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Alzheimer’s disease (AD) and brain tumors are debilitating neurological

conditions that pose significant challenges in current medical practices.

Existing treatment options for AD primarily focus on symptom management,

and brain tumors often require aggressive therapeutic approaches. Novel

disease-modifying strategies and therapeutic agents are urgently needed to

address the underlying causes of AD pathogenesis and improve brain tumor

management. In recent years, nanoparticles (NPs) have shown promise as

valuable tools in diagnosing and managing various brain disorders, including

AD. Among these, carbon nanotubes (CNTs) have garnered attention for their

unique properties and biomedical potential. Their ability to cross the blood-brain

barrier (BBB) with ease opens up new possibilities for targeted drug delivery and

neuroprotection. This literature review aims to explore the versatile nature of

CNTs, which can be functionalized with various biomolecules or substances due

to their sp2 hybridization. This adaptability enables them to specifically target

cells and deliver medications under specific environmental conditions.

Moreover, CNTs possess an exceptional capacity to penetrate cell membranes,

making them valuable tools in the treatment of AD and brain tumors. By delving

into the role of CNTs in biomedicine, this review sheds light on their potential in

managing AD, offering a glimpse of hope for effective disease-modifying options.

Understanding the mechanisms of CNTs’ action and their capabilities in targeting

and delivering medication to affected cells will pave the way for innovative

therapeutic strategies that can improve the lives of those afflicted with these
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devastating neurological conditions. The exploration of CNTs as a dual

therapeutic arsenal for both brain tumors and Alzheimer’s disease holds great

promise and may usher in a new era of effective treatment strategies for these

challenging conditions.
KEYWORDS
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1 Introduction

Alzheimer’s disease (AD) and brain tumors represent two of the

most complex and devastating neurological conditions, affecting

millions worldwide (1, 2). Despite significant research efforts,

effective disease-modifying treatments for both AD and brain

tumors remain elusive (3). Current approaches often focus on

managing symptoms rather than addressing the underlying

causes, burdening patients and their families with the progressive

deterioration of cognitive function or the challenges of aggressive

tumor growth (4).

In recent years, nanotechnology has emerged as a promising

frontier in biomedical research, offering potential solutions to

various brain disorders (5). