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ABSTRACT 

Background: Real-world data, such as administrative claims and electronic health records, are 

increasingly used for safety monitoring and to help guide regulatory decision-making. In these 

settings, it is important to document analytic decisions transparently and objectively to assess 

and ensure that analyses meet their intended goals.  

Methods: The Causal Roadmap is an established framework that can guide and document 

analytic decisions through each step of the analytic pipeline, which will help investigators 

generate high-quality real-world evidence.  

Results: In this paper, we illustrate the utility of the Causal Roadmap using two case studies 

previously led by workgroups sponsored by the Sentinel Initiative—a program for actively 

monitoring the safety of regulated medical products. Each case example focuses on different 

aspects of the analytic pipeline for drug safety monitoring. The first case study shows how the 

Causal Roadmap encourages transparency, reproducibility, and objective decision-making for 

causal analyses. The second case study highlights how this framework can guide analytic 

decisions beyond inference on causal parameters, improving outcome ascertainment in clinical 

phenotyping.  

Conclusion: These examples provide a structured framework for implementing the Causal 

Roadmap in safety surveillance and guide transparent, reproducible, and objective analysis. 

Keywords: real-world data, real-world evidence, causal inference, safety surveillance, 

reproducibility 
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INTRODUCTION 

The Food and Drug Administration’s (FDA) Sentinel Initiative is a program for actively 

monitoring the safety of regulated medical products.
1,2

 The Sentinel Initiative uses routinely-

collected healthcare databases generated from insurance claims and electronic health records 

(EHRs) to supplement randomized clinical trials to provide evidence on the real-world 

effectiveness and safety of pharmaceutical drugs and other FDA approved products. However, 

extracting valid evidence from these data sources to help guide regulatory decisions remains 

challenging due to bias in causal estimates stemming from non-randomized treatments and 

poorly measured information on patient characteristics and clinical features.  

In this paper, we illustrate the application of the Causal Roadmap in two case studies that were 

previously led by workgroups sponsored by the Sentinel Initiative. Each case example focuses on 

different aspects of the analytic pipeline for drug safety monitoring. In the first case study, we 

show how the Causal Roadmap can be used to promote transparency, reproducibility, and 

objective decision making for causal analyses. In the second case study, we illustrate how the 

principles of the Causal Roadmap extend beyond causal parameters and can be used to guide 

analytic decisions for clinical phenotyping for improved outcome assessment.  

Each case study was previously conducted and further details can be found on the FDA’s 

Sentinel webpage.
3
 It is important to emphasize that the purpose here is not to provide a 

thorough overview of all decisions made throughout the analytic process for each study, or argue 

that all analytic decisions within each example are optimal. Instead, our goal is simply to give a 

high-level overview of how the Causal Roadmap could be applied to settings similar to the 

previously conducted case examples described here. 

Case Study 1: Enhancing Causal Inference in the Sentinel System: Targeted Learning for 

Large-Scale Covariate Adjustment in Healthcare Database Studies 

Confounding remains a primary challenge in real-world evidence (RWE) studies for drug safety 

monitoring. During the early periods of post-market approval, some important confounding 

factors are often unknown to investigators or not directly measured in these data sources. To 

improve confounding control in these settings, data-driven algorithms can be used to supplement 

investigator-specified variables by leveraging the large volume of information in these data 
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sources to generate and identify features that indirectly capture information on unmeasured 

factors (‘proxy confounders’).
4,5

 However, there continues to be an increasing number of 

methods available for large-scale causal inference with many variations in how these tools can be 

applied for high-dimensional proxy confounder adjustment in healthcare databases. Various 

methods rely on different assumptions that hold in different cases, and it is unlikely that any 

single approach is optimal across all databases and research questions. Consequently, a 

fundamental challenge when estimating causal effects in healthcare databases is making 

objective decisions between alternative analytic approaches while tailoring analyses to the study 

at hand. 

