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Robust control for a tracked
mobile robot based on a
finite-time convergence zeroing
neural network

Yuxuan Cao*, Boyun Liu and Jinyun Pu

College of Power Engineering, Naval University of Engineering, Wuhan, China

Introduction: Since trackedmobile robot is a typical non-linear system, it has been

a challenge to achieve the trajectory tracking of tracked mobile robots. A zeroing

neural network is employed to control a tracked mobile robot to track the desired

trajectory.

Methods: A new fractional exponential activation function is designed in this

study, and the implicit derivative dynamic model of the tracked mobile robot is

presented, termed finite-time convergence zeroing neural network. The proposed

model is analyzed based on the Lyapunov stability theory, and the upper bound

of the convergence time is given. In addition, the robustness of the finite-time

convergence zeroing neural network model is investigated under di�erent error

disturbances.

Results and discussion: Numerical experiments of tracking an eight-shaped

trajectory are conducted successfully, validating the proposed model for the

trajectory tracking problem of trackedmobile robots. Comparative results validate

the e�ectiveness and superiority of the proposed model for the kinematical

resolution of tracked mobile robots even in a disturbance environment.

KEYWORDS

tracked mobile robot, trajectory tracking, finite-time convergence, zeroing neural

network, robust

1. Introduction

At present, robots are being widely used in marine exploration (Fang et al., 2022; Wang
et al., 2022), industrial manufacturing (Šegota et al., 2021; Truong et al., 2021), military
applications (Bistron and Piotrowski, 2021; Rawat et al., 2021), and other fields. Tracked
mobile robots (TMRs) show their wide adaptability and traffic ability to complex terrain
(Gu et al., 2021). The demand for their motion autonomy and intelligence is increasing.
Therefore, the control issue of trajectory tracking has been a research hotspot.

However, a TMR is a typical nonlinear system, and its model parameters change with its
motion. In addition, the model is vulnerable to various interferences. The superposition of
many factors poses a great challenge to the control algorithm. Therefore, a feasible solution
with outstanding convergence performance as well as robustness to handle the nonlinear
time-varying control issue of the TMR is imperative in practice. Numerous methodologies
and techniques for addressing the tracking control issues of robot systems have been
extensively studied and reported, including backstepping control (Ji et al., 2002; Gao et al.,
2022; Sabiha et al., 2022), sliding mode control (Ahmed et al., 2021; Yin et al., 2021), fuzzy
control (Lara-Molina and Dumur, 2021; Li et al., 2022), and neural network (Ding et al.,
2018; Jin and Qiu, 2022).
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Among various kinds of solutions, neural network approaches
have shown huge advantages in terms of parallelism and easy
implementation by hardware (Chen and Zhang, 2018). As
a powerful approach for solving time-varying problems, the
conventional zeroing neural network (CZNN) proposed in Zhang
et al. (2002) has been thoroughly investigated in recent years
(Miao et al., 2015; Xiao et al., 2017; Gerontitis et al., 2022; Sun
et al., 2022; Zhang and Zheng, 2022). Ma et al. (2021) proposed
a new ZNN model to solve the bound-constrained time-varying
nonlinear equation, which has been applied to the mobile robot
manipulator. Chen et al. proposed a multi-constrained ZNN. The
application on the mobile manipulator for nonlinear optimization
control demonstrated its physical effectiveness (Chen et al., 2021).
Although CZNN can converge to the analytical solution with time,
the convergence time is infinite in theory, which is impossible in
reality. For an actual situation, the convergence time should be
as short as possible. Moreover, CZNN is sensitive to noise and
other disturbances. However, the system is susceptible to external
disturbances and possible internal disturbances.

Many efforts have been made to address the shortcomings
of CZNN. Hu et al. (2020) developed a noise tolerance ZNN
model, which successfully tracked the desired path of the mobile
manipulator with high accuracy under perturbation. Chen and
Zhang (2018) proposed a robust ZNN model for solving the
inverse kinematics problem of mobile robot manipulators . Luo
et al. proposed a new hyperbolic tangent varying-parameter
ZNN. Furthermore, trajectory tracking tasks of the mobile robot
substantiate the outstanding convergence of hyperbolic tangent
variant-parameter robust ZNN (HTVPR-ZNN) schemes (Luo et al.,
2022). Chen et al. (2020) proposed a ZNN model with a super
twisting algorithm that realized finite-time convergence and anti-
disturbance, proving its effectiveness and superiority in the tracking
control of the mobile robot manipulator. Lin et al. utilized a new
design formula of noise resistance and finite-time convergence
to establish a new ZNN. Compared with CZNN, the presented
model was nonsensitive to various types of external disturbances
(Xiao et al., 2019). Yan et al. (2019) proposed several improved
ZNN models that allow nonconvex activation functions and have
accelerated finite-time convergence.

