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Fractal dimension (FD) has been revealed as a very useful tool in analyzing 
the changes in brain dynamics present in many neurological disorders. The 
fractal dimension index (FDI) is a measure of the spatiotemporal complexity of 
brain activations extracted from EEG signals induced by transcranial magnetic 
stimulation. In this study, we assess whether the FDI methodology can be also 
useful for analyzing resting state EEG signals, by characterizing the brain dynamic 
changes in different functional networks affected by schizophrenia, a mental 
disorder associated with dysfunction in the information flow dynamics in the 
spontaneous brain networks. We analyzed 31 resting-state EEG records of 150  s 
belonging to 20 healthy subjects (HC group) and 11 schizophrenia patients (SCZ 
group). Brain activations at each time sample were established by a thresholding 
process applied on the 15,002 sources modeled from the EEG signal. FDI was 
then computed individually in each resting-state functional network, averaging 
all the FDI values obtained using a sliding window of 1  s in the epoch. Compared 
to the HC group, significant lower values of FDI were obtained in the SCZ group 
for the auditory network (p  <  0.05), the dorsal attention network (p  <  0.05), and 
the salience network (p  <  0.05). We found strong negative correlations (p  <  0.01) 
between psychopathological scores and FDI in all resting-state networks analyzed, 
except the visual network. A receiver operating characteristic curve analysis also 
revealed that the FDI of the salience network performed very well as a potential 
feature for classifiers of schizophrenia, obtaining an area under curve value of 0.83. 
These results suggest that FDI is a promising method for assessing the complexity 
of the brain dynamics in different regions of interest, and from long resting-state 
EEG signals. Regarding the specific changes associated with schizophrenia in the 
dynamics of the spontaneous brain networks, FDI distinguished between patients 
and healthy subjects, and correlated to clinical variables.
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1. Introduction

To respond to the demands of a constantly changing environment the brain permanently 
adjusts its architecture, alternating between segregated functioning, as when performing highly 
automated tasks, and integrated functioning, as when performing tasks that require high 
cognitive effort (Shine and Poldrack, 2018). This neural adaptation spans multiple time scales, 
and different regions. In the present work, we  employ a metric (FDI), developed in our 
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laboratory (Ruiz de Miras et al., 2019), that captures the dynamics of 
the complexity of brain activity to try to learn more about the severe 
mental disorder of schizophrenia.

The fractal dimension (FD; Mandelbrot, 1983) is a quantitative 
measure of shape complexity used widely for analyzing 
electroencephalogram (EEG) signals in many neuropsychiatric 
disorders (Lau et al., 2022). The fractal dimension index (FDI; Ruiz de 
Miras et al., 2019) is a recent methodology designed for analyzing the 
complexity of the spatiotemporal dynamics in the brain. FDI is based 
on computing the 3D fractal dimension (3DFD) and the 4D fractal 
dimension (4DFD) of cortical activations extracted from the EEG 
signal. The 3DFD and 4DFD values are computed from the 3D point 
clouds defined by the cortical activations, induced by a transcranial 
magnetic stimulation, at each time sample of the epoch being 
analyzed. FDI is calculated as the product of two different components: 
the Higuchi fractal dimension (Higuchi, 1988) of the evolution of the 
3DFD values in the epoch, noted as HFD (3DFD), and the 4DFD of 
the 4D representation obtained by putting together all of the 3D point 
clouds contained in the whole epoch (time is the fourth dimension). 
The 4DFD component in FDI quantifies the integration of cortical 
networks, while the HFD (3DFD) component is a measure of the 
cortical differentiation (Ruiz de Miras et al., 2019).

Schizophrenia is a severe mental disorder whose patients suffer 
psychotic symptoms and several cognitive and motor dysfunctions 
(McGrath et al., 2008). The symptoms’ onset is usually at between 14 
and 30 years of age, and it is known that the time between the 
manifestation of symptoms and treatment is one of the best predictors 
of later prognosis (McGlashan, 1999). Currently, there are no reliable 
biomarkers for schizophrenia and, therefore, providing tools for an 
early diagnosis is of great relevance (Nieuwenhuis et al., 2012).