In this case study, we applied the Causal Roadmap to an observational study to assess the impact 

of nonselective nonsteroidal anti-inflammatories (NSAIDs) vs opioid use on acute kidney injury 

(AKI). We show how the Causal Roadmap can help to improve transparency, reproducibility, 

and objective decision making across all aspects of the analytic pipeline. We give particular 

focus on illustrating the use of outcome-blind simulations to maintain objectivity during the 

model selection process to tailor analytic decisions for data-driven large-scale covariate 

adjustment to the given study.  

Step 1a: Specify the Study Question  

We are interested in understanding the short-term (6-month) impact of initiating NSAID 

treatment on AKI relative to initiating treatment with an opioid in patients diagnosed with 

osteoarthritis. NSAIDs and opioids are among the most commonly used pharmacotherapies for 

pain in patients with osteoarthritis and the safety of these alternative analgesics on AKI is 

unclear.
6
 Confounding was the primary concern in this study and we were interested in applying 

methods for large-scale covariate adjustment to evaluate if these tools are likely to improve 

confounding control when estimating the causal effect in this setting. 

Consistent with the ICH E9(R1) attributes of a statistical estimand, we define the following: 

● population of interest: Medicare beneficiaries linked to EHR data from the Research Patient 

Data Registry (RPDR) at Mass General Brigham (the largest healthcare provider in 

Massachusetts). The study population was restricted to patients who had continuous enrollment 

in Medicare parts A, B, and D in the 365 days prior to treatment initiation and were diagnosed 
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with osteoarthritis (defined as having a diagnostic code for osteoarthritis in the 365 days prior to 

treatment initiation). 

● study treatment: The treatment was defined as filling at least one prescription for an NSAID after 

a 365-day washout period of no use (no prescription fill) for any opioid or NSAID (new-user 

design).
7,8

 Similarly, the comparator group was defined as filling a prescription for an opioid 

after a 365-day washout period having no prescription fill for any opioid or NSAID. 

● outcome: The outcome was defined as any diagnosis for AKI within 6 months of follow-up. The 

outcome was identified using a previously developed algorithm for identifying AKI in 

administrative claims data.
9
 

● summary measure: 6-month risk difference 

Step 1b: Specify Causal Model and Causal Parameter 

In this example, we chose to model the effect of initiating the treatment vs comparator on the 6-

month risk of AKI (‘point-treatment’ effect).
10

 We chose to target the intention-to-treat (ITT) 

effect because the assumptions for identification for this causal parameter are less strict 

compared to a per-protocol analysis where individuals are censored at treatment 

discontinuation/switching. In administrative healthcare databases, reasons for discontinuation 

and switching are often not well measured, making identification of a per protocol causal 

parameter more challenging.  

 

 

Figure 1. Directed acyclic graph (DAG) showing a simplified causal model for the case example 

comparing the effect of initiating nonselective nonsteroidal anti-inflammatories (NSAIDs) vs 

opioid use on acute kidney injury (AKI). In this causal model, A represents a binary treatment, W 

represents a high-dimensional set of confounders and/or proxies for confounders, Y represents a 

binary outcome, and C is a censoring indicator representing whether or not the outcome was 
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observed or not observed (C=1 indicates outcome was observed). In this causal model, we make 

the simplifying assumption that censoring is non-differential across treatment groups so that the 

only bias for the effect of treatment (A) on the outcome (Y), is confounding by W.  

The causal model for a point treatment effect is presented in the directed acyclic graph (DAG) 

shown in Figure 1. It is important to note that the causal model is based on underlying causal 

assumptions which cannot be empirically verified (and therefore require subjective decisions by 

investigators). This case study is focused primarily on evaluating different methods of 

confounder adjustment. The simplified causal model in Figure 1 also emphasizes the possibility 

of confounding over other issues; for example, in the above DAG, we assume that there is no 

selection or collider bias, outcome misclassification, or differential censoring by treatment group 

after adjusting for W .  

It is important to emphasize that investigators can disagree on the merits of the chosen causal 

model (DAG). The purpose of the Causal Roadmap is to help investigators be explicit and 

transparent in the assumptions made by the causal model so that investigators can think carefully 

about the plausibility of those assumptions and the conditions necessary for identification of the 

causal parameter defined in terms of the chosen causal model.  

Once the causal model is specified, the causal parameter can then be defined. In this example, we 

defined the causal parameter as the 6-month risk difference for the outcome. More formally, we 

define          as the potential outcome for individuals had they received treatment NSAID 

(A=1) and not been censored (i.e., outcome is observed for each individual or C=1). Similarly, 

we define          as the potential outcome for individuals had they received the comparator 

drug (opioid) and not been censored. Our causal parameter is given by                     

           . 

Step 2: Define observed data and decisions for cohort construction.  

Our dataset consists of linked Medicare-EHR data between the years 2007-2017. We followed 

the ‘Target Trial’ framework when constructing our cohort to emulate components of a 

randomized trial using observational data.
11,12

 We defined treatment groups using the ‘new-user’ 

design as discussed previously. This design for constructing treatment groups helps avoid bias by 

having a clear time-frame for treatment initiation and follow-up as in randomized clinical trials. 
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By having a clear time-frame for the start of follow-up, the new-user design helps to avoid biases 

caused by conditioning on variables on the causal pathway and avoids comparing current 

(prevalent) users to new-users of the treatment and comparator groups of interest.
8 

After identifying new-users of the treatment and comparator groups, we restricted the cohort to 

individuals diagnosed with osteoarthritis. This was defined as having a diagnostic code for 

osteoarthritis in the 365 days prior to treatment initiation. After restricting to individuals with 

osteoarthritis, the new-user cohort included 21,343 individuals with 7,767 (36.4%) individuals 

initiating NSAIDs, 13,576 (63.6%) individuals initiating Opioids, and 899 (4.2%) individuals 

having an outcome event. Baseline covariates available for adjustment consisted of 91 

investigator-specified variables and an additional 14,938 features available for proxy adjustment. 

These additional proxy features were derived from all claims codes and codes from EHR 

structured data after screening codes with a prevalence <0.001.  

Steps 3 and 4: Assess Identifiability and Define the Statistical Estimand  

We defined the statistical target of estimation as the marginal risk difference,              | 

                     |           ], where      indicates the outcome was 

censored and     indicates it was observed in the data.      is equivalent to         under the 

following set of identifying assumptions: 1) consistency, 2) conditional exchangeability (no 

unmeasured confounding or selection bias), 3) positivity.  

If we are willing to make an additional assumption of uninformative right censoring (MCAR), 

we can define the statistical estimand as   
                                    | 

             ], asserting that the statistical parameter in the sub-population where the 

outcome is observed is equivalent to the statistical parameter in the full study population. 

Before proceeding with estimation of the target parameter, it is important to consider the 

plausibility of each assumption necessary for identification of the causal parameter. Diagnosis 

codes for AKI are known to be highly sensitive and specific, so the consistency assumption is 

likely to be satisfied. It is possible (and even likely) that conditional exchangeability is not fully 

satisfied, because some degree of baseline confounding is likely due to unobserved factors and 

there may be some selection bias due to informative censoring. However, given the short follow-

up, less than 4% of study participants were censored due to death or disenrollment, and 

censoring was similar in each study arm. To simplify analyses for this case study focused on 
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confounder adjustment, and because reasons for censoring are often not captured well in 

administrative healthcare data, we were willing to make the assumption of uninformative right 

censoring.  