However, the models and approaches reviewed above might
potentially not be time-efficient and simultaneously robust for
direct applications to a tracking control problem of TMR due to the
requirement of timeliness as well as the influence of the disturbance
environment. Moreover, it is worth pointing out that the robustness
and finite convergence of ZNN models are related to the design
of appropriate activation functions. The sign-bi-power function
mentioned above endows ZNN with finite-time convergence, but
it also contains a sign function, which may lead to singularity and
discontinuity. Additionally, the performance under disturbance has
not been not fully studied. Therefore, it is necessary to design a
new activation function to obtain anti-interference and outstanding
convergence.

Under the framework of the ZNN, a finite-time convergence
ZNN, termed FCZNN, is proposed in this study. First, a
new fractional evolution formula is designed to accelerate the
convergence speed and enhance its robustness, which can converge
to the desired trajectory within a finite-time under four common

disturbances. To better demonstrate the contribution of this study,
some existing models are introduced for comparison to highlight
the main differences, and the corresponding comparison results are
presented in Section 4.

The rest of this paper is organized into four sections. Section
2 presents a novel tracking control method based on FCZNN
models for TMR. Section 3 validates the finite convergence and
other properties. Section 4 illustrates the corresponding simulation
results of the proposed method and presents some existing models
for comparison. Section 5 concludes the entire paper.

Before ending this section, the main contributions of this study
are summarized as follows:

• A new fractional exponential activation function is proposed
in this study and investigated to solve the trajectory tracking
issue. Compared with the tunable activation function, the
singularity and sign function can be effectively avoided by
reasonably selecting the design parameters.

• The finite-time convergence and robustness of the proposed
FCZNN are validated theoretically based on the Lyapunov
stability theory.

• Simulation experiments are conducted to present the
verification and superiority of the FCZNN when compared
with some existing models. Additionally, the validity of the
theoretical analysis is confirmed based on the corresponding
results.

2. Preliminaries

Since the actual situation is complicated, it is difficult to reflect
it fully. Appropriate simplification is necessary. First, the main
application scenario of our TMR is in a structured environment,
such as indoors or on roads, and it can be analyzed on a
two-dimensional plane. Furthermore, the difference in grounding
pressure and the mass distribution of the TMR affect the kinematic
model of the TMR. To simplify the kinematics model, some
assumptions are declared for the TMR:

Assumption 1. The TMR moves on the flat terrain with even

tracking grounding pressure.

Assumption 2. The centroid of the TMR is located at the center of

the robot.

In the global XOY coordinate system, the schematic diagram
of the motion of the TMR is presented in Figure 1. Some notations
mentioned in Figure 1 are listed in Table 1.

First, we introduce a model-free tracking control method for
the TMR relying only on user-defined input and sensory output
without knowing any information about the model parameters of
the TMR. The kinematics model of the TMR is depicted as

q̇(t) = J(θ)u(t) (1)

where q(t) = [x, y, θ]T is the generalized coordinates of
the TMR, q̇(t) is the time-derivative of q(t) , u(t) = [v,ω]T is the
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FIGURE 1

Schematic diagram of the motion of the TMR.

TABLE 1 Notations in Figure 1.

Notation Meaning

xoy The coordinate system attached to the TMR

q(x, y, θ) The actual position

q(xd , yd , θd) The desired position

o The centroid of the TMR

θ The heading angle of the TMR

vo The velocity of the TMR

ωo The angular velocity of the TMR

control input vector, and J(θ) = [cos θ , 0; sin θ , 0; 0, 1] is the full-
rank velocity transformation matrix. To obtain the solution of the
matrix equation, the FCZNN model is presented to solve this kind
of a robot trajectory control issue.