In the last few years, several studies used complexity measures of 
EEG for analyzing neural activity in schizophrenia (Harmah et al., 
2020; Lau et al., 2022). Change complexity was used in Aksentijevic 
et al. (2021) for analyzing both the spatial and temporal complexity of 
16 EEG channels. Kutepov et al. (2020) compared EEG complexity 
between schizophrenia patients and healthy controls by using three 
measures of entropy (approximated entropy, sample entropy, and 
multi-scale entropy). Another entropy measure of EEG, fuzzy entropy, 
was used in Xiang et al. (2019) for measuring task-related modulation 
of complexity in schizophrenia. Some other authors studied the 
complexity of EEG signals in schizophrenia by means of Higuchi’s 
fractal dimension (HFD; Portnova and Atanov, 2018; Goshvarpour 
and Goshvarpour, 2020). Fractal analysis of EEG signals was also used 
for extracting several features, such as HFD and correlation 
dimension, in recent schizophrenia classifiers based on different 
machine learning algorithms (Barros et al., 2021; Tian et al., 2022; 
Ruiz de Miras et al., 2023a). Multifractal and entropy-based features 
extracted from time series of topological measures (connectivity, 
clustering, and global efficiency) of functional networks constructed 
from EEG signals were also successfully used in classifying 
schizophrenia (Racz et al., 2020).

Increasing evidence suggests that schizophrenia is associated with 
alterations in the patterns of connectivity observed between different 
brain regions (Alexander-Bloch et al., 2010; Van Den Heuvel et al., 
2010; Van Den Heuvel and Fornito, 2014; Iglesias-Parro et al., 2023). 
Understanding the complexity of the functional connectivity of neural 
networks in schizophrenia is crucial not only for understanding the 
mechanism of schizophrenia, but also for providing potential 

biomarkers for clinical use. Specifically, several authors have proposed 
that the pathophysiology of schizophrenia may be associated with 
changes of integration/segregation patterns in distributed neural 
networks, such as the default mode network (Wang et al., 2015) and 
the salience network (Huang et al., 2022). So complexity analyses of 
the neural activity in those known resting-state networks affected by 
schizophrenia could also be of great relevance.

In the present study, we hypothesized with the capacity of FDI to 
be adapted for analyzing both long recordings of resting-state EEG 
signals and localized regions of interest of the brain. To this aim, using 
the FDI measure, we analyzed the spatio-temporal complexity of brain 
dynamics for resting-state functional networks in schizophrenia. Our 
results demonstrated the ability of FDI to be applied on resting-state 
EEG signals from different regions of interest and revealed a localized 
decreasing complexity of neural activity of schizophrenia patients, 
mainly in the salience network.

2. Methods

2.1. Subjects

Our study included 31 subjects (see Table 1 for demographics and 
clinical data): 20 healthy control subjects (HC) and 11 individuals 
suffering from schizophrenia (SCZ). This dataset was recorded in 
previously-published studies of our laboratory, so the procedures for 

TABLE 1 Demographic and clinical data.

