrane lipids and plasma

compartments that can play a role in the anti-tumor response of T cells

(85). It has been recently shown that microarray analysis of CD8+ T

cells under different cholesterol treatment conditions revealed that
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XBP1 was highly upregulated in cholesterol-treated CD8+ T cells.

Meanwhile, in vivo and in vitro experiments revealed that knocking

down XBP1 significantly downregulated Pdcd1 mRNA expression in

CD8+ T cells. Moreover, in the group without knockdown of XBP1

expression, cholesterol treatment increased PD-1 expression, thus

demonstrating that XBP1 is an important regulator of cholesterol-

induced CD8+ T cell inhibitory receptor expression and T cell

exhaustion. T cell exhaustion is characterized by impaired effector

cell function, sustained expression of inhibitory receptors, and a

distinct transcriptional profile compared to functional effector cells or

memory T cells (86). Both extrinsic negative regulatory pathways,

including immunomodulatory cytokines, and intrinsic negative

regulatory pathways play a crucial role in the development of

exhaustion. Through the ChIP assay, the researchers discovered that

cholesterol can stimulate the expression of XBP1, which subsequently

modulates the expression of inhibitory receptors on CD8+ T cells, such

as PD-1, and induces T cell exhaustion (87). It has been reported that

advanced T-cell failure is associated with loss of cytotoxicity in CD4+

and CD8+ T cell subsets that produce IFN-g, and early in vitro, studies
have shown that IFN-g directly inhibits myeloma cell growth, and

preclinical models support a positive role for CD8+ T-cell failure in

myeloma progression (88) (Figure 4).

Sirtuins are a family of deacetylases that sense nutrients and

regulate cellular homeostasis (89), of which SIRT7 is localized only

in the nucleus and is associated with the maintenance of cellular

homeostasis and adaptation to exogenous stress (90). Researchers

found that knockdown SIRT7 significantly attenuated the expression

of Tunicamycin (TM), an ER stress inducer, induced by

these molecules. At the same time, overexpression of SIRT7

enhanced the upregulation of these molecules. Western blot and

immunohistochemical staining analysis also demonstrated that

SIRT7 could selectively activate the IRE1a/XBP1 branch (91). SIRT7

can promote the secretion of IRE1a-dependent tumor-promoting

factors and alter the tumor immune microenvironment, thereby

mediating tumorigenesis. It has been documented that SIRT7 is

associated with the bone remodeling process (92).
5.3 Regulatory role of XBP1 in B cells

There are two distinct subpopulations of mature B cells, namely B-

1 and B-2. B-1 B cells are predominantly located in the peritoneal cavity

and are responsible for producing systemic natural IgM. Conversely, B-

2 cells primarily participate in conventional T-cell-dependent IgM and

IgG responses in peripheral lymphoid organs, but they also have the

capability to migrate to the intestinal lamina propria and generate IgA.

The activation of B cells into antibody-secreting PCs depends on the

nature of the antigen, which can occur through either a T-cell-

independent (TI) or a T-cell-dependent (TD) mechanism (93).

XBP1 is of significant importance in the differentiation of PCs

and the secretion of Igs. Substantial research has consistently

demonstrated the elevated expression of XBP1 in PCs, while the

absence of XBP1 in mice results in the absence of PCs (93).

Additionally, during the transition from B cells to PCs, there is a

specific activation of the IRE1a and ATF6 branches of the UPR

(94). These findings undeniably establish the essential role of XBP1
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in PC differentiation. The differentiation process of B cells into PCs

is governed by two transcr ipt ion factors , namely B

lymphocyteeinduced maturation protein 1 (BLIMP1) and XBP1.

During the progression of PC differentiation, XBP1 acts as a

regulatory factor downstream of Blimp-1 (95). Previous studies

have demonstrated a significant decrease in mRNA and protein

levels of XBP1, ATF4, and ATF6 in bone marrow PCs upon the

inactivation of Prdm1, which encodes BLIMP1. Additionally, a

ChIPseq assay conducted on in vitro-generated plasmablasts

revealed that Blimp1 has the ability to activate ATF6, a known

inducer of XBP1 (39). On the other hand, it can promote the

formation of the active mature form of XBP1 by directly regulating

Ern1, which encodes IRE1 (96).