A time-varying desired path equation qd(t) is offered for
tracking using the TMR,

q̇d(t) = J(θd)ud(t) (2)

where q̇d(t) denotes the time derivate of qd(t),
J(θd) = [cos θd, 0; sin θd, 0; 0, 1] is the desired full-rank velocity
transformation matrix, and ud(t) = [vd,ωd]

T is the desired control
input vector. The mapping relation in real time t is expressed
as q(t) → qd(t) . The mapping at the velocity level is shown as
q̇(t) → q̇d(t)

The following error function is defined in the global coordinate
system:

qe(t) = q(t)− qd(t) (3)

The error is generally defined in the coordinate system of then
TMR; then, one has

e(t) = Tqe(t) (4)

where e(t) = [ex, ey, eθ ]T and T =
[cos, sin θ , 0; sin θ ,− cos θ , 0; 0, 0, 1] is the coordinate
transformation matrix, which converts the tracking error defined
under the inertial coordinate system to the body coordinate system.

In view of the design rules of the ZNN, the following formula is
given:

de(t)

dt
= −Ŵ8(e(t)) (5)

where 8(e(t)) denotes an activation function vector with
various type, linear type, power type, etc. Theoretically, any
monotonically increasing odd function can be the activation
function candidate. Ŵ is a positive-definite matrix for scaling the
convergence rate of the solve process. Based on the related derivate
theory, Ŵ should be set as large as possible within the tolerance
limit of the hardware. For ease of discussion, Ŵ is set as a diagonal
matrix with the same element, that is, Ŵ = γ I, where I is
the identity matrix. Additionally, Ŵ is a constant scalar-valued
parameter matrix. Then,

ė(t) = −γ8(e(t)) (6)

where γ is the parameter that adjusts the convergence rate.
Moreover from (13), one promtly has

ė(t) = Ṫqe(t)+ Tq̇e(t) (7)

3. Model design and theoretical
analysis

In this section, a finite-time and robust unified framework
synthesized by adopting a new activation function is proposed.
The relative theorems and proofs about the corresponding features,
namely, of finite-time convergence, global stability, and robustness
in the disturbance environment, are explored to demonstrate the
effectiveness of the proposed FCZNNmodel.

Considering (1), (6), and (7), one can obtain

T(J(θ)u(t)− q̇d(t))+ Ṫ(q(t)− qd(t)) = −γ8(e(t)) (8)

Evidently, the neural dynamics Equation (8) makes full use
of the pose information and its derivate of the TMR, which
contributes to solving the trajectory tracking control problem.

To demonstrate the anti-interference performance of
the proposed FCZNN, some theorems about robustness are
investigated in this section. Generally, the synthesized error caused
by the disturbances is inevitable for any electronic system and
neural dynamics. The synthesized error caused by hardware
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implementation off-set errors can be treated as dynamic non-
disappearing noise in linear or sine form. The one caused by
the instantaneous decline of power sources or other external
disturbances can be regarded as dynamic disappearing noise in
exponential form. Then, the implicit dynamic Equation (8) with
the synthesized error is reformulated

T(J(θ)u(t)− q̇d(t))+ Ṫ(q(t)− qd(t)) = −γ8(e(t))+W(t) (9)

where W(t) ∈ R3 denotes the synthesized error (could be
constant or time-varying) with each entry wi(t) ≤ w for i = 1, 2, 3,
where w ≥ 0 is an unknown constant.

3.1. Design of the FCZNN

As mentioned before, the choice of error evolution formula has
a crucial influence on the characteristics of the system. Inspired by
Xiao et al. (2017), a new fractional exponential activation function
is proposed for constructing the error evolution formula.

8(x) = κ1f
p/p1 (x, t)+ κ2f (x, t)+ κ3f

p1/p(x, t) (10)

where f (x, t) is the set of increasing odd functions and
design parameters p and p1 denote positive odd integer with p > p1,
κ1 > 0, κ2 > 0 , κ3 > 0. Evidently, three terms of the activation
function are odd functions the sum of the three terms is still a
monotonically increasing odd function. For analysis, we define
f (x, t) = x. Then, the error evolution formula is given as

de(t)

dt
= −γ

(

κ1e
p/p1 (t)+ κ2e(t)+ κ3e

p1/p(t)
)

(11)

where γ is defined as before. The Equation (9) can be
reformulated as

u(t) = J†(θ)T−1[−γ8(e(t))− Ṫ(q(t)− qd(t))+ Tq̇d(t)+W(t)]
(12)

where J†(t) denotes the pseudo inverse of J(t).