Step 5a: Choose a Statistical Model and Estimator 

Estimation of   
   

 was carried out on the dataset omitting observations where outcomes were 

censored due to loss-to-follow-up (<4% of observations). As discussed previously, while this can 

induce a selection bias, we were willing to assume that the impact was negligible due to the low 

degree of censoring. We used targeted minimum loss-based estimation (TMLE) to estimate the 

average treatment effect in the population. For the outcome model used within TMLE, we fit a 

Lasso regression to optimize cross-validated prediction. However, in this study, outcome events 

were rare and it was difficult to fit large-scale models for the outcome. Therefore, for all TMLE 

models, we focused on large-scale covariate adjustment through modeling the treatment 

assignment (the propensity score [PS]). 

When modeling the PS within the TMLE framework, we compared 8 Lasso-based PS models for 

large-scale covariate adjustment. We briefly outline PS Models 1 through 8 below: 

● Model 1: Traditional Lasso: Logistic regression model using L1 regularization (Lasso), where 

the loss function for choosing the lambda tuning parameter (degree of regularization) is based on 

minimizing the out-of-sample (cross-validated) predictive performance for treatment.
13

 

● Model 2: Outcome Adaptive Lasso: We applied a variation of the outcome adaptive lasso 

proposed by Shortreed & Ertefaie.
14

 Our variation consisted of first fitting a lasso model for the 

outcome and identifying all variables whose coefficient was not shrunk to zero. We then fit an 

Adaptive Lasso model for treatment assignment to allow for specification of different 

penalization weights for different variables. All variables whose coefficient in the outcome lasso 

model was not shrunk to zero were forced into the treatment Lasso model by assigning them a 

penalization weight of zero. All other variables were penalized similarly to Model 1 (based on 

optimizing cross-validated predictive performance for treatment).  

● Model 3: Collaborative-Controlled Lasso: The collaborative-controlled lasso is a recently 

proposed extension of Lasso regression for purposes of estimating the PS.
15

 Instead of choosing 

the lambda tuning parameter to minimize cross-validated prediction for treatment assignment, 

the collaborative-controlled lasso uses the principles of collaborative targeted learning to 
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consider a bias-variance tradeoff in the estimated treatment effect when selecting the degree of 

regularization (lambda tuning parameter).
15

  

● Model 4: Collaborative-Controlled Outcome-Adaptive Lasso: This approach combines 

Collaborative Learning with Model 2 described previously. The first step in Model 4 is the same 

as Model 2 (variables selected by the outcome Lasso are forced into the treatment model). 

However, when fitting the treatment adaptive lasso model in the second step, Model 4 uses 

collaborative targeted learning to select the regularization tuning parameter instead of using 

cross-validated prediction for treatment. 

● Models 5 through 8: Models 5 through 8 are equivalent to Models 1 through 4, except that they 

incorporate cross-fitting when modeling treatment assignment and assigning predicted values for 

the propensity score. Cross-fitting (sample splitting) has been recommended when using data-

adaptive (machine learning) algorithms for estimating nuisance models for causal inference (e.g., 

the PS and outcome model).
16-18

 Here, we only considered application of cross-fitting to the PS 

model to reduce problems of nonoverlap caused by modeling spurious associations in the PS.  

Outcome-blind simulations: In order to choose between the alternative models described above, 

we need an objective framework. The use of synthetically generated datasets that combine real 

data from the given study with simulated causal effects has become increasingly popular to help 

tailor analytic choices for causal inference.
19-23

 Frameworks for generating synthetic datasets 

have largely been based on use of the parametric bootstrap.
19

 Here, we applied a similar 

simulation approach to provide objective empirical guidance for model selection. Briefly, we 

bootstrapped subjects from the observed data structure and left associations between baseline 

covariates unchanged. We then injected causal relations between a subset of variables to simulate 

treatment assignment as well as the outcome. This allowed us to generate data with a known 

treatment effect while maintaining some of the complexity of the observed data structure to 

compare statistical properties of different analytic approaches. The goal of these outcome-blind 

simulations is to help investigators tailor analytic decisions to the given study while maintaining 

objectivity during the analytic process.  