SCZ HC Test, p 
value

N 11 20

Age (years) 36.2 ± 10.2 40.7 ± 11.9
U = 85.0, 

p = 0.31a

Sex (M:F) 9:2 13:7
χ2 = 0.97, 

p = 0.32b

Education 

(Prim.:Second.:High)
2:8:1 1:12:7

χ2 = 3.29, 

p = 0.19b

SCIP-S—VLi 16.2 ± 3.9 21.1 ± 4.4
U = 32.5, 

p < 0.01a

SCIP-S—VLd 5.8 ± 2.1 6.8 ± 2.4
U = 75.0, 

p = 0.22a

SCIP-S—VF 13.6 ± 4.5 17.9 ± 4.1
U = 48.0, 

p < 0.05a

SCIP-S—WM 16.7 ± 4.0 19.5 ± 3.0
U = 60.5, 

p = 0.06a

SCIP-S—PS 7.6 ± 3.0 11.3 ± 2.9
U = 40.5, 

p < 0.01a

PANNS-P 13.9 ± 4.5

PANNS-N 19.3 ± 8.2

PANNS-G 29.4 ± 7.1

Values expressed as mean ± standard deviation. SCIP-S, Screen for cognitive disability in 
psychiatry, Spanish version; VLi, Immediate verbal learning; VLd, Delayed verbal learning; 
VF, Verbal fluency; WM, Working memory; PS, Processing speed; PANSS, Positive and 
negative syndrome scale; PANSS-P, PANSS—positive subscale; PANSS-N, PANSS—negative 
subscale; PANSS-G, PANSS—general subscale. aMann–Whitney test; bχ2 test.
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recruitment, acquisition and pre-processing of the data were described 
in prior publications (Iglesias-Parro et al., 2023; Ruiz de Miras et al., 
2023a). In this section, those procedures are briefly described.

Schizophrenia patients were recruited at the St. Agustín Hospital 
(Linares, Spain), and healthy subjects were recruited from students 
and staff of the University of Jaén (Jaén, Spain), the San Agustin 
Hospital (Linares, Spain) and from an Adult School (Jaén, Spain). The 
inclusion criteria for the SCZ group were a diagnosis of schizophrenia 
(F20), psychotic disorder (F23), or schizophrenic disorder (F25), 
according to the International Statistical Classification of Diseases, 
10th revision. The exclusion criteria for both groups were diagnosis of 
mental disorder, substance abuse, history of developmental disability, 
vision disorders, or hearing disorders.

Cognitive functioning was measured using a Spanish adaptation 
of the Screen for Cognitive Disability in Psychiatry (SCIP-S; Pino 
et al., 2014) in both groups. SCIP-S provides a score for each of the 
following subscales: immediate and delayed verbal learning (VLi and 
VLd), verbal fluency (VF), working memory (WM), and processing 
speed (PS). In order to assess psychopathology in the SCZ group the 
Spanish version of the Positive and Negative Syndrome Scale (PANSS) 
was used (Kay et al., 1989; Peralta and Cuesta, 1994). The PANSS 
evaluates the schizophrenic syndrome with 30 items in three subscales: 
the positive subscale (seven items, PANSS-P), the negative subscale 
(seven items, PANSS-N), and the general psychopathology subscale 
(16 items, PANSS-G). Descriptive measures for all these measures are 
shown in Table 1.

2.2. EEG acquisition and pre-processing

Resting-state EEG data were recorded in a session where the 
subject was sitting in a comfortable chair looking at a cross placed in 
the center of the screen of a laptop. EEG was collected with a 
BrainAmps amplifier equipped with 32 channels following the 
standard 10–20 montage. EEG signals were recorded at a frequency 
of 500 Hz.

EEG pre-processing was performed in EEGLAB (Delorme and 
Makeig, 2004). As part of the signal preprocessing, we first applied a 
bandpass filter with cutoff frequencies of 1 and 30 Hz. Artifacts were 
extracted using infomax Independent Component Analysis (ICA) 
using runica.m MATLAB software. We use the default parameters of 
the runica.m algorithm, including the finalization of the learning 
process when weight-change <1e−06 or after 512 steps. A trained 
researcher removed segments with artifacts by visual inspection of the 
scalp topography, power spectra and raw activity from all ICA 
components, therefore, no automated artifact removal precedent was 
used. This process was carried out for each participant individually. 
For each participant, we finally selected 150 s of continuous clean data.

