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Soybean lecithin is extensively used as the dietary supplementation of

phospholipids in animal production. Soybean lecithin plays significant roles

in aquafeed as growth promoter, feed enhancer, immunity modulator and

antioxidant activity stimulator for aquaculture species. Besides, soybean lecithin is

also reported to help aquaculture species being resilient to physical and chemical

stressors. In this review, common sources, chemical structure and mode of

action of lecithin, with highlight on soybean lecithin application in aquaculture

over four-decadal studies published between 1983 and 2023, were evaluated

and summarized. By far, soybean lecithin is best-known for its beneficial e�ects,

availability yet cost-e�ective for aquafeed formulation. Findings from this review

also demonstrate that although nutritional profile of long-chain polyunsaturated

fatty acids and phosphatidylcholine from egg yolk andmarine sources are superior

to those from plant sources such as soybean, it is rather costly for sustainable

application in aquafeed formulation. Moreover, commercially available products

that incorporate soybean lecithin with other feed additives are promising to boost

aquaculture production. Overall, e�ects of soybean lecithin supplementation are

well-recognized on larval and juvenile of aquaculture species which having limited

ability to biosynthesis phospholipids de novo, and correspondingly attribute to

phospholipid, a primary component of soybean lecithin, that is essential for

rapid growth during early stages development. In addition, soybean lecithin

supplementation plays a distinguish role in stimulating maturation of gonadal

development in the adults, especially for crustaceans.
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1. Introduction

Aquafeed is the main production expense of an aquaculture
operation, accounting for about 50 to 70% of the total aquaculture
operation cost. According to a recent study, aquafeed costs about
65% of the total aquaculture production cost (1). The feed cost
is expected to further increase due to excessive reliance on
conventional raw materials, especially fish oil and fish meal in
aquafeed formulation (2). Sustainability of the aquaculture industry
can be greatly impacted by the future shortages of fish oil and
fish meal (3). Hence, it is vital to have some animal origin
materials gradually replaced by substances derived from plant
origin such as soybean lecithin, soybean oil, and soybean meal in
the aquafeed formulation.

As a byproduct of the oilseed industry, lecithin is widely
introduced into food, cosmetic, pharmaceutical and other non-
food industries as the emulsifier and liposomes producer, along
with their great nutritional value (4). In the aquaculture industry,
lecithin becomes one of the important raw materials to meet
essential fatty acid requirements of the targeted species (5).
Lecithin production became well-established in the United States
in 1940 and expanded rapidly upon the commercial introduction
of genetically modified (GMO) soybeans in 1996. On the other
hand, lecithin from non–GMO sources like sunflower, rapeseed,
and rice bran are favored by the European market (6, 7). Soybean
lecithin is currently the primary source available in the worldwide
market and offers a comparatively affordable price compared to
lecithin from other sources, especially the marine lecithin (8).
Commercial soybean lecithin claimed to consist high concentration
of phospholipid, 65–75% (9) while some other studies showed
that concentration of phospholipids in soybean lecithin ranged
between 28–44% (10), 55–57% (11), 47% (12), and 38–45% (13).
These differences were probably due to the discrepancies in the
purity of soybean lecithin and approaches used to determine the
concentration of phospholipid in soybean lecithin.

Aquafeed formulation that offer phospholipid composition
resembles to the fish egg is deemed to be an ideal diet for
fish larvae to ensure maintenance and functionality of cellular
membrane structure, and as a source of energy to the fish (14).
Therefore, phospholipid is supplemented in the larval diet of the
aquatic animals owing to their limited biosynthetic capacity in
the initial stages (15–17). For most of the aquaculture species,
a supplementation of 8 to 12% dietary phospholipid is regarded
to be optimal to promote growth and survival (18). Nonetheless,
requirements for dietary phospholipids vary among species, life
stage of the species, and the source and purity of the phospholipids.
Phospholipid from different sources of lecithin such as soybean,
milk, egg and krill, differs from one source to another in terms
of phospholipid classes and fatty acids nature (19). Remarkably,
soybean lecithin predominated by phosphatidylcholine, followed
by phosphatidylethanolamine, and phosphatidylinositol provides
an excellent source of phospholipids and fatty acids which are
essential to aquatic animals during their early life stages (20). In this
review, common sources, chemical structure and mode of action of
lecithin are presented with the examples on how soybean lecithin
promotes aquaculture production by improving feed utilization,
growth performance, intestinal health, antioxidant capacity and
resilience against stressors.

