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Immune checkpoint inhibitors (ICIs) modulate the body’s immune function to

treat tumors but may also induce pneumonitis. Immune checkpoint inhibitor-

related pneumonitis (ICIP) is a serious immune-related adverse event (irAE).

Immunotherapy is currently approved as a first-line treatment for non-small cell

lung cancer (NSCLC), and the incidence of ICIP in NSCLC patients can be as high

as 5%-19% in clinical practice. ICIP can be severe enough to lead to the death of

NSCLC patients, but there is a lack of a gold standard for the diagnosis of ICIP.

Radiomics is a method that uses computational techniques to analyze medical

images (e.g., CT, MRI, PET) and extract important features from them, which can

be used to solve classification and regression problems in the clinic. Radiomics

has been applied to predict and identify ICIP in NSCLC patients in the hope of

transforming clinical qualitative problems into quantitative ones, thus improving

the diagnosis and treatment of ICIP. In this review, we summarize the

pathogenesis of ICIP and the process of radiomics feature extraction, review

the clinical application of radiomics in ICIP of NSCLC patients, and discuss its

future application prospects.

KEYWORDS

radiomics, non-small cell lung cancer, immune checkpoint inhibitor-related pneumonitis,
deep learning, immunotherapy
1 Introduction

Currently, lung cancer remains the leading cause of cancer-related deaths, with

approximately over 20% of cancer patients dying from lung cancer (1, 2). Non-small cell

lung cancer (NSCLC) accounts for 85% of all lung cancer cases (3), and it primarily

includes adenocarcinoma and squamous cell carcinoma (4). Approximately 70% of NSCLC
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patients are diagnosed at an advanced stage (5), and for advanced

NSCLC, a comprehensive treatment approach is typically

employed, including radiation therapy, chemotherapy, targeted

therapy, and immunotherapy (6). Immunotherapy has emerged

as a novel treatment method and has gained significant attention

due to its ability to improve the overall survival and survival rates of

patients with NSCLC (7–9). Immunotherapy has made significant

progress in advanced NSCLC patients, with an unselected 5-year

overall survival rate (OS) of 20%, and a 5-year overall survival rate

of up to 40% in patients with high PD-L1 expression (10, 11).

However, while immunotherapy enhances patient survival, it can

also give rise to a series of immune-related adverse events (irAEs)

that involve the skin, respiratory system, digestive system, and

cardiovascular system (12–14). Immune checkpoint inhibitor-

related pneumonitis (ICIP) is the most common adverse

respiratory reaction caused by immunotherapy (15), and it is also

the primary cause of death resulting from immune-related adverse

events (16).

ICIP refers to the development of newly observed pulmonary

inflammatory infiltrates on medical imaging after the initiation of

immunotherapy, excluding other causes of pneumonitis during the

progression of cancer. A retrospective analysis showed that the

overall incidence of pneumonitis in cancer patients receiving

treatment with anti-programmed cell death-1/programmed cell

death ligand-1 (anti-PD-1/PD-L1) monoclonal antibodies or in

combination with anti-cytotoxic T-cell lymphocyte-4 monoclonal

antibody was 5% (3%-6%). The incidence of pneumonitis was

higher with combination immunotherapy compared to

monotherapy (17). Another systematic review and meta-analysis

of studies on melanoma, NSCLC, and renal cell carcinoma (RCC)

showed that ICIP is common in NSCLC,renal cell carcinoma, and

during combination therapy (18). In clinical trials, the incidence of

ICIP in NSCLC is generally 3% to 5% (19, 20), but in the real clinical

application environment, the incidence of ICIP in NSCLC can

range from 5% to 19% (15, 21–23).

Immune-related adverse events (irAEs), including ICIP, can

have a certain impact on the treatment plan, prognosis, and

treatment cost of patients with NSCLC. During the progression of

NSCLC, in addition to pneumonitis caused by immune therapy,

infections (24), radiotherapy (25), chemotherapy (26), and targeted

therapy (27) can also induce pneumonitis. Currently, there is no

established gold standard for diagnosing ICIP, and clinicians

usually make subjective inferences based on patient symptoms

and imaging findings (28). Diagnostic methods such as imaging

characteristics, clinical risk factors, bronchoalveolar lavage, and cell

culture lack specificity for diagnosing ICIP. The concept of

radiomics was first proposed by Professor Philippe Lambin in

2012 (29), was later elaborated upon by Kumar et al. (30). It

refers to the high-throughput extraction and analysis of advanced

imaging features from medical images such as CT, PET, or MRI.

