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Neural fingerprinting is the identification of individuals in a cohort based on 
neuroimaging recordings of brain activity. In magneto- and electroencephalography 
(M/EEG), it is common practice to use second-order statistical measures, such 
as correlation or connectivity matrices, when neural fingerprinting is performed. 
These measures or features typically require coupling between signal channels 
and often ignore the individual temporal dynamics. In this study, we show that, 
following recent advances in multivariate time series classification, such as the 
development of the RandOm Convolutional KErnel Transformation (ROCKET) 
classifier, it is possible to perform classification directly on short time segments 
from MEG resting-state recordings with remarkably high classification accuracies. 
In a cohort of 124 subjects, it was possible to assign windows of time series of 
1  s in duration to the correct subject with above 99% accuracy. The achieved 
accuracies are vastly superior to those of previous methods while simultaneously 
requiring considerably shorter time segments.

KEYWORDS

neural fingerprinting, resting state, rocket, time series classification, 
magnetoencephalogra, MEG, machine learning

1. Introduction

Historically, neuroscientists have inferred knowledge about the brain from the 
population level, and commonalities between individuals were used as the foundation for 
our understanding of the brain (van Horn et al., 2008). However, it is now known that 
individual variations may convey important information, and disregarding them as noise 
may limit our insight into the brain [see (van Horn et al., 2008) for a review]. Placing the 
individual as the focus of research led to the emergence of the field of neural 
fingerprinting, i.e., the identification of individuals in a cohort using different 
neuroimaging modalities such as magnetic resonance imaging (Wachinger et al., 2015; 
Valizadeh et al., 2018), functional magnetic resonance imaging (Miranda-Dominguez 
et al., 2014; Finn et al., 2015; Kaufmann et al., 2017; Amico and Goñi, 2018; Bari et al., 
2019), functional near-infrared spectroscopy (de Souza Rodrigues et  al., 2019), 
electroencephalography (Rocca et al., 2014; Fraschini et al., 2015; Kong et al., 2019), and 
magnetoencephalography (MEG) (da Silva Castanheira et al., 2021; Sareen et al., 2021).
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The development of neuroimaging techniques has further led to 
the possibility of using second-order statistical summaries of brain 
activity, such as functional connectomes, as the basis for neural 
fingerprinting (Sareen et al., 2021). However, functional connectomes 
are not necessarily required for neural fingerprinting as neural 
fingerprinting can be  performed directly on the time series from 
which the connectomes are usually computed. In fact, (multivariate) 
time series classification ((M)TSC), where unlabeled time series are 
assigned to one of multiple classes, is an exciting, yet challenging, field 
of research (Keogh and Kasetty, 2003; Yang and Wu, 2006). For 
example, many practical applications have emerged for (M)TSC in 
fields such as biology, medicine, finance, or engineering (Keogh and 
Kasetty, 2003). Despite these advances, applications have been limited 
due to the fact that time series classification methods are 
computationally expensive (Abanda et al., 2019).

Recently, a fast approach for time series classification, known as 
RandOmConvolutionalKErnelTransform (ROCKET), has been 
introduced and requires only a fraction of the computational expense 
of most existing methods (Dempster et al., 2020). Its new variant, 
called MiniRocket (MINImally RandOm Convolutional KErnel 
Transform), introduced by the same group, provides similar or better 
accuracy but is up to 75 times faster compared to ROCKET on larger 
datasets (Dempster et al., 2021).

Given these capabilities, we sought to reduce the complexity of 
neural fingerprinting by directly applying the multivariate time series 
classifier MiniRocket to source time courses from MEG resting-state 
recordings. Data requirements for training a successful classifier were 
investigated. Furthermore, it has been suggested that day-to-day 
variations in the background noise may have a significant impact on 
the classification results (da Silva Castanheira et al., 2021). Therefore, 
we conducted experiments to estimate the effect of background noise 
by incorporating empty-room recordings (i.e., noise recordings taken 
without a subject being measured) into the training and 
testing datasets.

Using MiniRocket, it was possible to differentiate between MEG 
resting-state recordings from 124 subjects with accuracies exceeding 
99.5%. A set of parameters providing a good trade-off between 
accuracy, speed, and amount of available data was investigated. Based 
on our findings, the impact of background noise on the classification 
results for fingerprinting appears to be minimal.