2. Lecithin sources and chemical
structure

Literally means egg yolk in Greek word lekithos, lecithin was
first extracted from the egg yolk by a French chemist, Theodore
Nicolas Gobley in 1850. Subsequently, soybean lecithin came into
worldwide commercial availability in 1921, almost a decade after
the introduction of soybean from China into Europe and North
America (21, 22). Global lecithin market size has exceeded USD
2 billion in 2021 and is forecasted to surpass USD 3.4 billion
by 2030 (23). Lecithin is a complex mixture of phosphatide
fraction available in both plants and animals, especially in the
soybean and egg yolk (19). As a result of the esterification
of choline, ethanolamine, serine, and inositol to a phosphatidic
acid backbone, phospholipids are formed and classified into
respective phosphatidylcholine (PC), phosphatidylethanolamine
(PE), phosphatidylserine (PS) and phosphatidylinositol (PI) with
other constituents of fatty acids, triglycerides, and carbohydrates
(4). Despite that the term for lecithin specifically refers to
phosphatidylcholines in some earlier literatures, it is often used
interchangeably with phospholipids since the commercial lecithin
is largely made up of phospholipids and vegetable oils (24, 25).

Lecithin can be isolated and characterized from various sources,
both from the terrestrial and aquatic (Table 1). These including
soybean (48), sunflower (29), rapeseed (26), corn (34), camelina
seed (32), canola (31), rice bran (35), egg yolk (37), dairy products
(38, 39), and marine products (41, 42) that displaying assorted
profile of phospholipids due to variations of two ester-bonded
fatty acids at the sn-1 and sn-2 positions of the glycerol backbone.
The sn-1 position chiefly carries a saturated fatty acid such as
stearic acid or palmitic acid, whereas the sn-2 position carries
an unsaturated fatty acid such as oleic acid, linoleic acid, α-
linolenic acid, arachidonic acid, eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) (49). Lecithin from different sources
differs substantially on structural and functional roles depending on
its origin, either plant or animal origin, and the extraction process
(27, 50). An example of chemical structure and model of soybean
lecithin is presented in Figure 1.

Lecithin is commonly extracted by degumming crude vegetable
oils and drying the hydrated gums. Soybean oil, for example,
contains approximately 60% acetone-insoluble which corresponds
to 2–3% of the commercial lecithin and high amounts of
phosphorus (12). Compared to sunflower and rapeseed oils, crude
soybean oil has the greatest phospholipid concentration that is
still present in vegetable oils after extraction (51). Therefore,
soybean oil is the main source for the production of commercial
lecithin. A typical crude soybean lecithin is reported to contain
18% PC, 14% PE, 9% PI, 5% phosphatidic acid, 2% minor
phospholipids, 11% glycolipids, 5% complex sugars and 37%
neutral oil (20). However, these properties are subjected to
alteration by deoiling the crude lecithin into high-purity refined
lecithin products, or by chemical and enzymatic modification of
the phospholipids (52). For examples, the refined soybean lecithin
has a greater purity of phospholipid (97.6%) than those from
the crude soybean lecithin (60%) (53). Similarly, corn lecithin
deoiled by supercritical carbon dioxide is claimed to contain 96%
of phospholipids (34).
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Animal lecithin derived from eggs, milk and bovine brain
contains sphingomyelin on top of the major phospholipid classes
such as PC, PE, PS and PI. Egg yolk lecithin is distinguished from
soybean lecithin by having relatively higher proportion of saturated
fatty acids, n-6 and n-3 polyunsaturated fatty acids (PUFAs) such as
arachidonic acid and DHA. It is even more oxidatively stable than

TABLE 1 Phospholipid content of various lecithin sources.