Initialize: TMR initial state vector combined velocity vector

q̇(0);
Choose: The tracking duration Tf and design parameters γ

and κi=1,2,3 ;
Input: The desired position qd(t) of tracking task;

1: if t < Tf then

2: Calculate: The desired path as q̇d(t) ;

3: Read: The real time TMR actual position q(t);

4: Calculate: The control-signal by using neuron

dynamic equation

5:

u(t) = J†(θ)T−1[−γ8(e(t))− Ṫ(q(t)− qd(t))+ Tq̇d(t)+W(t)]

6: Update: The TMR position in the next moment

7: Output: The actual trajectory q(t)

8: else

9: Stop: TMR trajectory tracking task finished.

10: endif

Algorithm 1. Tracking control of the TMR via the FCZNN.

The detailed algorithm description about the FCZNNmodel for
the TMR tracking control issue is presented in Algorithm 1. The
block diagram presented in Figure 2 demonstrates the principle of
the control strategy.

To illustrate the details of the proposed model, the ith (i =
1, 2, 3) neuron of the FCZNN is given below.

q̇i = −γφ(ei)+ wi −
∑3

j=1
(Ṫijej + Tijq̇dj) (13)

where q̇i, q̇dj denote the ith element of q̇, q̇d, respectively,
and Ṫij, Tij are the (i, j)th element of Ṫ and T.

FIGURE 2

Block diagram of the FCZNN model with the possible disturbances for W(t) handling tracking control issue of the TMR.
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FIGURE 3

Neural topology of the proposed FCZNN model.

Based on (13), the neural topology structure of the proposed
FCZNNmodel is presented in Figure 3.

3.2. Convergence analysis

3.2.1. Global stability analysis
Theorem 1. If a monotonically increasing odd function8(·) is taken
as the activation function, the output will globally converge to the

desired trajectory qd(t) of the model (9) with a random generated

initial state q(0).

Proof: To prove the global convergence of the model (9), the
following Lyapunov function candidate is presented as

L(t) =
∥

∥e(t)
∥

∥

2
2

2
=

eT(t)e(t)

2
(14)

where ‖·‖2 denotes the two norm of a vector. Considering (6),
the derivate of the above function is

L̇(t) = eT(t) e(t)
dt

= −γ eT(t)8(e(t))

= −γ
m
∑

i=1
eiφ(ei(t))

(15)

where ei(t) is the ith element of e(t), φ(ei(t)) is the ith element
of 8(e(t)), andm = 3 represents the number of model subsystems.

Since the activation function is an odd function, the following
relationship exists:

ei(t)φ(ei(t)) =
{

> 0, if ei(t) 6= 0
= 0, if ei(t) = 0

. (16)

According to the Lyapunov stability theory, the system is
asymptotically stable at moment t with L̇(t) < 0 guaranteed.
Considering (16), we have

L̇(t) = −γ

m
∑

i=1

eiφ(ei(t)) =
{

= 0 if ei(t) = 0
< 0, if ei(t) 6= 0

, t ∈ [0, +∞)

(17)

Equation (17) demonstrates that L̇(t) is negative finite. Based
on the Lyapunov stability theory, the system will gradually
stabilize with time, the error equation will converge to 0, and the
corresponding input will converge to the analytical solution. The
proof of global convergence is thus completed.

Theorem 1 indicates that the system residual error converges to
0, which means that the TMR can track the desired position with
time. The evolution formula proposed in this study demonstrates
that the tracking task of a desired path can converge in the finite
time. Next, the finite-time convergence of the FCZNN is proved
below.
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3.2.2. Finite-time convergence analysis
Theorem 2. Considering the novel activation function (10) for the
error function e(t), e(t) can converge to 0 in finite time Tf . Tf satisfies

the following inequality:

Tf ≤



























1

2γ κ2

(

(p+p1 )
2p1

−1
) ln

(

κ1+κ2

κ2L(0)
1− p+p1

2p1 +κ1

)

+
ln

(

1+ κ2
κ3

L(0)
1− (p+p1 )

2p

)

2γ κ2

(

(p+p1 )
2p −1

) , L(t) ≥ 1

ln

(

1+ κ2
κ3

L(0)
1− (p+p1 )