2. Methods

2.1. Time series classification

In a similar way to image classification, TSC also requires the 
input values to be  ordered, and it is possible that important 
information relevant to the classification might be  buried in the 
ordering process (Bagnall et al., 2017). Moreover, in the case of a 
multivariate time series, discriminatory features might even depend 
on interactions between the individual time series, and special 
multivariate classifiers are needed to deal with this added complexity 
(Ruiz et  al., 2021). While it is generally possible to adapt strictly 
univariate classifiers to the multivariate case, for example, by using an 
ensemble of separate univariate classifiers for each of the multivariate 
dimensions, inter-dimensional dependencies are ignored, and 
information is inevitably lost (Ruiz et al., 2021).

A variety of MTSC methods, which include ensembles of 
univariate classifiers such as Hierarchical Vote Collective of 
Transformation-based Ensembles (HIVE-COTE) (Bagnall et  al., 
2020), dedicated multivariate TSC methods such as RandOm 
Convolutional KErnel Transformation (ROCKET) (Dempster et al., 
2020), MINImally RandOm Convolutional KErnel Transform 
[MiniRocket, (Dempster et al., 2021)] and deep-learning approaches 
such as InceptionTime (Ismail Fawaz et  al., 2020), were recently 
reviewed for their performance on openly available TSC datasets 
(Ruiz et al., 2021). Due to the exceptionally fast training times and 
state-of-the-art classification accuracy, we elected to use MiniRocket 
in this paper.

2.1.1. Rocket
The basic principle behind ROCKET is to randomly generate a 

large number of convolutional kernels, which are then applied to the 
multivariate time series to obtain transformed features. Finally, a 
linear classifier, such as logistic regression or ridge regression, is 
trained on the transformed ROCKET features (Dempster et al., 2020). 
Since the training complexity is linear in both the length of the time 
series and the number of training samples, ROCKET is an attractive, 
scalable algorithm for large datasets (Dempster et al., 2020).

There are five basic parameters that characterize a random 
convolutional ROCKET kernel: length, lk and dilation, d, the 
individual weights, w, a bias term, b, and the use of padding (Ismail 
Fawaz et al., 2019; Dempster et al., 2020). The convolution, C, of the 
ROCKET kernel with a univariate time series can be computed by 
performing a sliding dot product operation over time t across the 
entire time series:
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Since patterns in the time series congruent with the kernel will 
result in large values (Ismail Fawaz et al., 2019; Dempster et al., 2020), 
basic patterns or shapes can thus be detected. In ROCKET, global max 
pooling and the proportion of positive values (ppv) pooling are 
applied separately to the kernel output, providing two features per 
kernel. By using ppv pooling, ROCKET weights the prevalence of a 
feature captured by the kernel output over n time samples, t.
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By using different values for the dilation, it is possible to capture 
patterns at different scales, and it is even possible to capture frequency 
information with larger dilation values corresponding to smaller 
frequencies and vice versa (Yu and Koltun, 2016).

ROCKET generates the kernel parameters based on several 
predefined rules. First, the length of a kernel is selected with uniform 
probability from the set {7, 9, 11}. Then, the weights are sampled from 
a normal distribution, wjN(0,1), and subsequently mean centered, i.e., 
after all weights have been determined, the mean weight is subtracted. 
A uniform distribution is used to sample the bias term with bU(−1,1). 
The dilation is sampled from an exponential scale with d = [2x] where 
xU(0, A) and A = log2(linput

−1/lk
−1). Finally, a binary decision with equal 
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probability determines whether padding is used, i.e., whether (lk − 
1)/2 zeros are added to the beginning and the end of the time series 
(Dempster et al., 2020).

For multivariate time series, an additional sixth kernel parameter 
is provided, which determines the particular dimensions a given 
kernel is applied to Ruiz et  al. (2021). The kernels then become 
matrices with independently generated weights for each dimension, 
and consequently, the convolution is computed as the sliding dot 
product between two matrices (Ruiz et al., 2021).

The feature that makes ROCKET special, and distinguishes it 
from earlier methods using (random) convolutional kernels, is the 
huge number and variety of kernels (10,000 per default) (Dempster 
et al., 2020). Furthermore, a key contributor to the ability of ROCKET 
to detect patterns at different scales and frequencies is its effective use 
of dilation (Dempster et al., 2020). Yet, the potentially most important 
aspect of ROCKET’s success is that ROCKET computes two features 
for each kernel: the maximum value (similar to global max pooling) 
and a novel feature called the proportion of positive values, which 
provides the classifier with information about the prevalence of a 
given pattern in the time series (Dempster et al., 2020). Thus, the use 
of effective features and the combination of a large number of kernels 
enable ROCKET to distinguish between a multitude of time series 
patterns for the purpose of classification.

Finally, the ROCKET features are used to train a linear classifier. 
Logistic regression with stochastic gradient descent was recommended 
for very large datasets where the number of training examples is 
significantly higher than the number of features while, for smaller 
datasets, the authors recommended the use of ridge regression with 
cross-validation for the regularization parameter (Dempster 
et al., 2020).

2.1.2. MiniRocket
The major difference between MiniRocket and ROCKET is that it 

uses a fixed set of convolutional kernels instead of kernels with 
random hyperparameters. In brief, the kernel length, lk in MiniRocket 
is fixed to 9 instead of {7, 9, 11}, and the kernel weights are restricted 
to either −1 or 2 instead of a weight drawn from a normal distribution 
between 0 and 1. Moreover, MiniRocket uses fixed padding, and the 
maximum number of dilation per kernel is restricted to 32 (Dempster 
et al., 2021). These features allow the method to minimize the number 
of hyperparameters per kernel, enabling faster computation. 
Moreover, MiniRocket computes the kernel weights, w and −w and 
the ppv at the same time by using a trick: with the proportion of 
negative values being pnv = 1 − ppv, MiniRocket uses the ppv of the 
inverted kernel without increasing the number of convolutions, thus 
doubling the number of kernels applied using a single convolution. In 
addition, several mathematical optimizations are applied [for details, 
see (Dempster et al., 2021)] that makes MiniRocket much faster (up 
to 75 times) compared to ROCKET, while maintaining the same 
accuracy (Dempster et al., 2021).

2.2. The data

MEG recordings from two different sites (United States and 
Germany) were used for analysis. The first dataset was obtained 
from the Human Connectome Project (HCP), while the second 
dataset was provided by the Institute of Neuroscience and 

Medicine at Forschungszentrum Jülich (FZJ), Germany. MEG data 
in the two datasets were recorded at various points in time. For 
each subject, a minimum of two resting-state measurements and 
at least one empty-room recording were available. The total 
number of MEG recordings used was 372 from 124 
different subjects.

2.2.1. Dataset HCP
The Human Connectome Project (HCP) offers open access to a 

dataset consisting of MEG resting-state recordings and anatomical 
MR scans for 89 subjects acquired at St. Louis University (Van Essen 
et al., 2012, 2013; Larson-Prior et al., 2013; Hodge et al., 2016). From 
this dataset, we used recordings from 84 subjects, 44% of whom were 
female, and the mean age was 28.9 ± 3.6 years. Between two and three 
resting-state recordings with durations of approximately 6 min were 
available for each subject. Furthermore, an empty-room measurement 
of approximately 5 min in duration was available for each subject.

All MEG data were acquired using a whole-head MAGNES 3600 
system (4D Neuroimaging, San Diego, CA) with 248 magnetometers 
and 23 reference channels at a sampling rate of 2034 Hz. ECG and 
EOG were acquired along with the MEG signals. At the beginning of 
each MEG recording session, the subject’s head shape, together with 
the positions of the localizer coils, were digitized for the alignment 
with the anatomical MR scans, which were recorded as T1-weighted 
volumes with 0.7 mm resolution using a Skyra 3 T scanner (Siemens 
Healthcare GmbH, Erlangen, Germany).

2.2.2. Dataset FZJ
The FZJ dataset consists of two different MEG resting-state 

recording sessions. The first one was acquired from 20 male subjects 
in 2012 and 2013, and the second set was acquired from another set 
of 20 subjects (55% female) in 2017 and 2018. The mean ages were 
26.2+/− 4.3 and 26.6+/− 4.9 years, respectively. While the recordings 
from 2012 and 2013 had a duration of approximately 3 min, followed 
by empty room recordings of about 5 min, the recordings from 2017 
and 2018 had a duration of 6 min, followed by empty room recordings 
of between 10 and 15 min. Similar to the HCP data, a whole-head 
MAGNES 3600 system with 248 magnetometers and 23 reference 
channels was used; however, the sampling rate was 1017.25 Hz.