Lecithin source Phospholipid
content (%)

References

Soybean 45.8–81.9 (26–28)

Sunflower 42.0–64.4 (28–30)

Rapeseed 44.6–77 (26, 28, 31)

Camelina seed 33.8–55.7 (32)

Peony seed 67 (33)

Corn 96 (34)

Rice bran 42.5 (6, 35, 36)

Egg yolk 10–54.3 (27, 37)

Milk and dairy products 0.2–48.4 (38–40)

Krill 30–80 (24, 41)

Mackerel 68.6–84.1 (42)

Anchovy 65 (43)

Salmon 61.1 (26, 44)

Fish roe 64.8–77.9 (27, 45, 46)

Fish by-product 68.9–79.8 (27, 45, 46)

Squid viscera 91.6 (47)

Fish meal 40 (41)

soybean lecithin (54). However, the application of egg yolk lecithin
in aquafeed is not a viable option due its cost and commercial
availability (37). On the other hand, marine lecithin derived from
cold-water fishes is predominated by PC and PE and characterized
by the presence of n-3 PUFAs such as EPA [20:5(n-3)] and DHA
[22:6(n-3)] (55). For instance, marine lecithin extracted from
salmon head was found to be rich in phospholipids, especially
the PC (44). Nonetheless, supplies of the marine lecithin are not
sustainable and therefore much more costly than other sources of
lecithin (41, 56). Unlike the animal lecithin, plant lecithin derived
from oilseeds such as soybean, rapeseed and sunflower contain
mainly of PC, PE and PI and characterized by the availability of
mono- and poly- unsaturated fatty acids, namely the oleic acid
(18:1), linoleic acid [18:2 (n-6)], and α-linolenic acid [18:3(n-3)]
(26). In particular, soybean lecithin has been the most widely used
phospholipid source in aquaculture feed formulation due to its
market availability and the beneficial effects of promoting growth
performance and enhancing survival on fish (57).

3. Mode of action

Soybean lecithin is an essential component of aquafeed
that exhibits multi-faceted mode of action and involves diverse
mechanisms. Primarily used in aquafeed as an emulsifying agent,
phospholipid components of soybean lecithin form a protective
layer surrounding the lipid droplets in the feed, thus improves
the stability of aquafeed and reduces the leaching rate of water-
soluble vitamins and minerals (58, 59). By increasing the surface
area of the lipid droplets in the aquafeed, soybean lecithin serves
to increase the digestibility of aquafeed by making it more easily
accessed by digestive enzymes to break down the lipids into smaller
molecules. This is particularly important in carnivorous fish species
that require a high level of dietary lipids for optimal growth (60).
Phospholipids are important for themaintenance of bio-membrane

FIGURE 1

Soybean lecithin (C42H80NO8P) in (A) 2D chemical structure and (B) 3D model (MolView).
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structure, formation of cell organelles and superior to neutral lipids
as the main energy source during early life history stages of some
fish species (8, 18, 61). Phospholipid deficiency in fish larval diets
has been reported to develop aberrant lipid deposition in intestinal
enterocytes due to insufficient chylomicron synthesis and reduced
specific activity of lipase (62, 63). Besides, phospholipids are
reported to suppress cholesterol absorption in the animal digestive
system (64) while facilitate the transport of lipids released from
the hepatopancreas into hemolymph and enhance the availability
of dietary cholesterol in the prawn Penaeus japonicus (65).

To ensure that a nutritionally complete and balanced diet is
delivered, the mechanism of metabolism for soybean lecithin in
aquafeed primarily involves the breakdown of its phospholipid
components by digestive enzymes, followed by the absorption of
fatty acids and nutrients, and the conversion of choline to betaine.
Based on the chemical structure of soybean lecithin, free fatty acids
are readily to be absorbed by the fish gut and transported to other
tissues for storage, energy production, or used as precursors for
various metabolic pathways upon the hydrolysis of ester bonds that
link the fatty acid chains to the glycerol backbone of phospholipid
(8, 66). Unsaturated fatty acids of soybean lecithin, particularly the
omega-3 and omega-6 fatty acids, are crucial for fish growth and
health (55). However, choline which typically forms the polar head
group of soybean lecithin, is metabolized differently depending on
fish species and its nutritional requirements. The conversion of
choline to betaine is one of the common pathways that facilitate
osmoregulation in fish and profoundly affects a series of metabolic
processes including DNA methylation, protein synthesis, lipid
metabolism, and energy production (67, 68).