 

Step 5b: Evaluate Study Results  

Results for Outcome-Blind Simulations: In Figure 2 we present outcome-blind simulation results 

for the empirical study. Figure 2 shows that the collaborative controlled extensions of the Lasso 
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and Outcome-Adaptive Lasso when using cross-fitting (Models 7 and 8) had similar 

performance, with both these approaches outperforming the other Lasso models in terms of bias 

(Plot A), MSE (Plot B), and coverage (Plot C). Overall, the collaborative controlled outcome 

adaptive lasso with cross-fitting (Model 8) performed best when implemented using TMLE, with 

a slight incremental benefit over Model 7.  

 

Figure 2. Outcome-blind simulation results for study 1.  

 

Empirical Study Results: For the outcome-blind simulation study, Model 8 performed best in 

terms of reducing bias in the estimated treatment effect. Therefore, we applied this model to the 

empirical study for large-scale covariate adjustment. The unadjusted 6-month risk difference 

comparing NSAIDS vs opioids on acute kidney injury was 0.024 (0.018, 0.030). After large-

scale covariate adjustment using TMLE with a PS that was estimated using the collaborative-

controlled outcome-adaptive Lasso with cross-fitting (Model 8) the risk difference was 0.005 (-

0.027, 0.038). 
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Step 6: Specify a Procedure for Sensitivity Analysis 

Causal bias is the gap between the statistical and causal parameter that can arise when any causal 

assumptions are violated. A non-parametric sensitivity analysis illustrates how departures from 

causal assumptions would impact study findings.
24

 The sensitivity plot shows the shift in point 

estimates and 95% confidence interval bounds under a range of gap sizes (Figure 3). Gap size 

can equivalently be expressed in units that facilitate a basis for comparison, such as effect size 

units ( ) or relative to the bias adjustment due to measured confounders (Adj units). Bounds on 

the plausible gap size can be obtained from external knowledge and through the use of negative 

controls. The G-value is the size of the minimal causal gap that would negate the study finding.
25

 

In our example the G-value = 0.027 on the risk difference scale. 

 

Figure 3. Estimated effects and 95% confidence intervals from a sensitivity analysis (intervals in 

gray) showing how departures from the assumption of exchangeability (no unmeasured 

confounding, informative censoring, etc.) would impact the calculated risk difference and 95% 

confidence interval (interval in black). 

Case Study 2: Scalable Prediction of Safety Outcomes Using Electronic Health Record 

Data 

Safety studies are run within Sentinel only when the ARIA (Active Risk Identification and 

Analysis) system is deemed sufficient to answer the safety question at hand, based on the 

available data and methods.
26,27

 The Sentinel distributed database primarily includes claims data 
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from 17 Sentinel data partners;
28,29

 some of these data partners also provide EHR data. ARIA 

sufficiency judgments rely on understanding whether exposure to the study drug, comparator, 

and health outcome of interest (HOI) can be accurately assessed from these observational data. If 

ARIA is deemed insufficient, then FDA may require the sponsor to run a postmarketing study. 

 

The end goal of a Sentinel safety surveillance study is often to determine if a medical product is 

causing unintended adverse effects. However, for some health outcomes of interest it may be 

difficult to identify the health outcome of interest from information in claims data due to a lack 

of key information. In the remainder of this section, we discuss how principles underlying the 

Causal Roadmap can guide the use of machine learning to identify an outcome from data – a 

classification activity known as "phenotyping” in the clinical informatics literature.
30

  

A distinction must be made about the phenotyping process (which is fundamentally a prediction 

problem) and the downstream use of the phenotype (e.g., estimating prevalence, to satisfy cohort 

inclusion criteria, outcome in a causal inference problem). Here we focus on identifying case 

status to be used as a binary outcome in a downstream retrospective safety study. Publications 

have shown that non-differential misclassification of the outcome biases the estimate of an 

additive treatment effect, but not a relative risk (RR).
31

 However, using a classifier that has a low 

positive predictive value (PPV) will bias a RR estimate, while using a classifier that has a low 

sensitivity will increase the variance of the RR estimate. Thus, high PPV and high sensitivity are 

desirable properties. Although phenotyping is a predictive modeling task rather than a causal 

inference task, a variant of the Causal Roadmap can serve as a guide. 