Electrocardiography (ECG) and electrooculography (EOG) were 
recorded using the MAGNES 3600 system along with the MEG 
measurements. An external BrainAmp ExG system (Brain Products, 
Gilching, Germany) was used to record ECG and EOG at a sampling 
rate of 5,000 Hz for the later recordings (2017 and 2018). The subjects’ 
head shapes were digitized prior to the MEG recording sessions for 
alignment with the anatomical MR scans, which were recorded using 
a MAGNETOM 3 T scanner (Siemens, Munich, Germany) with 
MPRAGE (Mugler and Brookeman, 1990).

2.3. Data analysis

Python 3.10 was used for data analysis, with the main packages 
being MNE-Python v1.3.1 (Gramfort et al., 2013, 2014), Scikit-learn 
v1.2.2 (Pedregosa et  al., 2011), and sktime v0.17.1 (Löning et  al., 
2019). The source spaces were constructed from the anatomical MR 
scans based on an octahedral mesh using FreeSurfer (Dale et al., 1999; 
Fischl et al., 1999).
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2.3.1. Pre-processing
The first step in the pre-processing pipeline was to identify MEG 

channels with strong artifacts. An in-house machine learning 
algorithm based on density-based spatial clustering of applications 
with noise (DBSCAN) (Ester et al., 1996), which scans for artifacts 
both in the time and the frequency domain, was used for this purpose. 
Channels and time segments with strong artifacts were annotated as 
‘bad’ and were followed by a visual inspection of the automated 
procedure. Furthermore, all recordings were also visually inspected 
for segments containing unusually strong artifacts (e.g., muscle 
artifacts), which were discarded from the analysis. The signals of the 
annotated bad channels were subsequently replaced by virtual 
channels using the interpolation method as implemented in (Gramfort 
et  al., 2013, 2014). Table  1 summarizes the duration of the MEG 
recordings used for each dataset and the recording type (resting-state 
or empty room data).

Next, the MEG signals were band-pass filtered from 1 to 200 Hz. 
Environmental and power line noise was removed by subtraction of 
appropriate weighted reference signals from the band-pass filtered (0.1 
to 5 Hz) references signals as described in (Robinson, 1989). 
Furthermore, power-line noise (50 Hz in Germany and 60 Hz in the 
United  States of America) plus harmonics were isolated in the 
reference channels using anti-notch filters at these frequencies. The 
weighted signal from the reference channels was then subtracted from 
the signal channels to reduce power-line noise.

Finally, ECG and EOG artifacts were removed using independent 
component analysis (ICA) (Hyvärinen and Oja, 2000; Dammers et al., 
2008). Components containing significant contributions of cardiac or 
ocular activity were removed prior to source localization (Hyvärinen 
and Oja, 2000; Dammers et al., 2008).

2.3.2. Source localization and extraction of label 
time courses

The pre-processed, continuous MEG resting-state signals were 
projected onto the source space using the minimum-norm estimate 
(MNE) method (Hämäläinen and Ilmoniemi, 1994). The source 
spaces were then divided into 68 (34 per hemisphere) anatomical 
regions (labels) based on the Desikan-Killiany Atlas (Desikan et al., 
2006). As the frontal pole region is very small in this particular atlas, 
the number of vertices identified was very small, and no vertices were 
found in this region for one subject. Therefore, this subject was 
excluded from the analysis. Following this step, a single representative 
source time course was extracted for each region as the mean time 
course of all vertices inside this brain region. Finally, these continuous 

source time courses were split into time segments of different lengths 
(hereafter referred to as ‘trials’).

The same pre-processing and source localization steps were 
repeated for the empty-room data, with the data being treated as if it 
were a subject’s recording. The empty-room data, which contain 
environmental noise only, are recorded directly after the MEG 
recordings. To further investigate whether day-to-day environmental 
noise variability causes significant differences, all empty-room 
recordings were also projected onto the same source space of a 
randomly selected subject. In this way, the influence of the background 
noise can be minimized, allowing the classifier to use the recordings 
for fingerprinting decisions.