2p

)

2γ κ2

(

(p+p1 )
2p −1

) , L(t) < 1

(18)

Proof: Firstly, the maximum initial value element of the error
function is depicted as e+(0) = maxi=1,2,3

{
∣

∣ei(0)
∣

∣

}

. The following
relationship holds true: −

∣

∣e+(t)
∣

∣ ≤
∣

∣ei(t)
∣

∣ ≤
∣

∣e+(t)
∣

∣ for t ≥ 0 and
i = 1, 2, 3 , which reveals that ei(t) converges to 0 when e+(t) is
equivalent to 0. Moreover, ė+(t)= −γ8

(

e+(t)
)

.

L̇(t) = 2ė+(t)e+(t)
= −2γ8

(

e+(t)
)

e+(t)

= −2γ
(

κ1L(t)
(p+p1)/2p1 + κ2L(t)+ κ3L(t)

(p1+p)/2p
)

(19)

For simplicity, we define 2γ κ1 = β1 , 2γ κ2 = β2 , 2γ κ3 =
β3 , a = (p+ p1)

/

2p1 , and b = (p+ p1)
/

2p. In view of the
precondition, a > 1 , 0 < b < 1 . Then, L̇(t) = −(β1L

a(t) +
β2L(t)+ β3L

b(t)).
Inequality (18) is proved below. The following two situations

exist:
CASE I: When L(t) ≥ 1,

L̇(t) ≤ −β1L
a(t)− β2L(t) (20)

Inequality (20) can be transformed as

dL(t)

β3La(t)+ β2L(t)
≤ −dt (21)

Integrating both sides of (21) from 0 to t, we can obtain

L(t) =
{

≤ exp(−β2t)
(

L1−a(0)+ β1
β2

− β1
β2

exp((1− a)β2t)
)

1
1−a

, if 0 ≤ t < t1

= 1, if t = t1

(22)

where t1 denotes the convergence time to 0 for
L1−a(0)=maxi=1,2,3

{

e1−a
i

(0)
}

.
Let L(t) = 1 ,

t1 =
1

(a− 1)β2
ln

β1 + β2

β2L1−a(0)+ β1
. (23)

CASE II: When L(t) ≤ 1 ,

L̇(t) ≤ −(β2L(t)+ β3L
b(t)). (24)

Inequality (24) can be converted to

dL2(t)

β2L2(t)+ β3L
b
2(t)

≤ −dt. (25)

Integrating the above differential inequality from 0 to t, we have

L(t) =
{

≤ exp(−β2t)
(

L1−b(0)+ β3
β2

− β3
β2

exp((1− b)β2t)
)

1
1−b

, if 0 ≤ t < t2

= 0, if t = t2

. (26)

Similarly, t2 satisfies the following equality:

t2 =
ln
(

1+ β2
β3
L1−b(0)

)

β2(1− b)
. (27)

where t2 denotes the convergence time to 0 for L(t) ≤ 1 ,

and Lb(0)=maxi=1,2,3

{

ebi (0)
}

.

In summary, the upper bound of convergence time Tf satisfies

Tf ≤











1
(a−1)β2

ln
(

β1+β2
β2L1−a(0)+β1

)

+
ln
(

1+ β2
β3

L1−b(0)
)

β2(1−b) , L(t) ≥ 1

ln
(

1+ β2
β3

L1−b(0)
)

β2(1−b) , L(t) < 1

.

(28)
Note that (28) can be rewritten in the form of (18). The proof is

thus completed.

3.3. Robustness analysis

The CZNN has been proven to converge to the desired result
in the disturbance-free case. However, in the practical situation, the
disturbance cannot be avoided. The tracking error may arise in the
presence of the disturbance. In this section, the steady-state error is
given base on the Lyapunov theory.

Theorem 3. Consider tracking control issue (1) of the TMR. Suppose

that an FCZNNmodel is polluted by the additive bounded error wi(t)
with wi(t) ≤ w (constant or time-varying disturbance), where w is

positive constant, starting from the arbitrary initial position q(0),
the steady-state tracking error of the FCZNN model (9) yields the

following equality:

lim
t→+∞

∥

∥e(t)
∥

∥

2 <
√
m

(

w

γ κ3

)p1/p
. (29)

where all the parameters in the inequality have been defined

before.

Proof: Provided that the additive disturbances exist in the FCZNN
model, its ith dynamical subsystem corresponding to the error
function in the FCZNNmodel is given by

ėi(t) = −γφ(ei(t))+ wi (30)

Similar to Theorem 1, a Lyapunov function is defined first to
address the global convergence of the proposed FCZNNmodel.

L(t) =
p

p+ p1
ei(t)

p1+p
p (31)

Obviously, L(t) is an even function, L(t) ≥ 0 . Taking derivation
for L(t) , we have

L̇(t) = ei(t)
p1/p

ėi(t)

=
[

−γ

(

κ1ei(t)
p/p1 + κ2ei(t)+ κ3ei(t)

p1/p
)

+ wi

]

ei(t)
p1/p

=− γ κ3

(

ei(t)
p1/p − wi

2γ κ3

)2
+ wi

2

4γ κ3
−

(

γ κ1ei(t)
(p2+p1

2)
/

pp1 + γ κ2ei(t)
(p+p1)/p

)

(32)
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FIGURE 4

The tracking performance of the FCZNN without disturbance.

TABLE 2 The disturbances forms.

No. Disturbance forms Expression

1 Constant form wi = 1

2 Line form wi = 0.01 ∗ t

3 Sine form wi = sint

4 Exponential decay form wi = exp(−t)

Suppose that ei(t) ≥
(

w
/

γ κ3
)p/q , the first two terms hold

−γ κ3

(

ei(t)
q/p − wi

2γ κ3

)2
+ wi

2

4γ κ3
< 0 .

Based on this, we obtain the following analysis about Equation
(32). There are two situations.

1) If solution error ei(t) ≥
(

w
/

γ κ3
)p/q holds true, one can

readily obtain that L̇(t) < 0 . In the sense of the Lyapunov theory,
the system becomes stable gradually with time.

2) If solution error ei(t) <
(

w
/

γ κ3
)p/p1 holds true, the sign of

L̇(t) might be positive or negative. Even in the worst-case scenario,
we consider L̇(t) > 0 , which indicates that ei(t) will increase;
(

wi

/

γ κ3
)p/p1 does not exceed the upper bound

(

w
/

γ κ3
)p/p1 for

L̇(t) < 0 when ei(t) ≥
(

wi

/

γ κ3
)p/p1 .

Recalling that
∥

∥e(t)
∥

∥

2 =
√

∑m
i=1 e

2
i (t), one can readily draw the

conclusion that lim
t→+∞

∥

∥e(t)
∥

∥

2 <
√
m
(

w
γ κ3

)p1/p
. The proof is thus

completed.

It is worth pointing out that Theorem 2 presents that the
steady-state solution error can be arbitrarily small by increasing or
reducing the fractional value.

Theorem 4. In the case of ei(t) ≥
(

wi

/

γ κ3
)p/p1 , starting from any

initial value q(0) , the actual trajectory q(t) tracks the desired position
qd(t) in finite time Tf for the FCZNNmodel (9) with constant noises.

Tf satisfies the following equality:

Tf ≤
1

(a− 1)β2
ln

β1 + β2

β2L1−a(0)+ β1
(33)

where the parameter in (33) is predefined in Theorem 2.

Proof: A Lyapunov function L(t) =
(

e+(t)
)2

is defined; the
derivate of L(t) is demonstrated

L̇(t) = 2ė+(t)e+(t)
= 2

(

−γ8
(

e+(t)
)

+ wi

)

e+(t)

=
(

−2γ κ1L(t)
(p+p1)/2p1 − 2γ κ2L(t)− 2γ κ3L(t)

(p1+p)/2p+
2wie

+(t)
)

(34)
Then, L̇(t) is rewritten as L̇(t) = −(β1L

a(t)+β2L(t)+β3L
b(t))+

2wie
+(t) Considering Theorem 3, if ei(t) ≥

(

w
/

γ κ3
)p/p1 holds true

(i.e., wi ≤ β3e
+(t)p1/p

/

2), one can have

2wie
+(t) ≤ β3e

+(t)(p+p1)/p

= β3L(t)(p+p1)/2p (35)

Then, (34) is reformulated as

L̇(t) = −(β1L
a(t)+ β2L(t)+ β3L

b(t)+ we+(t))
≤ (−β1L

a(t)− β2L(t)− β3L
b(t)+ β3L

b(t))
=− β1L

a(t)− β2L(t)
(36)

Based on the discussion in Theorem 2, Tf satisfies (33). Then,
the proof is completed.