We now discuss several steps from the Causal Roadmap that can serve as a guide throughout a 

prediction modeling task. Our example phenotyping task is to predict anaphylaxis using 

structured medical claims and EHR data (both structured data and unstructured text, with natural 

language processing methods used to extract information from the unstructured text); the results 

of this analysis were published by Carrell et al.,
32

 who followed the steps that we highlight 

below. 

Step 1a: Specify the study question 

Anaphylaxis is a rare, though life-threatening, systemic allergic reaction that occurs shortly 

(minutes to hours) after contact with an allergy-causing substance (e.g., food, medication, or 

insect bite).
33

 Anaphylaxis diagnosis codes are a poor proxy for true anaphylaxis events. 
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Approximately 1/3 of medical encounters for which an anaphylaxis code exists are not true cases 

of anaphylaxis.
34

 Carrell et al.
32

 developed a phenotyping algorithm using claims data augmented 

with labs and EHR data with the goal of improving the positive predictive value (PPV) for 

anaphylaxis without sacrificing sensitivity. 

For our classification task, we will define the phenotype as an indicator Y of the predicted 

probability of having an anaphylaxis event above a threshold. In terms of the full counterfactual 

data the parameter of interest for the prediction task is          , where   denotes the 

expectation and   contains measures of the relevant features guided by a downstream use of the 

phenotype as the outcome in a future safety study. 

Step 1b: Specify the causal model 

Although phenotyping is a prediction task rather than a causal one, we will keep its potential 

downstream use as an outcome in a retrospective study in mind when choosing features to 

consider as candidate predictors. Consider a generic directed acyclic graph (DAG) for such a 

study, where A is an indicator of treatment (Figure 4).  

 

Figure 4: an example directed acyclic graph (DAG) showing a possible causal model relating 

baseline covariates, W; an exposure of interest, A; an outcome of interest, Y; and variables 

captured during interim or diagnostic medical encounters. 

Baseline covariates,  , are ideal candidate features to include in the prediction model. Claims 

and EHR data connected to the diagnostic medical encounter are central to recognizing the 

occurrence of the outcome event. Each medical encounter offers the opportunity to capture 

information on diagnosis and prescription codes, symptoms, lab orders, lab values, and time-

varying patient characteristics. The DAG in Figure 4 illustrates that if exposure (A) leads to 

differential capture of these covariates, then their inclusion in a predictive model could bias the 
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downstream effect estimate (due to inducing collider bias). A second possible source of bias is 

differential outcome capture by exposure status. Both may affect the interpretation of the 

downstream causal effect estimate by conflating the effect of pre-planned monitoring with the 

effect of the study drug. These issues are unlikely to arise in our study since anaphylaxis 

typically occurs within minutes or hours after exposure to the allergy-causing substance, and 

since the focus below is on identifying anaphylaxis cases rather than estimating a causal effect of 

a study drug. 

Step 2: Define observed data  

The study population is defined as Kaiser Permanente Washington (KPWA) members who had a 

qualifying health encounter between October 1, 2015 and March 31, 2019. KPWA is an 

integrated-care delivery organization operating in Washington State and northern Idaho. 

Qualifying health encounters consisted of (a) an emergency department or inpatient encounter 

with an anaphylaxis diagnosis, and (b) an outpatient encounter with an anaphylaxis diagnosis and 

(on the same day from any setting) either a diagnosis code for one of several conditions that 

often co-occur with anaphylaxis or a procedure code for one of several procedures that are often 

used to treat anaphylaxis.
32,35

  

Clinician resources limited the number of charts reviewed to ascertain gold standard outcomes. 