Radiomics utilizes high-throughput data extraction techniques to

identify features in non-invasive imaging data and establish

predictive models, solving classification and regression challenges

in clinical practice (31). By using radiomics models, relevant

features can be screened from medical imaging data, transforming

qualitative clinical problems into quantitative ones, thus providing a
Frontiers in Immunology 02
more objective method for solving clinical problems (32). In recent

years, radiomics has been used for the diagnosis, pathological

classification, clinical staging, efficacy assessment, and prognosis

evaluation of NSCLC (33–36). With the development of precision

medicine, radiomics can further be used for predicting, diagnosing,

differentiating and prognostic analysis ICIP in NSCLC patients.

This can enable close monitoring and guide the diagnosis and

treatment of ICIP in NSCLC patient. This paper reviews the

pathogenesis of ICIP and the process of radiomics feature

extraction. It aims to conduct a comprehensive analysis of the

clinical studies applying radiomics to NSCLC patients with ICIP. In

addition, this review discusses the limitations of these studies and

proposes potential approaches to address them.
2 Immunotherapy and ICIP in patients
with NSCLC

Currently, immune checkpoint inhibitors (ICIs) used for

NSCLC mainly include Nivolumab, Pembrolizumab, Cemiplimab,

Atezolizumab, Avelumab, Durvalumab, and Ipilimumab (37, 38).

In addition to monotherapy, ICIs can also be used in combination

with chemotherapy drugs, targeted drugs, and anti-angiogenic

drugs (39). The overall response rate of immune therapy in

NSCLC is approximately 20-30% (40). A phase 1b multicenter

trial showed that the combination of Durvalumab and Osimertinib

in the treatment of EGFR mutation-positive NSCLC patients can

increase the incidence of interstitial lung disease (ILD)-related

adverse events (AE) (35%) (41). ICIs have been a hot topic in

cancer treatment research in recent years, primarily targeting

programmed cell death-1 (PD-1) or programmed cell death

ligand-1 (PD-L1) and cytotoxic T-lymphocyte-associated antigen-

4 (CTLA-4) in the body’s immune process (42). PD1/PD-L1

primarily suppresses immune responses by inhibiting intracellular

signal transduction in effector T cells and regulatory T cells, mainly

by reducing the activity of phosphoinositide 3-kinase (PI3K) (43,

44). Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and

CD28 have opposing immune regulatory functions, with CTLA4

binding more easily to B7 than CD28, thus preventing CD28 from

binding to B7 and inhibiting CD28-mediated T cell proliferation

process (45, 46). The mechanism of ICIP is still not fully

understood,but ICIs can induce immune dysregulation while

targeting tumor cells. Immune dysregulation mainly involves T-

cell imbalance, increased production of autoantibodies, and

dysregulation of inflammatory cytokines (47). Following anti-

PDL1/PD1 immune therapy, infiltration of Th1 cells [most of

which express PD-1 (48)] can be observed in corresponding

tissues (49, 50). Immune therapy limits the conversion of Th1

cells into Treg cells (51), and a decrease in Treg cells may lead to

immune dysfunction. Anti-PD-1 therapy can enhance the anti-

tumor function of Th17 cells (52, 53). ICIP may also be associated

with autoantibodies, as studies have shown an increase in pre-

existing and newly developed autoantibodies following immune

checkpoint inhibitor treatment (54, 55). Inflammatory markers

such as C-reactive protein (CRP) and IL-6 can induce excessive

activation of the immune system (56). The serum levels of IL-17 are
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increased in patients with NSCLC who develop ICIP after

immunotherapy (57). The potential risk factors for ICIP include

patient baseline characteristics, disease features, and treatment

management (58). These risk factors have a high correlation with

ICIP and can be combined with radiomics features to build

multimodal models (59, 60).
3 Screening for radiomic features
of ICIP

ICIP essentially refers to an interstitial inflammation. The

radiological manifestations of ICIP are similar to those of

conventional pneumonia, including ground-glass opacities,

consolidations, fibrous bands, thickening of interlobular septa,

traction bronchiectasis, small nodular opacities, and reticular

opacities (61–63). ICIP can be classified based on its radiological

manifestations, including cryptogenic organizing pneumonia

(COP), non-specific interstitial pneumonia (NSIP), acute

interstitial pneumonia/acute respiratory distress syndrome (AIP/

ARDS), and hypersensitivity pneumonitis (HP) (64). ICIP does not

exhibit specific features in chest medical imaging pictures (61), and

even radiologists with decades of experience cannot visually

differentiate ICIP with the naked eye. The heterogeneity of tumor

cells at the cellular level is closely related to the radiological features

present in medical imaging data (65). Radiomics employs computer

algorithms to extract high-throughput information from medical

imaging data and transform qualitative data into quantitative data

(32). Radiomics is divided into conventional radiomics and deep

learning-based radiomics.
3.1 Conventional radiomics
feature selection

Conventional radiomics requires manual extraction and

selection of radiomics features. Conventional radiomics features

include size, shape, and texture features, with texture features

further divided into first-order, second-order, and higher-order

texture features (66, 67). Extracting too many radiomics features

can lead to model overfitting, hence the need to screen hundreds or

thousands of features (68). Common conventional radiomics

feature selection methods include the Least Absolute Shrinkage

and Selection Operator (LASSO) (69), Principal Component

Analysis (PCA) (70), and Minimum Redundancy Maximum

Relevance (MRMR) (71). Conventional radiomics methods may

overlook higher-level features when extracting radiomics features.
3.2 Deep learning radiomics
feature selection

Research has shown that deep learning features are typically

more representative and robust than manually designed traditional

radiomics features (72). Deep learning radiomics, using
Frontiers in Immunology 03
architectures like CNNs and Transformers, employ forward

propagation for computations and data transformations, yielding

predictions. The network’s training hinges on backpropagation,

which calculates gradients based on prediction error. These

gradients iteratively refine the network’s parameters. This

dynamic between forward and backpropagation enables

automatic extraction of radiomics features, revealing advanced

radiomics traits.

3.2.1 CNNs
CNNs are the most classical deep neural network architecture.

GoogLeNet/Inception, ResNet, VGGNet, and DenseNet are

commonly used CNN models in lung cancer radiomics (73).

VGGNet (74) are known for their simplicity, using only 3x3

convolutions to build deep networks, which improved accuracy.

GoogLeNet/Inception (75) deepens network architectures and

uniquely extracts and merges multi-scale image features using its

Inception modules, optimizing computational efficiency without

compromising performance. However, both VGGNet and

GoogLeNet/Inception encounter a common challenge: the

potential for vanishing or exploding gradients as the CNN

architecture deepens. This can lead to suboptimal weight updates

in earlier layers, consequently diminishing the model’s

performance. ResNet (76) employs Batch Normalization and skip

connections to address the vanishing or exploding gradient

problem. This approach effectively mitigates the performance

degradation associated with internal covariate shift, which arises

from scale variations in input data and layer computations.

DenseNet (77), building upon ResNet’s advantages, introduces

dense connectivity for enhanced feature reuse and gradient flow.

This achieves parameter efficiency and superior performance. It

employs a ‘growth rate’ for layer size and transition layers for

feature-map management. However, dense connections elevate

computational demands and memory usage. Issues like feature

redundancy and increased complexity can arise. Kundu et al.

developed an integrated model for the early diagnosis of

pneumonia using GoogLeNet, ResNet-18, and DenseNet-121 (78).

The model was evaluated using chest X-ray images from the

Kermany dataset and the RSNA dataset, achieving accuracies of

98.81% and 86.86%, respectively.

3.2.2 Transformers
The Transformer, originally designed for Natural Language

Processing (NLP) tasks, has been adapted for computer vision,

capturing intricate contextual relationships within images. In some

applications, especially medical image representation, Transformer-

based models have demonstrated competitive, if not superior,

performance compared to traditional CNNs (79–82). Swin

Transformer is a novel Transformer model proposed by Ze Liu

et al. in 2021. This model is a hierarchical vision transformer using

shifted windows, which enables the application of Transformers

from the language domain to the visual domain (83). Ma, X et al.

(84) retrospectively collected CT data from 612 patients with lung

adenocarcinoma, which were divided into a training set (n=189), an

internal validation set (n=123), and an external test set (n=108). In
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this study, deep learning model based on Swin Transformer,

conventional radiomics model, and clinical semantic model were

employed to predict lymph node metastasis. The results showed

that the deep learning model based on Swin Transformer

outperformed both clinical semantic model and conventional

radiomics model in all three datasets.
4 Radiomics application in patients
with NSCLC who have ICIP

4.1 Radiomics for ICIP in NSCLC

Radiomics models can predict whether NSCLC will develop

ICIP before immunotherapy, diagnose and differentiate patients

with pneumonitis caused by immunotherapy, and predict the

survival prognosis of NSCLC patients with ICIP.

4.1.1 Radiomics for predicting the risk of ICIP
in NSCLC

ICIP affects the survival rate and outcomes of patients with

NSCLC. Early prediction of whether immunotherapy can cause

pneumonitis in NSCLC patients and the selection of the most

suitable candidates for immunotherapy can improve the survival

outcomes of NSCLC patients. In 2016, Rivka R. Colen et al. (85) first

used a radiomics model to predict ICIP (immunotherapy-induced

pneumonitis). This study predicted the risk of ICIP in 32 cancer

patients. Traditional radiomic methods were used to construct the

predictive model, and CT images were segmented using 3Dslicer. A

total of 1860 radiomic texture features based on histogram and Gray

Level Co-occurrence Matrix (GLCM) were extracted. The MRMR

method was applied to select the most relevant features for

predicting ICIP. The method achieved a perfect accuracy of 100%

(p=0.0033). However, due to the small number of cases in this

study, the results may not be representative. Subsequently, Tan

Peixin et al. (59) used a multimodal deep learning model to predict

the risk of ICIP in 48 lung cancer patients (Including 47 cases of

NSCLC), with an equal ratio of ICIP to non-ICIP patients. This

study, for the first time, constructed a multimodal deep learning

model for ICIP prediction based on nine clinical features and

radiomic features. The deep learning model (3D ResNet18)

employed in this study consists of 18 convolutional layers and

corresponding fully connected layers. In contrast to conventional

ResNet models, this model is specifically designed for processing

three-dimensional data. The research employed two-stage transfer

learning and contrastive learning strategies to enhance the

performance of the prediction model. Ultimately, the model

achieved an area under the curve (AUC) of 0.918 through five-

fold cross-validation. M. Cheng et al. (86) also developed a multi-

modal nomogram model, based on clinical and deep radiomics

features, to predict the risk of ICIP in 141 lung cancer patients

(Including 128 cases of NSCLC). The model’s predictions for ICIP

were presented using a nomogram. To enhance the model’s

performance and accuracy, they optimized the ResNet-50-V2

model using the Feature Pyramid Network (FPN). The study
Frontiers in Immunology 04
employed a random allocation method to divide patients into a

training group (n=113) and a testing group (n=28). The results

demonstrated that, both in the training group (0.910 vs. 0.871 vs.

0.778) and the testing group (0.900 vs. 0.856 vs. 0.869), the

performance of the multi-modal nomogram model was superior

to that of both radiomics and clinical models.

The toxic side effects of immunotherapy and radiotherapy

overlap. The combination of immunotherapy and radiotherapy

increases the incidence of pneumonitis (87). A KEYNOTE-001

study demonstrated that the risk of developing pneumonitis was

higher with the combined use of immunotherapy and radiotherapy

(63%) compared to using immunotherapy alone (40%) (88).

Benjamin Spieler et al. (60) conducted an animal experiment in

which Lewis lung carcinoma (LLC) cells were injected

subcutaneously into 19 genetically identical (C57BL/6) mice.

Among them, 15 mice received a combined treatment of

radiation and immunotherapy, while the remaining 4 mice served

as a control group. The mice in the treatment group were classified

into two categories based on the median value of CD45 infiltration

in the lungs. The experiment integrated pre-treatment radiomics

features, NLR, and GM-CSF to construct a multimodal prediction

model. CT and MRI imaging techniques were used, and 92 CT

features and 92 MRI features were extracted. These features

included geometric features, first-order histogram features,

second-order joint probability features (such as co-occurrence

matrix), and third-order joint probability features. The third-

order joint probability features were developed by the researchers

themselves. The experiment employed double cross-validation and

demonstrated that the predictive performance of the model

constructed based on MRI (AUC=0.834) was superior to that of

the model constructed based on CT imaging (AUC=0.787). Linlin

yang et al. (72) conducted a retrospective study and developed a

Deep Graph Integrative Model (DG) to predict the risk of

pneumonitis in NSCLC patients undergoing combined

immunotherapy and radiotherapy. They employed two pre-

trained CNN models (3D UNet) to extract features separately

from tumor and lung volumes in the CT images. The extracted

features were then selected and fused using the Graph Attention

Layer (GAT) to construct the DG model. Using a five-fold cross-

validation approach, the training set consisted of 195 cases (50

symptomatic pneumonitis), and the validation set consisted of 48

cases (12 symptomatic pneumonitis). The study results

demonstrated that the DG model (AUC=0.823) outperformed

conventional CT radiomics model (AUC=0.743), 3DUNet-based

deep learning model (AUC=0.761), and DG models without GAT

(AUC=0.796) (Table 1 reports the cases mentioned in

this paragraph).
4.1.2 Radiomics for diagnosis and differential
diagnosis of ICIP in NSCLC

In patients with NSCLC receiving immunotherapy,

pneumonitis can be caused by factors other than immunotherapy.

To determine whether Summary of some radiomic studies for

predicting cancer treatment-related pneumonitis. is attributable to

immunotherapy, some studies have used radiomics for the
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diagnosis of ICIP. The D. De Ruysscher team presented two studies

on distinguishing ICIP and other causes of pneumonitis (OP) at the

European Society for Medical Oncology (ESMO) in 2021 (90, 91).

One study enrolled a total of 450 stage IV non-small cell lung cancer

patients for immunotherapy treatment. CT imaging was performed

six weeks after immunotherapy, and a total of 837 radiomics

features were extracted from the images. Recursive Feature

Elimination (RFE) was applied for feature selection, followed by a

coherence analysis. Ultimately, 42 radiomics features with the

highest correlation were selected. A logistic regression model was

constructed using these features, achieving an AUC of 0.91 (95%

confidence interval: 0.75 to 0.98). In another study, 556 stage IV

NSCLC patients were recruited from six centers, with one center

used for external validation. Clinical and radiomic features were

used to construct clinical (AUC=0.99), radiomic (AUC=0.65), and

combined models (AUC=0.99). The important predictive factors in

the combined model are number of comorbidities, type of anti-PD

(L)1 medication, dyspnea, and Gray Level Co-occurrence Matrix

Inverse Difference Moment Normalized (GLCM IDMN) . In 2023,

D. De Ruysscher et al. (92) published a retrospective study aimed at

differentiating between ICIP and OP using clinical and radiomics

features. They delineated seven different Regions of Interest (ROI)

using either deep learning-based automatic segmentation or manual

segmentation methods, and found that the radiomics model

performed best when based on a 75mm spherical ROI. The first-

order, Gray Level Co-occurrence Matrix (GLCM), Gray Level Run

Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM),

and Gray Level Dependence Matrix (GLDM) features were
Frontiers in Immunology 05
extracted from the CT images. An unsupervised approach,

LASSO regression with 5-fold cross-validation, and stepwise

backward logistic regression were employed to select radiomic

features and construct the radiomics model, with model

parameters being fitted using the original data. Through bootstrap

validation, the performance of the radiomics model (AUC=0.83)

was significantly superior to that of the clinical model (AUC=0.66).

Among treatment-related pneumonitis of NSCLC, the

incidence of radiation therapy pneumonitis and ICIP is higher

than that of pneumonitis caused by other treatments. Clinicians

often face challenges in distinguishing between pneumonitis caused

by radiation therapy and immunotherapy, making it difficult for

them to determine the next course of treatment for NSCLC patients.

There have been reports of using radiomics models to directly

differentiate between radiation-induced pneumonitis (RIP) and

ICIP in NSCLC patients (93, 94). Chen, X. G. et al. (93)

retrospectively collected CT data from 82 NSCLC patients with

pneumonitis (n = 23 after immunotherapy, n = 29 after

radiotherapy, and n = 30 after combined immunotherapy and

radiotherapy). The data from the immunotherapy and

radiotherapy groups were used to train a random forest model,

while the data from the combined immunotherapy and

radiotherapy group were used for model testing. Seven radiomics

features were selected using LASSO to construct the model, and

hyperparameters were optimized using grid search. It was

ultimately found that a machine learning model built solely on

radiomics features could differentiate pneumonitis caused by ICI

and RT in the training set (AUC = 0.76). The study also found that
TABLE 1 Summary of some radiomic studies for predicting cancer treatment-related pneumonitis.