Betaine, the oxidized form of choline, usually serves as a methyl
group donor that transfers methyl groups (CH3) to metabolic
compounds such as DNA, RNA, protein and lipid (69). With
the addition of methyl group from betaine and alteration to the
structure of DNA molecule, betaine regulates gene expression for
growth development and immune responses (70). Furthermore,
methylation process is essential for the synthesis of structural
proteins and enzymes in aquaculture species. Lacking methyl
groups in an organism likely to trigger a condition of under–
methylation of DNA and concomitant activation of oncogenes
(58, 71). Yet, these methyl groups cannot be synthesized by animals
and can only be derived from diet (72). By regulating the activity
of enzymes involved in the synthesis and breakdown of fatty
acids, betaine impacts on fish lipid metabolism, which modifies the
composition of body fat and cell membrane consequently (73). On
top of that, betaine is also known to serve as an osmoprotectant
in the energy production in fish by lowering the energy demands
to regulate ions and cell volume, and supporting the conversion of
homocysteine intomethionine, an essential amino acid required for
protein synthesis (70). Hence, the availability of methyl groups in
the diet and functionality of soybean lecithin imparts a number of
advantages to aquaculture species.

In addition to its role as the source of fatty acids and
choline, soybean lecithin also delivers other important nutrients,
such as phosphorus and vitamin E. Phosphorus is an essential
mineral that is required for bone formation and other metabolic
processes (74), while vitamin E is a powerful antioxidant that can
protect cell membranes from oxidative damage (75). By providing
a balanced and nutritionally complete diet, soybean lecithin is

well-documented to enhance growth performance, survival, proper
bone skeletal formation and stress mitigation (76, 77).

Overall, mode of action of soybean lecithin in aquafeed highly
relies on its emulsifying properties, as well as its abilities to enhance
digestibility and nutritional quality of the aquafeed. Depending
on the composition of phospholipid which includes the fatty
acids chains, glycerol backbone, phosphate group, and the polar
head group, soybean lecithin contributes crucial roles to the
growth performance, lipid and carbohydrate metabolisms, nutrient
utilization, antioxidant activities and stress resistance in farmed
species (78).

4. E�ects of soybean lecithin on the
feed utilization and growth
performance of aquaculture species

Extensive studies have been conducted to evaluate the
effect of dietary phospholipid in different aquaculture species at
different stages by using egg yolk, soybean and marine lecithin
in the aquafeed formulation. Of major interest in aquafeed
supplementation are the PC, PE and PI (79, 80). Soybean lecithin
has been receiving considerable attention in aquafeed formulation
due to their implication in numerous metabolic pathways and
regulation processes that improve the feed utilization and growth
performance of larval and juvenile fish species such as red sea
bream, Pagrus major (81), knifejaw,Oplegnathus fasciatus (81), ayu,
Plecoglossus altivelis (82), rainbow trout,Oncorhynchus mykiss (83),
Atlantic salmon, Salmo salar (84–86), red drum, Sciaenops ocellatus
(87), goldfish, Carassius auratus (88), common carp, Cyprinus
carpio (89), seabass, Dicentrarchus labrax (74), Japanese flounder,
Paralichthys olivaceus (90), cobia, Rachycentron canadum (91),
amberjack Seriola dumerili(92), rohu, Labeo rohita (68), gilthead
seabream, Sparus aurata (93, 94), silvery-black porgy, Sparidentex
hasta (95), large yellow croaker, Lamichthys crocea (57), Nile
tilapia, Oreochromis niloticus (96), hybrid grouper, Epinephelus
fuscoguttatus x E. lancolatus (60), and giant grouper, E. lanceolatus
(97) (Supplementary Table 1). There are numerous explanations
on how the inclusion of soybean lecithin possibly promotes feed
utilization and growth performance of the larval aquaculture
species. Dietary soybean lecithin, notably phospholipids, has been
showing stimulating effects on larval growth and survival when de