The analytic dataset consisted of 239 people. Medical records for each person’s qualifying 

encounter were reviewed to determine whether potential events met the National Institute for 

Allergy and Infectious Disease clinical criteria for anaphylaxis. Of the 239 people, 154 were 

found to have a validated anaphylaxis event (Y = 1), while 85 were found to not have a validated 

anaphylaxis event (Y = 0). The covariates, X, include 159 potential predictors, including 43 

structured covariates (e.g., demographics, potential cause of anaphylaxis, and history of allergic 

reactions obtained from the Sentinel distributed database) and 116 natural language processing 

(NLP)-derived covariates from the KPWA EHR. In the context of Figure 4, the demographic 

variables are W (the baseline covariates), there is no exposure of interest, and the remaining 

variables are obtained during interim or diagnostic medical encounters. Domain knowledge 

informed the selection of features likely to discriminate between cases and non-cases within the 

population satisfying the inclusion criteria.  
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Step 3: Assess identifiability 

In this case study, the purpose is to predict an observed outcome given covariates, rather than to 

make causal inference. We do not consider a counterfactual outcome – in other words, the 

observed data are identical to the ideal data necessary to answer the question of interest. While 

this step is not relevant to the immediate purpose, it is relevant for downstream causal analyses 

using predicted outcomes. For example, maximizing PPV may reduce bias due to 

misclassification, while maximizing sensitivity may increase power to detect an effect. 

Step 4: Define the statistical estimand 

The statistical estimand is            . 

Step 5: Choose a statistical model and estimator 

Any estimator of a prediction function (equivalent to a conditional mean function, our statistical 

estimand) is constrained by the amount of information in the data, which is governed by the 

sample size (for continuous outcomes) or effective sample size (the number of observations in 

the minority class, for binary outcomes).
36

 To avoid overfitting to the data, Carrell et al.
32

 first 

applied outcome-blind dimension reduction techniques that reduced the feature set to  , 

consisting of 132 covariates. Prediction models were fit using structured features only and 

structured and NLP-derived features, to determine if the NLP-derived features conferred a 

benefit to anaphylaxis identification. 

Rather than focusing on a single regression technique, Carrell et al.
32

 evaluated 25 parametric 

and machine learning algorithms, using cross-validation to estimate the cross-validated area 

under the receiver operating curve (cvAUC). The first 24 consisted of all combinations of eight 

base learners (logistic regression, elastic net, two variants of gradient boosted trees, two variants 

of Bayesian additive regression trees (BART), and two neural network architectures), each 

coupled with three pre-screening algorithms (retain all, partitioning around medoids, and Lasso). 

The final algorithm was the Super Learner, an ensemble method defined as an optimal weighted 

combination of the individual candidate algorithms.
37 

For each prediction function, Carrell et al.
32

 estimated both cvAUC and cross-validated estimates 

of classification performance metrics at candidate classification thresholds to illuminate the 

tradeoffs between PPV and sensitivity.  
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Results 

Carrell et al.
32

 used the Causal Roadmap principles throughout their analysis, which enabled a 

clear comparison of results across a variety of prediction techniques and input feature sets. They 

showed that the use of machine learning far exceeded logistic regression in predicting 

anaphylaxis in high-dimensional data, and combining NLP-derived features with structured data 

conferred additional benefits. The cvAUC for a main terms logistic regression model using 

structured data only was 0.58, while the prediction function produced using machine learning 

trained on all available features was 0.70. 

The authors also evaluated cvAUC for each of the models developed using the KPWA data on 

data from Kaiser Permanente Northwest (KPNW), an integrated-care delivery organization in 

northwest Oregon and southwest Washington State, collected using identical methods to the 

KPWA data. They found that there was a modest degradation in prediction performance in this 

new population. 