2.4. Classification

sktime (version 0.17.1) was used to perform the MiniRocket 
transformation of the MEG trials, and scikit-learn (version 1.2.2) was 
used to fit a ridge regression classifier to the transformed features.

To evaluate the classification performance, we  compute the 
accuracy (ACC) as the ratio of the number of correctly classified 
instances to the total number of instances. In relation to neural 
fingerprinting, we test how accurately the model detects whether two 
different datasets from the same subject match. In addition to the 
ACC, the Precision, the Recall, and the F1-Score are computed.

The Precision refers to the proportion of correctly predicted 
positive instances out of all the instances predicted as positive by the 
model and is defined by Precision = TP/(TP + FP), with TP and FP 
being the True Positive and False Positives, respectively. A high 
precision value indicates that the model has a low rate of false 
positives. Recall (a.k.a. Sensitivity) is defined by Recall = TP/(TP + FN), 
with FN being the False Negatives, and measures the proportion of 
actual positive instances that are correctly identified by the model. 
Higher Recall indicates that the model is better at identifying all 
relevant positive instances in the dataset. The F1-Score is defined by 
F1-Score = 2  *  (Precision  *  Recall)/(Precision + Recall). Thus, the 
F1-Score provides a balance between Precision and Recall and ranges 
from 0 to 1, where 1 represents perfect precision and recall, and 0 
indicates poor performance. We report the macro-average F1-Score, 
Precision, and Recall for each class independently and then take the 
average across all classes to ensure that the performance of each class 
(the subject) is given equal importance.

To evaluate the overall performance of the model, we employed a 
leave-one-out method (LOOM) at the subject level (Schlögl and Supp, 
2006). Specifically, each subject was left out of the training and test sets 
once. This results in a total of 124 mean scores (e.g., accuracy) for each 
of the two training and test variants, for which the overall mean and 
standard deviation are computed. In this way, the stability of the 
model performance and the influence of data from individuals can 
be evaluated by computing the variance of the performance metrics.

2.4.1. Resting-state neural fingerprinting
To investigate the performance of the classifier with respect to 

identifying a specific subject within the cohort, time series originating 
from the first resting-state recording (rs1) were used for training, 
while time series originating from the second resting-state recording 
(rs2) were used for testing. This order was then reversed to determine 
a broader estimate of the classifier’s performance.

TABLE 1 Median recording times and its ranges for the type of recording 
after the removal of bad data segments.

Dataset Rec. 
type

Tmedian Tmax Tmin

FZJ Empty 460 911 271

FZJ rs1 220 299 136

FZJ rs2 231 298 151

HCP Empty 275 300 171

HCP rs1 291 300 243

HCP rs2 293 300 232

Times (T) in seconds.
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The continuous source time course of each brain region was used 
for a z-scored normalization. A random but fixed subset of trials was 
sampled from each recording to ensure balanced datasets across 
subjects. To gauge the variance expected due to the random nature of 
the method, we  repeated the procedure ten times using random 
selections of trials and kernel initializations. The classifier’s 
dependence on several parameters was tested by means of varying the 
number of trials used per subject in the training set, the trial duration, 
and the number of ROCKET kernels used.

2.4.2. Empty-room noise
To assess the impact of the day-to-day variations in the 

background noise with respect to the classification performance, 
we performed a control experiment with identical settings but with no 
subject in the scanner. These so-called empty room recordings were 
performed directly after the subject recording and were labeled with 
the same ID as the subject. In other words, the environmental noise 
data is used to have a third control condition to evaluate the model. 
With the empty-room noise data as a third set of recordings (rs1, rs2, 
empty), we performed the training and the testing of the model for all 
possible combinations. Each experiment was repeated ten times with 
a random selection of trials as well as different random kernel 
initializations. The mean accuracy was computed for 
each combination.

3. Results

3.1. Resting-state neural fingerprinting and 
its dependency on parameters

The classification of two MEG datasets recorded from the same 
subjects on the same day revealed remarkably high accuracy scores of 
about 99% using MiniRocket. The impact of important parameters on 
the classification accuracy was tested by varying the number of 
kernels, the number of trials, and the trial duration. While 
investigating the impact of one parameter, all other parameters were 

fixed as follows (unless stated otherwise): the number of kernels was 
set to 3,500, the number of trials to 15, and its duration to 1.5 s.