novo synthesis of phospholipids in larval fish was insufficient to
meet the requirements of the fish during their early development
(98, 99). High phospholipids content in the dietary soybean
lecithin not only serves as a superior energy source to the
larvae (8), but also promotes the conversion of phospholipids
to other lipids, including diacylglycerol, diphosphatidylglycerol,
PUFAs, and cholesterol (100). Comparatively, larval stages are
more vulnerable to dietary phospholipid deficiency and require
more dietary phospholipids than the juveniles. Phospholipids
requirements for larval fish varied from 2 to 12% with higher
requirements among the marine larval fish (8, 100). As larval
stages are highly sensitive to phospholipid deficiency, inclusion of
soybean lecithin in microparticulate diet serves an essential role
to satisfy phospholipid requirement for ontogenetic development
at the expense of fish oil, fish meal and live food. For instance,
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linoleic acid, a polyunsaturated fatty acid that fish require but
cannot be produced on their own, is provided by soybean
lecithin (101). Soybean lecithin is known to be easily digested
by fish into lysophosphatidylcholine form and absorbed directly
by fish (102). The distribution and digestion of ingested free
oleic acid (18:1n-9) in fish larvae were significantly influenced by
dietary phosphatidylcholine (103, 104). Furthermore, supplemental
emulsifier such as soybean lecithin can stimulate the production
of lipoprotein in fish digestive system to enhance feed digestibility
(105). High PC composition in soybean lecithin functions as
an age-dependent feed attractant in enhancing feeding activity
to fish larvae and therefore displaying a notable impact on fish
development (106, 107).

Besides finfish species, soybean lecithin also demonstrated
significant role in supporting good growth performance in
a number of larval and juvenile penaeid species, including
Penaeus japonicus (65, 108), Penaeus merguiensis (109), Penaeus
monodon (66, 110), Litopenaeus vannamei (53, 111–113), and
Macrobrachium rosenbergii (114, 115). The dietary phospholipid
is essential for promoting greater rates of cholesterol turnover
from the gut to the circulatory system in crustaceans (116).
In recent studies, larval mud crab, Scylla serrata (117), juvenile
swimming crab, Portunus trituberculatus (118, 119) and Chinese
mitten crab, Eriocheir sinensis (120, 121) also benefited from
the inclusion of soybean lecithin that enhances feed utilization,
improves survival rate, promotes growth performance and molting
frequency. Besides growth performance, positive effect of dietary
soybean lecithin is gaining attention on gonadal development of
the brood stock such as Chinese mitten crab, Eriocheir sinensis

(122), swimming crab, Portunus trituberculatus (123, 124), red
claw crayfish, Cherax quadricarinatus (125), and adult sea urchin,
Strongylocentrotus intermedius (126). Nevertheless, juvenile sea
urchin (127) is observed to have reduced weight gain when
increased dietary phospholipid levels are provided and these
excessive phospholipids eventually converted to neutral lipid in the
gut and gonad (Supplementary Table 1).

In feed formulations for juvenile black seabream,
Acanthopagrus schlegeli, soybean oil may be used up to 60 to
80% in place of fish oil. However, fully replacement of fish oil
with soybean oil in the feed formulation is not recommended
as it can reduce growth performance in juvenile black seabream
(128). This was supported by the studies of Seiliez et al. (129)
that growth performance of larval gilthead seabream, Sparus

aurata was affected when soybean lecithin was utilized as a total
replacement of live feed whereas overdose of soybean lecithin
in the feed formulation (> 35.6 g/ kg diet) lead to decline in
growth performance of early juvenile milkfish, Chanos chanos

(130). On the other hand, some aquaculture species were found
to perform better when marine lecithin was administered instead
of soybean lecithin (93, 131). Similar finding was also observed in
the study of Salini et al. (132) where juvenile barramundi, Lates
calcarifer received marine lecithin from krill showed better growth
performance than those received soybean lecithin. This may be
attributed to the presence of high concentration of PUFAs mainly
the EPA and DHA in marine lecithin which are important in
promoting growth performance of aquatic animals in the early
stage of life (27). As demonstrated by Liu et al. (133), EPA is needed
to improve larval growth and survival when DHA level is high

but arachidonic acid (ARA) level is low. Although marine lecithin
tends to outperform as growth promoter for aquaculture species,
soybean lecithin is favored as an alternative growth promoter
because it is more viable and economically wise compared to
marine lecithin from krill and fish meal. Moreover, study by
Jaxion-Harm (56) established that phospholipids derived from
soybean lecithin are not significantly different frommarine sources
such as krill and fish meal in promoting growth performance of
Atlantic salmon, Salmo salar fry (Supplementary Table 1).

5. E�ects of soybean lecithin on the
abiotic stressors of aquaculture
species

Global warming and climate change are issues being
highlighted in recent years. These issues have an impact on world
aquaculture production in which increased water temperature is
one of the abiotic stressors to aquatic animals (134). Sensitivity of
fish to xenobiotics is also indirectly influenced by the fluctuations
of temperature. Presence of organochlorine pesticides such as
endosulfan in the water was found to aggravate the situation by
causing a 2.6 to 6◦C reduction in thermal tolerance of freshwater
fishes (135). Pesticides can seep into the aquatic environment as a
result of extensive usage in agricultural activities and it is highly
toxic to aquatic animals (136, 137). Thus, the nutritional approach
is employed as one of the strategies to enhance the immune system
and allow aquatic animals to be resistant to different stressors,
especially to thermal stress.

It has been observed that inclusion of dietary soybean lecithin
has a beneficial effect on thermal tolerance in aquaculture species
which allows the aquaculture species to be more resilient to the
fluctuation of water temperature. For instance, Kumar et al. (58)
postulated that 1.5 to 2% of soybean lecithin helps milkfish, Chanos
chanos coping stress from high temperature up to 46.4◦C via
protection of antioxidative status and neurotransmitter enzymes.
Besides, soybean lecithin was observed to allow fish being resistant
to stress caused by low temperature (138). Thermal tolerance
of aquatic animals is influenced by many factors such as the
presence of toxic in the water (139), species of aquatic animals
(140), size of aquatic animals (141) and acclimation temperature
(142). In this case, antioxidant defense system of fish may
be fortified by soybean lecithin and thereby less susceptible
to fluctuations in water temperature. Not only serves as the
raw material in the repair of cell damage caused by thermal
stress, soybean lecithin also promotes the expression of heat
shock protein, which offers protection to the cells against the
accumulation of altered proteins caused by high or low temperature
stress (143–145).

Other than thermal stress, soybean lecithin is found to
be effective in helping aquaculture species to cope with stress
caused by hypoxic condition (78, 100), changes in water
salinity (57), and the presence of pesticide in the water (68).
Therefore, supplementation of lecithin from soybean in the feed
formulation for aquaculture species is noteworthy to enhance
stress tolerance of aquaculture species toward abiotic stressors
(Supplementary Table 1).
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6. E�ects of soybean lecithin on the
intestinal health, whole body total lipid
content, antioxidant capacity and
immunity of aquaculture species

Despite those phospholipid and fatty acid components of
soybean lecithin are playing important roles in the health
maintenance of various aquaculture species, documentation on the
effects of soybean lecithin on intestinal health, whole body total
lipid content, antioxidant capacity and immunity of aquaculture
species are relatively limited in the past. Supplementation of
soybean lecithin in the micro diet has been observed to prevent
intestinal steatosis in the larval common carp, Cyprinus carpio

(146), and promotes intestinal health of juvenile red drum,
Sciaenops ocellatus (87), larval largemouth bass, Micropterus

salmoides (147), yellow drum, Nibea albiflora (148), and adult
Nile tilapia, Oreochromis niloticus (105). In addition, phospholipid
in the soybean lecithin helps to regulate lipid metabolism and
increases body lipid content of juvenile amberjack, Seriola dumerili

(92), large yellow croaker, Larmichthys crocea (63), silvery-
black porgy, Sparidentex hasta (95), hybrid grouper, Epinephelus
fuscoguttatus × E. lancolatus (149). Higher body lipid content
is obtained when fatty acids delivery and uptake in the fish are
improved (Supplementary Table 1).