Source modeling was performed using the Brainstorm software 
(Tadel et al., 2011). First, the boundary element method implemented 
in OpenMEEG (Gramfort et al., 2010) was used to compute a forward 
EEG model. In this process the MNI/ICBM152 brain template of 
Brainstorm was used as the MRI anatomy (Fonov et al., 2009). Then, 
the inverse method sLORETA (Pascual-Marqui, 2002) as implemented 
in Brainstorm was used to obtain a source model of 15,002 current 
dipoles whose orientations were constrained from normal to cortex. 
The result of this source modeling process was a matrix of currents for 
each subject with a size of 15,002 (sources) × 75,000 (time samples).

2.3. Fractal dimension index computation

The fractal dimension index (FDI) was computed from the EEG 
data following a similar approach to that described in Ruiz de Miras 
et al. (2019). FDI was designed in Ruiz de Miras et al. (2019) for 
processing very short fragments of EEG data (130 milliseconds) where 
brain activations were induced from a transcranial magnetic 
stimulation. However, in the present study we  had to adapt the 
processing of FDI to two key characteristics of resting-state EEG data: 
a much longer duration of the EEG records, and the absence of any 
stimulus which would help to identify brain activations.

In order to deal with EEG records of 150 s, the whole epoch was 
divided using a sliding window of 1 s without overlapping, and then 
the FDI was computed for each 1-s window. Secondly, cortical 
activations at a time sample were defined as those sources (see 
Figures 1A,B) whose absolute values were greater than the mean plus 
the standard deviation of the absolute values of the corresponding 
current for all time samples in the epoch (see Figures 1C,D). By using 
this binarization threshold (mean + standard deviation) we selected as 
cortical activations at a time sample those sources whose value was 
significantly greater than the average in the epoch. Moreover, this 
threshold allowed us to select a sufficient amount of brain activations 
for each time sample, which guarantees a correct computation of the 
fractal dimension through the box-counting algorithm, both in 
3D and 4D.

Finally, the brain activations in each resting state functional 
network were considered and processed separately, as shown in 
Figure 1 (cortical activations at time sample 0.73 s are colored in red 
for each network). Figure  2 shows the cortical parcellation that 
we  used to delimit the functional networks. This parcellation, as 
proposed previously in Kabbara et al. (2017), defined five resting-state 
functional networks: the auditory network (AUD), the dorsal attention 
network (DAN), the default mode network (DMN), the salience 
network (SAN), and the visual network (VIS).

The FDI approach is based on two different fractal dimension 
algorithms: the box-counting algorithm (Russell et al., 1980) and the 
Higuchi fractal dimension (Higuchi, 1988). The box-counting 
algorithm is used to compute the fractal dimension of the point clouds 
defined by brain activations in both 3D and 4D. A 3D fractal 
dimension (3DFD) value was obtained from the 3D point cloud 
defined by brain activations at each sample of time (see Figure 1D). 
Moreover, the set of cortical activations (3D point clouds) in each 1-s 
window describes a 4D point cloud, where time is the fourth 
dimension. Again, the box-counting algorithm was used to compute 
the 4D fractal dimension (4DFD) value of this 4D point cloud. The 
3DFD values in each 1-s window describe a curve as shown in 
Figure 3. Then Higuchi’s algorithm was used to compute the fractal 
dimension of this curve, noted HFD (3DFD). Therefore, for each 1-s 
window two different fractal dimension values were considered: 
4DFD and HFD (3DFD). Finally, the FDI value of the window was 
obtained as the product of both quantities: FDI = 4DFD × HFD 
(3DFD). 4DFD values range from 3 to 4, and HFD (3DFD) values 
range from 1 to 2, so FDI values should range from 3 to 8. Full details 
of the FDI computation process can be  found in Ruiz de Miras 
et al. (2019).