Figure 1 shows the dependency of the accuracy scores on the 
number of kernels used in MiniRocket. The figure shows a sharp 
increase in accuracy between 100 and 500 kernels, with scores already 
above 96% for 500 kernels. For the number of kernels ranging from 
1,000 to 5,000, there was a relatively marginal increase in accuracy, 
which only ranged from about 98.9 to 99.5%. All results, including the 
upper and lower range, can be found in Table 2.

To estimate the impact of the number of time segments used on 
the classification result, the number of trials was gradually increased 
until no further change in accuracy was observed. Figure 2 shows the 
dependence of accuracy scores on the number of training trials. The 
figure shows that when five or more trials are used, classification 
accuracies of 98% and above can be  achieved. Only a marginal 
increase in accuracy, ranging from about 99.3 to 99.6%, was achieved 
from 10 to 30 trials (Table 2).

The dependency of the accuracy scores on the trial duration is 
shown in Figure 3. For segment durations ranging from 0.1 s to 0.5 s, 
there is a sharp increase in accuracy, while for durations of 1 s in 
length, scores above 99.4% could already be achieved. Only a marginal 
increase in accuracy, from 99.5 to 99.6%, was achieved for durations 
ranging from 2.0 s to 5.0 s. A summary of all results and combinations 
is shown in Table 2.

The MiniRocket classification accuracy scores obtained through 
the LOOM method for neural fingerprinting based on resting-state 
data are as follows: The average accuracy score after cross-validation 
for training on rs1 and testing on rs2 was 99.15% ± 0.078%. Similarly, 
the mean Recall and Precision were found to be 99.15% ± 0.078 and 
98.72% ± 0.425%, respectively, and the F1-Score was 98.80% ± 0.124% 
(Table 3). For training on rs2 and testing on rs1, the average accuracy 
score was found to be  slightly larger with 99.96% ± 0.036%, as 
compared to the accuracy of 99.15% for training on rs1 and testing on 
rs2. This tendency was also observed in the other three metrics (cf. 
Table 3). Since the probability of obtaining a match for a single subject 
out of 124 subjects is 1/124, which is about 0.0081, the chance level in 
our experiment is approximately 0.81%. The difference in accuracy 

FIGURE 1

Dependence of the accuracy scores on the number of MiniRocket kernels. The classifier was trained on 15 time segments with a duration of 1.5  s per 
segment. The blue shaded area indicates the upper and lower range of the classification accuracy between the 10 repetitions with a random selection 
of time segments and a random initialization of kernels.
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TABLE 2 MiniRocket accuracy scores dependent on several parameters.

Dependence on number of kernels (15 training trials, 
1.5  s duration)

Number of 
kernels

Mean 
accuracy

Min 
accuracy

Max 
accuracy

100 81.32 76.16 85.27

200 83.6 79.78 87.8

300 93.33 91.96 94.73

400 96.45 95.51 97.34

500 97.37 96.26 98.01

750 98.32 97.74 98.71

1,000 98.87 98.52 99.06

1,250 99.11 98.79 99.52

1,500 99.3 98.98 99.6

2000 99.42 99.22 99.6

2,500 99.49 99.3 99.57

3,500 99.51 99.3 99.7

5,000 99.57 99.49 99.65

10,000 99.59 99.49 99.65

Dependence number of trials (3,500 kernels, trial 
duration 1.5)

Number of 
trials

Mean 
accuracy

Min 
accuracy

Max 
accuracy

1 63.63 56.45 70.16

2 90.18 86.29 93.15

3 96.36 94.76 97.58

4 97.97 97.48 98.29

5 98.63 98.31 98.87

6 98.97 98.66 99.26

7 99.11 98.85 99.37

8 99.22 98.94 99.5

9 99.31 99.06 99.55

10 99.35 99.15 99.52

12 99.45 99.13 99.56

15 99.51 99.3 99.7

20 99.57 99.54 99.6

25 99.58 99.56 99.61

Dependence on trail duration (3,500 kernels, 15 
training trails)

Trail 
duration

Mean 
accuracy

Min 
accuracy

Max 
accuracy

0.1 29.56 26.02 31.77

0.2 71.15 67.66 73.76

0.3 89.64 88.12 91.64

0.4 95.67 95.22 96.26

0.5 97.88 97.58 98.28

0.6 98.58 98.2 99.03

between the two classification tests were found to be significant, but 
with a change in score around the chance level (0.80–1.24%).