In many organisms, antioxidant system functions to mitigate
the effects of reactive oxygen species (ROS) by protecting and
repairing cells from oxidative damage. Dietary supplementation
of soybean lecithin is capable to trigger antioxidant responses
in aquaculture species when dealing with oxidative stress,
or the elevation of ROS at intracellular level (150, 151).
Activities of radical scavenging enzymes such as the superoxide
dismutases (SOD), catalase (CAT), glutathione peroxidase (GPX),
glutathione-S-transferase (GST) and glutathione reductase (GR)
have been used as effective biomarkers to examine the effects
of dietary phospholipid on enzymatic function and biochemical
pathways in several studies involving larval Dojo loach, Misgurnus

anguillicaudatus (152), common carp, Cyprinus carpio (153),
golden mahseer, Tor putitora (138), stellate sturgeon, Acipenser
stellatus (75), gilthead seabream, Sparus aurata (94), and hybrid
snakehead, Channa argus x C. maculata (154). As a consequence
of antioxidant capacity-promoting effect of dietary phospholipid,
lipid peroxidation is reduced and survival rate is increased in the
fish (63).

Dietary supplementation of soybean lecithin is also associated
with the enhancement of fish systemic immunity against bacterial
infection. According to Adel et al. (153), better immunostimulatory
effect was reflected by common carp, Cyprinus carpio that received
3% soybean lecithin-enriched diet with an increase of mucosal
immune parameters including alkaline phosphatase, lysozyme,
protease, and esterase activity. These enzymes are involved in
the regulatory secretion of antimicrobial peptides to suppress
bacterial pathogens such as Aeromonas hydrophila, Streptococcus
iniae, Yersinia ruckeri, and Lactococcus garviea. The enhancement
on immunity and phagocytic activity is further supported by Jafari
et al. (155) with an inclusion of 3.3% soybean lecithin for juvenile
stellate sturgeon, Acipenser stellatus, 6–9% of soybean lecithin for
pre-spawning Caspian brown trout, Salmo trutta caspius (156), and

0.3 g of soybean lecithin-containing bioemulsifier Lysomax R© per
kg of diet for the adult Nile tilapia, Oreochromis niloticus (105).
In contrast, there is almost no observable impact on immune
genes expression in golden mahseer fry when diet is supplemented
with soybean lecithin (138). Similarly, diet supplemented with 4%
soybean lecithin showed limited effects on the innate immune
system and whole-body composition of juvenile channel catfish,
Ictalurus punctatus, despite an improvement on feed conversion
(157). Further studies need to be carried on different aquaculture
species in order to be conclusive on the effect of dietary soybean
lecithin on immunity enhancement.

7. Conclusion and future perspectives

Lecithin is obtainable from a wide variety of sources, including
terrestrial and aquatic animals and plants. Different sources of
lecithin have different compositions of phospholipids and fatty
acids which determine the structural and functional roles of
lecithin. Despite the fact that marine lecithin contains a high
concentration of PUFAs, especially EPA and DHA, soybean
lecithin is leading the role as growth promoter in the production
of major aquaculture species because it is more practical and
cost-effective for aquafeed formulation. Many studies have been
included in this review to evaluate the potential of soybean lecithin
supplementation and substitution for marine lecithin and live
feed in the micro diet of aquaculture species in their early life
stages. As concluded from the literature, proper supplementation
of phospholipids from soybean lecithin in the larval and juvenile
diet have significantly improves growth, survival, feed utilization,
lipid metabolism, skeletal formation, stress tolerance, antioxidant
capacity, and immune response in a number of finfish and
shellfish species from larval to juvenile stage. However, research
on the effect of dietary soybean lecithin on pre-reproductive
phase and brood stock of crustacean species are relatively lacking.
In this regard, future work that address the application of
soybean lecithin in the diet formulation for pre-reproductive and
brood stock of crustacean species is strongly recommended, with
emphasis on enhancing lipid utilization, gonadal development and
seed quality.
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