A total of 150 FDI values were obtained for each resting-state 
network of each subject. Each FDI consisted of 500 3DFD 
computations (one for each time sample) and a 4DFD computation. 
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So we  computed a total of 500 samples × 150 windows × 31 
subjects × 5 networks = 11,625,000 3DFD values, and 150 
windows × 31 subjects × 5 networks = 23,250 4DFD values. Since 
computing the fractal dimension in both 3D and 4D is a highly 

time-consuming task, we  needed to use a parallel version of the 
box-counting algorithm optimized for its execution in the graphics 
processing unit (GPU) whose CUDA source code is provided in Ruiz 
de Miras et al. (2023b). On the other hand, the binarization process 

FIGURE 1

(A) Sources activity for 1 s. (B) Representation in 3D of the sources activity at two different time samples (0.06 and 0.73  s respectively). (C) 3D 
representation after binarization. (D) Point clouds defined by sources after binarization (cortical activations). (E) Cortical activations in each functional 
network (shown for the time sample of 0.73  s).

FIGURE 2

Cortical parcellation of the resting-state functional networks analyzed.
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for obtaining the cortical activations from the Brainstorm matrices 
containing the source modeling were computed using custom 
MATLAB scripts.

2.4. Statistical analysis

The nonparametric Mann–Whitney U test (Mann and Whitney, 
1947) and Chi-squared test (Pearson, 1900) were used to compare 
demographic and cognitive variables between groups. The 
non-parametric Quade’s analysis of covariance (ANCOVA; Quade, 
1967), controlling for age, gender, and educational level, was used to 
study the differences in mean values of FDI between groups, with a 
Bonferroni post-hoc correction for multiple comparisons. 
Correlations between FDI and cognitive and psychopathology scores 
were assessed using the nonparametric Spearman correlation test (ρ; 
Spearman, 1904) with a Bonferroni post hoc correction for multiple 
comparisons. The potential use of FDI as a feature for classification 
algorithms was measured by using a receiver operating characteristic 
(ROC) curve analysis (Hanley and McNeil, 1982), where the 
proportion of true positive rate (sensitivity) was plotted against the 
proportion of false positive rate (1-specificity) at different levels of 
cumulative FDI values. The classification accuracy of FDI was assessed 
using the area under the ROC curve (AUC). The statistical analyses 
were performed in IBM SPSS 28, and the results were considered 
significant when the value of p of the statistical test was below 0.05.

3. Results

3.1. Demographic analysis

No significant differences were found between HC and SCZ 
groups in sex, age, and education (see Table 1). These results confirmed 
that both groups were matched regarding demographic variables. As 
can be also seen in Table 1, the HC group scored better than the SCZ 
group on all the SCIP-S cognitive tests, the difference being significant 

in all of the subscales except for delayed verbal learning and 
working memory.

3.2. FDI comparison between HC and SCZ

Figure 4 shows the boxplots comparing FDI between HC and SCZ 
groups for each resting-state network. For each subject in the 
corresponding network, the average of the 150 FDI values computed 
for all 1-s windows in the epoch was considered as a single FDI value. 
Results showed that FDI was significantly lower in the SCZ group for 
networks AUD (F = 7.72, p < 0.05), DAN (F = 7.33, p < 0.05), and SAN 
(F = 8.19, p < 0.05). No significant differences were found between 
groups for the whole brain (F = 3.48, p = 0.22) nor the networks DMN 
(F = 3.48, p = 0.22) and VIS (F = 0.19, p = 0.66).

We also analyzed the trends of the average FDI in each group for 
the 150 s of each epoch. Figure 5 shows these trends for each resting-
state network and the whole brain comparing HC and SCZ groups. In 
this figure, each point corresponds to the average of the FDI values 
obtained in the corresponding 1-s window for all subjects of the 
group. Results showed that average FDI values were always lower in 
the SCZ group during the 150 s for all of the networks except VIS and 
the whole brain. For these two cases, the FDI trends of the HC and 
SCZ groups crossed each other at several points (see VIS and Brain 
panels in Figure 5).