4. Numerical experiments

The numerical experiments are conducted in this section to
demonstrate the finite-time convergence and robustness of the
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FCZNNmodel with disturbance considered. The CZNN is adopted
for comparison.

During the initialization of the algorithm, the initial position
vector is set to be q(0) = qd(0) + 1o . The vector 1o is the off-set
between an actual position and the desired position in the Cartesian
space. 1o = (0, 1, 0) is set in the simulation. The predefined
design parameter is set to be γ = 10, and we keep κi = 10 for
i = 1, 2, 3. Moreover, p and p1 are set to be 9 and 3 separately. In
the application, the TMR is applied to track an eight-shaped path.
The reference trajectory for TMR is given by

{

xd = h1 sin(h2t),
yd = h1 sin(h3t),

t ∈ [0,T] (37)

where [h1, h2, h3] = [10, 0.01, 0.05]. Then, we have

Remark 1. The scope of eight-shaped reference trajectory can

be adjusted by changing the value of h1 , that is, (xd, yd) ⊂
{(xd, yd)

∣

∣−h1 ≤ xd ≤ h1,−h1 ≤ yd ≤ h1 }.



















ẋd = h1h2 cos(h2t), ẏd = h1h3 cos(h3t),
ẍd = −h1h

2
2 sin(h3t), ÿd = −h1h

2
3 sin(h3t),

vd =
√

ẋ2
d
+ ẏ2

d
,

θd = arctan 2(ẋd, ẏd).

(38)

The path-tracking task duration is set to be 150s as the
initialization. Meanwhile, the general tracking error is expressed as
the two norm of the error vector.

‖E‖2 =
√

(x− xd)
2 + (y− yd)

2 + (θ − θd)
2. (39)

FIGURE 5

The tracking performance of the FCZNN model with disturbance wi = 1 .

FIGURE 6

The tracking performance of FCZNN with disturbance wi = 0.01 ∗ t .
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FIGURE 7

The tracking performance of the FCZNN model with disturbance wi = sin(t) .

FIGURE 8

The tracking performance of the FCZNN model with disturbance wi = exp(−t) .

4.1. Finite-time convergence validation
without disturbance

The simulative results of the FCZNN without disturbance are
shown in Figure 4. Figure 4 presents the tracking performance
for the TMR to track the eight-shaped path, which shows
that the actual trajectory moves toward the desired trajectory
and demonstrates the tracking error during the tracking task,
validating the finite-time convergence with global stability. The
tracking error decreases directly from the maximum value,
which indicates that the error is related to the setting of
the initial position because the error of the robot in the
initial position is the maximum, consistent with the theoretical
analysis.

4.2. Robustness verification

In general, disturbances are unavoidable for any electronic

system and neural dynamics, mainly including internal and

external disturbances. Internal disturbances are caused by

hardware implementation off-set errors, which can be viewed

as dynamic disturbances in linear or sinusoidal form. External
disturbances are caused by instantaneous changes in power or

external shock among other reasons, which can be regarded as the
disturbance that disappears exponentially.

The disturbances considered in this study are shown in Table 2,
including four different common disturbances.

Th motion results of the TMR tracking an eight-shaped path
synthesized by the FCZNN model are shown in Figures 5–8.
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FIGURE 9

Simulated motion results with wi = 1.

FIGURE 10

Simulated motion results with wi = 0.01t.

Figure 5 shows that under constant value perturbations, the
FCZNN model still has an excellent effect on the tracking error of
the trajectory, indicating that it has a better suppression effect on
constant value perturbations. Figures 6, 7 present that under linear
or sine-form perturbations, there is still room for improvement
in the suppression of the FCZNN model. Figure 7 illustrates that
perturbations in the exponential decay form have a larger impact on
the system at the moment they occur, unlike linear and sinusoidal
perturbations.

Combing in the above figures, in the disturbance environment,
the FCZNN model can still guarantee finite-time convergence.
That is, in a disturbance environment, the TMR can still track
the desired trajectory. Certainly, the convergence time is longer
than that in Figure 4. The previous analysis illustrates that the
tracking effect can be further enhanced by changing the parameters.
In addition, we notice that the convergence time in the case of

constant interference is longer than that in the case of time-varying
disturbance. The upper limit of the time-varying disturbance is
1, and the time-varying disturbance is 0 at the beginning of the
numerical experiment. Hence, the FCZNN model can track the
desired trajectory faster.