3.2. Influence of empty-room noise

Ten random trials were sampled per subject and per set with a 
trial duration of 1.5 s and 3,500 kernels. Whenever data originated 
from the same recordings, the continuous signal for each subject was 
split into two parts, and the trials for training and testing were sampled 
from the first and second half of the recording, respectively.

Figure  4 shows the dependence of the MiniRocket classifier 
accuracy scores on different combinations of training and test sets. 
The results show that accuracies above 99.3% were achieved for all 
combinations of training and testing on resting-state data (rs1 vs. rs2 
and rs2 vs. rs1). For resting-state recordings evaluated against the 
empty room recordings from the same day, the accuracies were close 
to the chance level, as depicted in Figure 4. In the case of empty vs. 
empty room recordings, the classifier achieved a low accuracy of 7.9%.

4. Discussion

There are many promising applications of multivariate time series 
classifications (MTSC) in medicine and neuroscience, including in the 
diagnosis of medical conditions, personalized treatment planning, and 
the development of brain-computer interfaces (BCIs). With this study, 
we have shown that it is possible to perform neural fingerprinting 
directly on MEG time series without performing feature engineering. 
This is, to the best of our knowledge, the first time that neural 
fingerprinting has been achieved based on magnetic field changes in 
single trials of MEG time series recordings without the need for a 
feature-based analysis. Furthermore, the MiniRocket approach used 
in the study required fewer data (shorter trials) for successful 
classification and also improved accuracy. For example, previous MEG (Continued)

Dependence on trail duration (3,500 kernels, 15 
training trails)

Trail 
duration

Mean 
accuracy

Min 
accuracy

Max 
accuracy

0.7 99.01 98.79 99.33

0.8 99.2 98.87 99.46

0.9 99.28 99.11 99.52

1.0 99.37 99.09 99.6

1.25 99.5 99.33 99.57

1.5 99.51 99.3 99.7

2.0 99.55 99.33 99.65

2.5 99.58 99.49 99.62

3.0 99.6 99.57 99.62

3.5 99.6 99.57 99.68

4.0 99.6 99.54 99.68

4.5 99.61 99.57 99.7

5.0 99.6 99.57 99.68

TABLE 2 (Continued)
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publications reached MEG resting-state classification accuracies with 
trial lengths of 30 s in healthy controls of about 94.9–96.2% (da Silva 
Castanheira et al., 2021), and 94.5–98.2% at trial lengths of 8 s (Sareen 
et  al., 2021). In contrast, MiniRocket analysis with 3,500 kernels 
achieved a classification accuracy of over 99% when training the 

model on as little as 15 s of data and testing it on 1 s time segments. 
These results demonstrate that substantially fewer data are needed for 
accurate classification in comparison with previous approaches that 
use MEG data in combination with connectivity measures (Demuru 
et al., 2017; da Silva Castanheira et al., 2021; Sareen et al., 2021) or data 
from electroencephalography (EEG) using EEG power spectra (Kong 
et al., 2019; Demuru and Fraschini, 2020).

In our parameter investigation, we  aimed to explore the 
minimum input data requirements while maintaining computational 
efficiency. Our tests on trial duration suggested that a minimum of 
0.9 s and 15 trials were sufficient to achieve accuracies above 99%. In 
terms of the number of trials, we found that training a MiniRocket 
classifier with 3,500 kernels requires at least nine trials of 1.5 s length 
to achieve accuracies above 99%. During our exploration of the 
number of kernels, we observed that increasing the number of kernels 
led to improved results in the low data regime, at the expense of 

FIGURE 2

Dependence of the accuracy scores on the number of training segments. The number of kernels for the MiniRocket classifier was set to 3,500. The 
duration of the time segments was set to 1.5  s. The blue shaded area indicates the upper and lower range of the classification accuracy between the 10 
repetitions with a random selection of time segments and a random initialization of kernels.