The maximum PPV observed at KPWA was 86%. The cutpoint of predicted risk yielding a PPV 

of 78.7% at KPWA yielded a sensitivity of 65.8%; this same cutpoint yielded a 78.1% PPV and 

55.6% sensitivity at KPNW. Thus, in a downstream causal analysis there will be outcome 

misclassification. This is a violation of the consistency assumption that should be considered in 

any sensitivity analysis, e.g., the PPV suggests bias in an estimated relative risk due to this 

violation will be mild. However, the relatively low sensitivity on the external validation data 

indicates decreased power to detect a statistically significant effect.  

DISCUSSION 

Case Study 1 illustrates how the roadmap guides breaking down a complex problem into 

manageable sub-parts that clearly describe the chain of reasoning from study question to study 

finding. This case study further highlights how the roadmap can help facilitate transparent and 

objective analytic decisions throughout the analytic pipeline, with a specific focus on using 

outcome-blind simulations to tailor analytic choices for large-scale covariate adjustment. In post-

market safety analyses, it is often difficult to know the optimal analytic approach for covariate 

adjustment. When the optimal analytic approach is not known, outcome-blind simulations allow 

investigators to tailor analytic choices to the study at hand, while maintaining objectivity during 

the analytic process by not letting information on the treatment-outcome association contribute to 

decisions on model selection.  
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In this case study, the outcome blind simulations provided evidence that the use of collaborative 

learning when fitting large-scale PS models can help reduce bias in the estimated treatment 

effect. After applying the selected approach to the empirical example, we found that there was no 

evidence for increased risk of AKI between patients taking opioids vs NSAIDs. While hidden 

biases—including unmeasured confounding, selection bias, and misclassification—could impact 

our results, the sensitivity analysis suggests that bias would have to be large to explain away the 

observed null effect. 

Case study 2 illustrates how to apply the Causal Roadmap and rigorous thinking to a predictive 

modeling project, and a framework for making performance tradeoffs relative to a final goal 

(e.g., estimating a causal effect in a safety study). The Causal Roadmap encourages documenting 

the decisions and choices made during the course of the analysis, and how each can impact the 

statistical result, as well as the estimation of the true target parameter (both in the prediction task 

in the case study and the eventual safety analysis).  

This case study also highlights the role that outcome misclassification can play in the estimation 

of causal effects. While there were no identification assumptions necessary to estimate the 

conditional mean outcome given covariates (our target in the prediction task), the consistency 

assumption (that an individual’s potential outcome given their exposure history is equal to the 

observed outcome), which is crucial for causal inference on, e.g., a causal relative risk, may be 

violated if the outcome is misclassified.
38,39

 Attention to the consistency assumption can help 

determine the prediction performance metrics to focus on when determining if a phenotyping 

algorithm (or more generally, an outcome identification procedure) achieves satisfactory 

performance to use in the downstream safety study. 

 

CONCLUSION 

The Causal Roadmap is a useful tool to guide analytic decisions in safety studies (including for 

both causal inference and prediction). The roadmap guides breaking down a complex problem 

into manageable sub-parts that clearly describe 1) the chain of reasoning from study question to 

study finding; 2) which aspects of the analysis involve observable data and which require 

additional assumptions; and 3) sensitivity analyses to assess the validity of interpretation as a 

causal effect. By clearly describing each step in the analytic pipeline, all consumers of safety 

study results – including researchers, regulators, policymakers, and other decision-makers – 
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should be able to determine if the analysis provides the information required to make subsequent 

decisions. Many of the ideas that make up the Causal Roadmap are not new – it ties together a 

rich literature and history of making principled decisions in biomedical and public health 

research – but it provides a structured and reproducible approach to analyzing data from safety 

studies. Finally, real-world data (including claims and EHR) is becoming increasingly used in 

safety studies to help guide regulatory decision making. In this context, the Causal Roadmap can 

help facilitate transparent documentation and objective analytic decisions to help key 

stakeholders better understand how well analyses using real-world data meet the intended goals.  
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