4.3. Comparison with existing models

To verify the efficacy and superiority of the FCZNN model,
comprehensive comparisons with existing neural network models
are presented in this section, including the CZNN (Miao et al.,
2015; Xiao et al., 2017) and integration-enhanced ZNN (IZNN)
(Chen and Zhang, 2018; Xiao et al., 2019). Moreover, the classical
backstepping control Hao et al. (2017) is introduced for comparison
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FIGURE 11

Simulated motion results with wi = sin(t).

FIGURE 12

Simulated motion results with wi = exp(−t).

as well. Figures 9–12 show the comparison results of variousmodels
with different disturbances. Clearly, all four methods are able to
complete the task of trajectory tracking, but the quality differs
considerably.

For solving the inverse kinematics problem of the mobile robot,
the CZNN model with the disturbances can be depicted as the
following dynamic equation:

A(t)u(t)− q̇d(t) = −γ e(t)+W(t) (40)

The convergence feature of the CZNN model without
disturbance has been investigated broadly and is neglected in this
study. Without loss of generality, parameters γ and κi for i = 1, 2, 3
are kept the same.

The blue line in Figures 9–12 demonstrates the tracking
performance of the CZNN model and its tracking error, showing

that this model is sensitive to disturbances, especially the
three time-varying disturbances. Figure 9 shows that the
maximum tracking error of this model is much higher
than that of the FCZNN and IZNN models. Generally,
the tracking error of the CZNN model does not converge
to be 0 during the entire tracking duration. Therefore,
the CZNN model is not suitable for application in the
disturbance environment.

The IZNN model has been presented and investigated as an
alternative for solving the inverse kinematics problem of mobile
robot manipulators; this model with disturbances can be depicted
as the following dynamic equation:

A(t)u(t)− q̇d(t) = −γ e(t)− λ

∫

8e(t)dt +W(t) (41)
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Readily, the simulation results present that the performance
of the IZNN model is enhanced compared to that of the CZNN
model. Figures 9–11 present that the IZNN model is nonsensitive
to constant and exponential decay disturbances, but it cannot deal
with sine or linear disturbances effectively. It does not meet our
requirements.

Backstepping control is the classical method for solving the
inverse kinematics problem of the mobile robot. However, the
simulation results present its failure in achieving satisfactory results
in an interference environment. Specifically, its tracking trajectory
is not smooth, not to mention its tracking error. Details about
backstepping control will, therefore, not be discussed in the paper.

Figures 9–12 illustrate that the proposed FCZNN model
exhibits anti-disturbance performance with four common forms
of disturbances suppressed for solving the inverse kinematics
problem of the TMR compared with the existing two models and
backstepping control. In addition, comparisons with other models
or methods with the corresponding results shown in Figure 9
substantiate the robust property and finite convergence of the
proposed FCZNN model, which are absent in both the CZNN and
IZNN models.

Based on the above simulation results and analysis, we can draw
the conclusion that the proposed FCZNN model has excellent and
inherent noise and disturbance canceling ability accompanied by
finite-time convergence, which enables it to be more suitable for
practical applications of the TMR with noises and disturbances.

5. Conclusion

An FCZNN model was proposed in this study as a solution
to the TMR tracking control . Different from the CZNN model,
a new activation function was incorporated with the FCZNN
model. Some theorems of finite-time convergence and strong
robustness were mathematically validated. Simulation experiments
were conducted to verify the superiority and effectiveness of the
proposed FCZNN model in comparison with the CZNN, IZNN,
and backstepping control. Furthermore, the application to TMR
kinetic control presented its practical significance.

Future work lies in extending the kinematic analysis by
considering multiple physical constraints and developing a

complete experimental environment equipped with the real TMR
for practical application of the FCZNN model. The extension of
the FCZNN model to other similar mechanisms is an interesting,
open, and challenging future direction for this research. Moreover,
developing ZNN models that consider obstacle avoidance and
saturation constraints to enable the TMR with active obstacle
avoidance or developing novel saturation-allowed activation
functions to adapt to practical requirements is an interesting
research direction.
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