FIGURE 3

Dependence of the accuracy scores on the duration of the time segments. The number of kernels for the MiniRocket classifier was set to 3,500 and 
trained on 15 time segments. The duration of segments varied from 0.1 to 5  s. The blue shaded area indicates the upper and lower range of the 
classification accuracy between the 10 repetitions with a random selection of time segments and a random initialization of kernels.

TABLE 3 Loom-based performance scores for two classification tests 
with the number of kernels set to 3,500, the number of trials to 15, and its 
duration to 1.5  s.

Metric rs1  −  rs2 rs2  −  rs1

Accuracy 99.15 ± 0.0779 99.96 ± 0.0364

Precision 98.72 ± 0.4250 99.96 ± 0.0338

Recall 99.15 ± 0.0779 99.96 ± 0.0364

F1-Score 98.80 ± 0.1238 99.96 ± 0.0364
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FIGURE 4

Dependence of the accuracy scores of the MiniRocket classifier on 
different combinations of training and test sets. Since rest1, rest2, 
and empty were all recorded on the same day, it is possible to isolate 
the contribution of the daily background noise to the classification 
outcomes. The number of kernels for the MiniRocket classifier was 
set to 3,500. For both the training and test set, 10 time segments of 
1.5  s were sampled from each of the subjects.

computational demand. We were surprised to find that accuracies 
saturated at a relatively low number of 3,500 kernels using a fixed set 
of 15 trials of 1.5 s duration, resulting in accuracies above 99.3% 
(Table 2).

Interestingly, we observed a small but significant difference in all 
metrics when we reversed the order of training and evaluation set using 
the LOOM method. Specifically, the accuracies were 99.96% when 
training on rs1 and testing on rs2, whereas they fell to 99.15% when the 
order was reversed (Table 3). This difference in accuracy of 0.81% is about 
chance level and may be due to a single subject only. In principle, we did 
not expect the accuracies to be identical as the two measurements will not 
be identical in practice. The subject’s condition, such as mood and fatigue, 
is very likely to have an influence on the matching performance. 
Moreover, another source contributing to this difference may be due to a 
slight reduction in data quality over long recording sessions, possibly 
caused by increased subject movement due to fatigue or the execution of 
tasks before the second resting-state session. These findings raise the 
possibility that prioritizing training on datasets with higher complexity 
and diversity could be more crucial than employing the most complex 
data exclusively at the time of testing. However, in future work, it would 
be very interesting to investigate the model performance in a cohort of 
subjects where the temporal distance between rs1 and rs2 is increased by 
means of hours, days, weeks, and months.

In summary, these results are a proof of concept that subject 
differentiation can, in principle, be achieved directly from MEG 
brain recordings as short as 1 s to achieve high accuracies of about 
99% using MiniRocket. This would greatly simplify current 
procedures as the technique does not require the selection of the 
best-performing feature for the classification model – as is the case 
when using functional connectomes (da Silva Castanheira et al., 
2021; Sareen et al., 2021), for which the best-performing method 
needs to be determined. The high classification accuracy and the 

need for only relatively short segments of single trials data make 
MiniRocket a promising candidate for BCI research and motivate 
further research into the application of MiniRocket to 
MEG recordings.

4.1. Limitations

It has been suggested that day-to-day variations in the background 
noise during the recording may contribute significantly to the 
classification (da Silva Castanheira et al., 2021). We investigated this 
possibility by training the classifier on the subject’s recording and 
testing on corresponding empty-room data, which were recorded 
soon after the experiment. While our study shows that training the 
classifier on empty-room data and applying it to the subject’s resting-
state data or vice versa did not result in the correct identification of 
individuals, and accuracies achieved on the cross-over of resting-state 
measurements and empty-room measurements were approximately 
at chance level, our findings suggest that the background noise may 
have a minor influence on the fingerprinting classification results. 
Notably, our analysis shows that matching empty room signals could 
be identified with an accuracy of approximately 8%.

To further investigate the classification performance and 
limitations on neural fingerprinting, we  plan to implement a 
longitudinal study design to investigate the stability and performance 
of the classifier over time. Moreover, given that the subject is the class 
to be identified in this approach, we cannot split the data into training 
and test sets by subjects for the typical generalization purposes, which 
is a limitation of the method and is similar to a fingerprint analysis in 
criminal investigations, where a match can only be  found if the 
suspect’s fingerprints are already in the database.
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