Study Study
design

Modality Treatment
type

Number of
prediction
targets

Tumor
Type

Features
type

Features
selection

Model
algorithm

Type of
validation

Colen
et al.
(2018)
(85)

Retrospective
Single-center

CT ICI (n=32) 2 Cancer Handcrafted
radiomic

MRMR Anomaly
Detection
Algorithm

LOOCV

Tan et al.
(2022)
(59)

Retrospective
Single-center

CT ICI (n=48) 24 Lung
Cancer

Clinical; Deep
radiomic

CNN CNN 5FCV

Cheng
et al.
(2023)
(86)

Retrospective
Single-center

CT ICI (n=141) 40 Lung
Cancer

Clinical;Deep
radiomic

CNN CNN Holdout

Spieler
et al.
(2022)
(60)

Animal
experiment

CT;MRI RT+ICI (n=15) 8 Lewis CBC;
cytokine;

Handcrafted
radiomic

ANOVA LR 2FCV

Yang et al.
(2022)
(72)

Retrospective
Single-center

CT RT+ICI
(n=243)

62 NSCLC Deep
radiomic

CNN DG 5FVC

Kawahara
et al.
(2021)
(89)

Retrospective
Single-center

CT RT (n=77) 32 NSCLC Handcrafted
radiomic

LASSO LR 5FCV
CT, Computed Tomography; ICI, Immune Checkpoint Inhibitor; MRMR, Minimum Redundancy Maximum Relevance; LOOCV, Leave-One-Out Cross Validation; CNN, Convolutional Neural
Network; 5FCV, Five-Fold Cross Validation; MRI, Magnetic Resonance Imaging; RT, Radiation Therapy; CBC, Complete Blood Count; ANOVA, Analysis of Variance; LR, Logistic Regression;
2FCV, Two-Fold Cross Validation; NSCLC, Non-Small Cell Lung Cancer; DG, Deep Graph Integrative Model; LASSO, Least Absolute Shrinkage and Selection Operator.
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ICIP was more likely to occur bilaterally compared to RIP. Jun

Cheng et al. (94) extracted three types of texture features from CT

images, namely intensity histogram, gray level co-occurrence matrix

(GLCM) based, and bag-of-words features. They constructed

discrimination models using each of these three features. The

radiomics model was built using datasets from patients receiving

either immunotherapy or radiotherapy, and the dataset of

combined immunotherapy and radiotherapy was employed for

model testing. The discrimination model based on bag-of-words

features achieved an AUC of 0.937 through 10-fold cross-

validation. Qingtao Qiu et al. (95) conducted a retrospective study

on 126 stage IV NSCLC patients with pneumonitis. They extracted

837 features from CT images and performed feature selection using

LASSO. Eleven selected features were used to construct a

nomogram model, which achieved an AUC of 0.901 in the

validation set (Table 2 reports the cases mentioned in

this paragraph).

4.1.3 Radiomics for analyzing the prognosis of
patients with ICIP in NSCLC

With the development of precision medicine, clinicians are

increasingly focusing on personalized treatment for cancer

patients.Currently, there is a large body of research on using

radiomics models to predict the prognosis of immunotherapy in

patients with NSCLC. Some studies incorporate clinical features on

top of radiomics characteristics to enhance the accuracy of the

prediction models (36, 96–102). Michael R. Sayer et al. (103)

studied the impact of immune-related adverse events, relative

occurrence time, and previous tyrosine kinase inhibitor (TKI)

treatment on the performance of prognostic models for NSCLC

patients treated with ICIs. The study found that Immune-related
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adverse events (irAEs) are important predictive factor for the

survival prognosis of NSCLC patients. Therefore, in addition to

predicting the prognosis of immunotherapy in patients with

NSCLC, radiomics models can also be further utilized to predict

the prognosis of NSCLC patients with ICIP.
4.2 Radiomics for other treatment-related
pneumonitis in NSCLC