In bone metabolism, B lymphocytes and PCs play a significant role

by producing various cytokines and chemokines. These molecules have

the ability to directly influence osteoblasts and also contribute to the

regulation of bone remodeling and regeneration by modulating the

bone microenvironment (69). Existing literature has provided evidence

that both B cells and osteoblasts are capable of secreting OPG, which

acts by inhibiting osteoclastogenesis through the blockade of the

RANKL/RANK interaction. Among these cell types, PCs are

particularly noteworthy as they are the most potent producers of

OPG (30). The significance of OPG secretion by B cells in maintaining

bone homeostasis was clearly demonstrated through studies involving

mice with B-cell deficiency and osteoporosis (97). However, it has been

reported that B cells and B cell-derived PCs in MM possess the ability

to facilitate osteoclastogenesis, potentially attributed to the direct

osteoclastogenic impact of RANKL expression (98–100) or the

indirect promotion of bone resorption through IL-7 secretion (101,

102). Furthermore, B lymphocytes that have been pretreated with LPS

hinder osteoclastogenesis in rat BMSCs by activating Notch signaling

(69). It is evident that B lymphocytes exhibit diverse and sometimes

conflicting influences on bone metabolism, contingent upon the

specific physiological and pathological situation.
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In the context of bone metabolism, the UPR is initiated by the

accumulation of misfolded proteins within the ER. Among the UPR

pathways, the IRE1a/XBP1 is highly conserved. XBP1, a key

component of this pathway, plays a critical regulatory role in bone

metabolism. This article comprehensively elucidates the various roles of

XBP1 in bone metabolism. Specifically, the involvement of XBP1 in

osteoclast and osteoblast differentiation is now better understood.

Notably, XBP1 has been shown to enhance osteoclastogenesis by

binding to Nfatc1 in response to stimulation by RANKL/RANK.

Additionally, XBP1 has the potential to indirectly enhance

osteoclastogenesis by modulating the expression of RANKL on

osteoblasts through positive regulation of PTH/PTHrP pathway.

Moreover, XBP1 can facilitate osteoblast differentiation by promoting

the expression of Osx. Furthermore, XBP1 can be activated by PI and

actively participate in the process of bone formation. Notably, XBP1

may also exert its influence on periodontal tissues.

Interestingly, the regulatory effects of XBP1 on immune cells are

multiple and often contradictory. In macrophages, XBP1 serves a dual

function by facilitating the generation of pro-inflammatory cytokines

and promoting macrophage polarization towards the M1 phenotype.

Conversely, estrogen has the ability to activate XBP1, thereby inhibiting

M1-type macrophage polarization. The impact of Th1 and Th2 cells on

bone metabolism remains a subject of debate within the academic

community. On one hand, Th1 cells have the capacity to activate

osteoclasts, resulting in bone degradation. Conversely, both Th1 and

Th2 cells produce a diverse array of cytokines that possess the ability to

impede osteoclast differentiation, consequently promoting bone

formation. Th17 cells have the ability to secrete active RANKL,

thereby directly facilitating bone resorption. Considering the

significant expression of XBP1 in T cells and its crucial involvement

in bone metabolism, it is plausible to speculate that XBP1 may impact

bone metabolism by influencing Th cells. Furthermore, XBP1 can
FIGURE 4

XBP1 is upregulated in CD8+ T cells. Cholesterol can induce high expression of XBP1 on CD8+ T cells, which in turn regulates the expression of the
inhibitory receptor PD-1 on CD8+ T cells and induces T cell depletion.CD8+ T cells can produce IFN-g, which directly inhibits the growth of
myeloma cell. And myeloma cells can express PD-L1 (ligand for the T-cell immunoreceptor PD-1), which can directly lead to T-cell exhaustion,
which may play a key role in bone metabolism. SIRT7 also promotes the expression of XBP1 in CD8+ T-cells, which is involved in bone metabolism.
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modulate T cell dysfunction by regulating the expression of inhibitory

receptors in CD8+ T cells and can be activated by SIRT7, potentially

contributing to bone metabolism. In PCs, the expression of XBP1 is

notably high. PCs have the capacity to significantly impact bone

metabolism, both in terms of bone homeostasis and their potential to

facilitate osteoclastogenesis. However, the precise molecular mechanism

bywhich XBP1 regulates the aforementioned processes remains unclear.

In conclusion, further research is required to investigate: 1) the

specific conditions that determine whether XBP1 activates osteoclast

differentiation or osteoblast differentiation, and 2) the specific molecular

mechanisms through which XBP1 regulates the differentiation of

osteoblasts and osteoclasts by modulating immune cells. The current

understanding of the relationship between XBP1 and bone metabolism

is still limited. Exploring and comprehending the specific molecular

mechanisms through which immune cells regulate bone metabolism via

XBP1 could potentially complement and enhance therapeutic

approaches and effectiveness in treating bone-related diseases.

Consequently, investigating the regulatory function of XBP1 in bone

metabolismmay yield novel insights for clinical applications in this field.
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