3.3. Correlations between FDI and 
cognitive and psychopathological variables

Figure 6 shows the significant correlations between cognitive and 
psychopathological scores and the FDI obtained in each resting-state 
network and the whole brain for the subjects in the SCZ group. Details 
of significant Spearman correlations (ρ) and their corresponding 
values of p after Bonferroni correction for multiple comparisons are 
shown in Table 2. Significant strong negative correlations were found 
between PANSS-P and FDI in the whole brain and all resting-state 

FIGURE 3

3DFD evolution for 1  s comparing a healthy subject and a patient. HFD, Higuchi fractal dimension of the curve described by the 3DFD values.
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networks, except VIS. Also, PANSS-G and FDI were significantly 
correlated in networks AUD and SAN.

3.4. FDI as a potential feature for classifiers 
of SCZ

Finally, we assessed the performance of FDI as a potential feature 
for classification algorithms of schizophrenia using an ROC curve 
analysis. In this ROC analysis, we  used directly to predict the 
corresponding FDI value, imposing the condition FDI SCZ ≤ FDI 
HC. Figure 7 shows the curves and AUC values obtained for the FDI 
measure in each resting-state network and the whole brain. High AUC 
values above 0.8 were obtained for FDI in networks SAN, DAN, 
and AUD.

4. Discussion and conclusion

Fractal dimension index is a measure of complexity which has 
been used until now for analyzing the brain activations extracted from 
very short epochs of electroencephalogram (EEG) signals induced by 

transcranial magnetic stimulation (Ruiz de Miras et al., 2019). In this 
study we hypothesized with the viability of the FDI methodology for 
analyzing both long periods of resting state EEG signals and localized 
regions of interest defined by functional networks. To this end, brain 
activations at each time sample were defined by a thresholding process 
(mean plus standard deviation) applied on 15,002 sources extracted 
from the EEG signal. FDI was then computed on the brain activations 
corresponding to each resting-state functional network by averaging 
all the FDI values obtained using a sliding window of 1 s on the epoch. 
This customized FDI methodology was successfully used for 
characterizing the brain dynamic changes in schizophrenia, a mental 
disorder associated with dysfunction in the information flow dynamics 
in the spontaneous brain networks. Our results demonstrated the 
ability of FDI to be applied on resting-state EEG signals from different 
regions of interest and revealed a localized decreasing complexity of 
neural activity of schizophrenia patients, mainly in the salience network.

We found that FDI was significantly lower in the SCZ group 
compared to HC for networks AUD, DAN, and SAN (see Figures 4, 
5). However, the whole brain and the DMN and VIS networks did not 
statistically differ in FDI between the SCZ and HC groups. Decreased 
values of EEG complexity in schizophrenia patients were also reported 
in some recent studies (Goshvarpour and Goshvarpour, 2020; Kutepov 

FIGURE 4

Boxplots with differences in fractal dimension index (FDI) between groups. The FDI values in each group are the average of the 150 FDI values 
computed for each subject in the corresponding network. Values of p for the Quade’s ANCOVA test controlling for age, gender, and education 
(*p  <  0.05). Values of p were corrected for multiple comparisons with the Bonferroni post hoc method. No significant differences were found between 
groups for the whole Brain nor the DMN and VIS networks.
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FIGURE 5

FDI evolution in 150  s for HC and SCZ groups. Each FDI point is the average of the FDI values of all the subjects of the group for the corresponding 
second.
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et al., 2020; Aksentijevic et al., 2021). Results in Aksentijevic et al. 
(2021) showed that schizophrenia patients had lower values of change 
complexity than healthy subjects. Similar results were obtained by 
Kutepov et  al. (2020) when comparing EEG complexity between 
schizophrenia patients and healthy controls by using approximated 
entropy, sample entropy, and multi-scale entropy. In Goshvarpour and 
Goshvarpour (2020), lower values of HFD were obtained in the 
patients group compared to normal subjects in all the 19 EEG 
channels recorded in resting-state. However, some other studies found 
higher values of complexity in the SCZ group compared to normal 
controls (Portnova and Atanov, 2018; Xiang et al., 2019). In Xiang 
et al. (2019), significantly higher values of fuzzy entropy in the frontal 
and occipital regions were obtained for schizophrenia patients in both 
conditions, baseline and auditory stimulus. Also, Portnova and Atanov 
(2018) found significantly higher values of HFD in the schizophrenia 