In order to achieve the optimal clinical benefits, patients with

NSCLC are typically treated with a comprehensive treatment

approach. However, radiotherapy (25), chemotherapy (26),

targeted therapy (27, 104–106), and immunotherapy can all

potentially lead to pneumonitis, which is known as treatment-

related pneumonitis (107, 108). Patients who have received

thoracic radiotherapy may experience radiation recall

pneumonitis (RRP) after receiving anticancer drugs such as

chemotherapy medications (109). Pneumonitis caused by taxanes

(110) and platinum drugs is relatively rare. The overall incidence of

targeted therapy-related pneumonitis is also low (1.2%) (106). The

incidence of RRP induced by immunotherapy is 18.8% (with a

median time of 368.5 days from the end of radiotherapy to the start

of immunotherapy) (111). Radiomics models can predict and

identify the treatment approaches that lead to pneumonitis in

NSCLC patients, enabling early modification of the treatment

plan to avoid or mitigate pneumonitis symptoms. Models

constructed based on radiomics features and dose measurement

variables can be used for predicting RIP in NSCLC patients. Studies

have shown that a predictive model combining radiomics and dose

measurement variables outperforms the use of radiomics alone (89,
TABLE 2 Summary of some radiomic studies for pneumonitis diagnostic and differential diagnosis.

Study Study
design

Modality Treatment Type Tumor
Type

Features
type

Features
selection

Model
algorithm

Type of
validation

Romita et al.
(2021)
(90)

Prospective
Multi-center

CT ICI (n=450) IV stage
NSCLC

Handcrafted
radiomic

RFE LR External
Validation

Tohidinezhad
et al.
(2021)
(91)

Prospective
Multi-center

CT ICI (n=566) IV stage
NSCLC

Clinical;
Handcrafted
radiomic

—— LR External
Validation

Tohidinezhad
et al.
(2023)
(92)

Retrospective
Multi-center

CT ICI (n=566) IV stage
NSCLC

Clinical;
Handcrafted
radiomic

Lasso LR Bootstrapping
Validation

Chen et al.
(2021)
(93)

Retrospective
Single-center

CT RT (n=29); ICI
(n=23); RT+ICI

(n=30)

NSCLC Clinical;
Handcrafted
radiomic

T-test; LASSO RF Holdout

Cheng et al.
(2022)
(94)

Retrospective
Single-center

CT ICI (n=28); RT
(n=31); ICI+RT

(n=14)

NSCLC Clinical;
Handcrafted
radiomic

Two-Sided U
Test

SVM Holdout

Qing et al.
(2022)
(95)

Retrospective
Single-center

CT RT (n=79); ICI (n=57) NSCLC Clinical;
Handcrafted
radiomic

LASSO LR Holdout
CT, Computed Tomography; ICI, Immune Checkpoint Inhibitor; NSCLC, Non-Small Cell Lung Cancer; RFE, Recursive Feature Elimination; LR, Logistic Regression; LASSO, Least Absolute
Shrinkage and Selection Operator; RF, Random Forest; SVM, Support Vector Machine; RT, Radiation Therapy.
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112) (Table 1). Currently, dose measurement variables are

considered important predictive factors for radiation-induced

pneumonitis in NSCLC (113).
5 Conclusion and prospects

Currently, the radiomics models for NSCLC patients with ICIP

primarily focus on diagnostic and differential diagnostic models.

The predictive and prognostic analysis models for ICIP lack strong

generalizability due to the complexity of cancer types used during

model training. To improve model performance, some studies have

incorporated highly relevant clinical features in addition to

radiomics data. The accuracy of radiomics prediction remains

insufficient, as immunotherapy is an emerging treatment

approach with a limited number of NSCLC patients receiving

immunotherapy, which is inadequate to support the development

of a stable and high-performance radiomics model by computer

algorithms. There is no gold standard for the diagnosis of ICIP, and

clinical doctors primarily rely on patients’ clinical symptoms,

pathogen examinations, and imaging manifestations for diagnosis.

In the process of acquiring radiomics features, there is a lack of

standardized protocols for slice thickness, imaging standards, and

delineation of ROI in radiographic images, resulting in low

reproducibility. To enhance the reproducibility of radiomics

models, it is possible to construct an open-source radiomics data

platform to compensate for the insufficient amount of data. The

Cancer Imaging Archive (TCIA) is a large-scale cancer medical

imaging archive hosting platform that allows for the download of

open-source imaging data. The software tools ITK-SNAP (114), 3D

Slicer (115), etc., can be used to delineate the ROI in radiological

images. In order to establish standardized delineation criteria,

software packages can be utilized for semi-automatic or fully

automatic segmentation of the target area (116). Efficient and

unified standards should be developed for each step of radiomics

analysis. By doing so, the diagnostic and treatment process for

NSCLC patients with ICIP will become more targeted and aligned

with the principles of precision medicine.
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