group for eight out of 19 EEG channels when the signal was recorded 
in resting-state. To these contradictory previous results our study adds 
a new standpoint by analyzing not the complexity of the EEG signal 
itself, but the 3D and 4D fractal dimensions of the spatiotemporal 
distribution of the brain activations extracted from the EEG.

According to Yang et al. (2015), from a systemic viewpoint the 
brain’s adaptability to an ever-changing environment is manifested in its 
complexity. From this point of view, reduced patterns in complexity 
could be markers of disease, or in terms of Costa et al. (2005) a generic 
feature of pathologic dynamics. A higher fractal dimension might 
indicate increased complexity, self-similarity, and possibly enhanced 
adaptability of neural networks. Conversely, a lower fractal dimension 
could imply a reduction in complexity, potentially related to disrupted 
neural communication changes (Iglesias-Parro et al., 2023). On the 
other hand, in a healthy brain, fractal dimension may reflect the brain’s 
ability to efficiently process information, respond to stimuli, and adapt 
to varying demands. A higher fractal dimension could indicate a 
balanced interplay between local and global neural processes, enabling 
cognitive flexibility, robustness, and efficient information processing 
(Ziukelis et  al., 2022). Taken together, our results indicate that 
individuals diagnosed with schizophrenia compared to the control 
group presented, in most of the networks, a more rigid temporal resting-
state dynamic. These results suggest a more rigid functional connectivity, 
with less adaptive capacity to segregate information and with a more 
stereotyped pattern, indicative of a network with less capacity to carry 
out functional adaptations in the connectivity of its nodes.

We also found strong negative correlations in the SCZ group 
between PANSS-P and the FDI of the whole brain and networks AUD, 
DAN, DMN, and SAN, and between PANSS-G and the FDI of networks 
AUD and SAN (see Figure 6 and Table 2). This result, which relates a 
decrease in FDI to an increase in the severity of the disease, is of great 
relevance because it indicates that FDI is a potential indicator in 
evaluating the clinical symptoms of schizophrenia. In clinical practice, 
schizophrenia is usually diagnosed by observing positive symptoms 

FIGURE 6

Significant Spearman correlations between cognitive and 
psychopathological scores and FDI in the SCZ group. Values of p 
were corrected for multiple comparisons with the Bonferroni post 
hoc method. Only significant correlations (p  <  0.05) are shown. VLi, 
Immediate verbal learning; VLd, Delayed verbal learning; VF, Verbal 
fluency; WM, Working memory; PS: Processing speed; PANSS, 
Positive and negative syndrome scale; PANSS-P, PANSS—positive 
subscale; PANSS-N, PANSS—negative subscale; and PANSS-G, 
PANSS—general subscale.

TABLE 2 Details of significant correlations between psychopathological 
scores and FDI measures shown graphically in Figure 6.

FDI 
variable

Psychopathological 
variable

Correlation 
coefficient 

(ρ)

p 
value

FDI AUD

PANSS-P

−0.84 p < 0.01

FDI DAN −0.81 p < 0.01

FDI DMN −0.76 p < 0.01

FDI SAN −0.82 p < 0.01

FDI Brain −0.81 p < 0.01

FDI AUD
PANSS-G

−0.62 p < 0.05

FDI SAN −0.61 p < 0.05

FIGURE 7

ROC curve analysis assessing the performance of FDI as a classifier 
for schizophrenia. The AUC value for each FDI measure is shown 
between brackets.
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(delusions, hallucinations, speech disorders, and thought disorder) and 
negative symptoms (avolition, alogia, anhedonia, asociality, and blunted 
affect). However, positive and negative symptoms may have contrary 
effects on brain functional organizations (Zhou et al., 2007; Bernard 
et al., 2017), and it has been proposed that the possible reason for these 
inconsistent observations may be that positive and negative symptoms 
have separate mechanisms (Wang et al., 2023). Thus, our results are 
consistent with this differentiation, in that reduced network complexity 
was significantly correlated with the severity of positive psychotic 
symptoms but not with that of negative ones, inversely associated with 
cognitive measures. It would be possible that positive symptoms are 
physiologically characterized by neural networks with more rigid 
dynamics and a tendency to change in a more stereotypical way.

Since many recent studies have used EEG complexity measures as 
features in machine learning classifiers of schizophrenia (Racz et al., 
2020; Barros et al., 2021; Tian et al., 2022; Ruiz de Miras et al., 2023a), 
we also assessed the performance of FDI as a potential feature for 
classifying schizophrenia patients by means of an ROC curve analysis 
(see Figure 7). Our results showed that FDI could be a promising 
feature to be used in classifiers based on EEG measures, especially 
when computed for the SAN network (AUC = 0.83). These results 
reinforce the hypothesis that cognitive networks—but not visual 
networks—would be  differentially active in schizophrenia (Keane 
et  al., 2022). Moreover, FDI as a feature could add a broader 
perspective when analyzing complexity in current machine learning 
classifiers which are based on linear and non-linear measures 
computed directly on the EEG signal, because the input EEG signal is 
used in FDI to extract the brain activations over time, which allows 
for analyzing 3D and 4D complexity through fractal dimension.

Fractal dimension index relies on repeatedly computing the fractal 
dimension of 3D and 4D point clouds, which is not trivial and could 
be computationally intensive. Nevertheless, we have already developed 
very efficient implementations of the computation of 3DFD and 4DFD 
through parallel execution on GPU. This software was already 
described and made publicly available in Ruiz de Miras et al. (2023b).

In conclusion, in this study we  have presented a novel 
methodology, based on the FDI measure, for performing the 
complexity analysis of resting-state EEG signals. FDI performs a 
spatiotemporal analysis of brain dynamics by combining two 
components: 4DFD as a quantification of cortical integration, and 
HFD (3DFD) as a measure of cortical differentiation. Our complexity 
analysis based on the FDI of resting-state EEGs applied differentially 
on resting-state functional networks obtained very good results in 
differentiating schizophrenia patients from healthy subjects. Moreover, 
FDI was strongly correlated with clinical scores of schizophrenia. All 
these results suggest that FDI can be used for analyzing the complexity 
of brain dynamics from resting-state EEG signals, being a promising 
tool for obtaining a deeper understanding of the neurodegeneration 
present in neurological disorders such as schizophrenia.

4.1. Limitations

The impact of small sample sizes on study power is widely 
recognized, and it can lead to unreliable results, reducing the 
likelihood of detecting genuinely true effects. Considering this, 
we acknowledge that our results should be interpreted with caution 
due to the relatively small size of our sample. The primary reason for 

this limited sample size was the difficulty in accessing clinical samples, 
as many patients were hesitant to actively participate in experiments, 
particularly those involving EEG recordings. Moreover, our efforts to 
ensure consistency by conducting all EEG recordings on the same 
experimental set further constrained the sample size. While we faced 
challenges in encouraging control participants to visit the Hospital for 
the experiment, it was even more challenging to have patients from 
other hospitals come to our laboratory for data collection.

Undoubtedly, future research should focus on addressing these 
limitations to enhance the robustness and generalizability of findings. 
Whenever possible, supplementing public datasets with data from 
local research studies can enhance the robustness and generalizability 
of the results. Improving access to larger clinical samples and 
optimizing recruitment strategies for both control and patient groups 
will be crucial in overcoming these limitations and advancing our 
understanding of the topic. Future works should build upon these 
findings to refine methodologies and expand the participant pool for 
more comprehensive investigations.
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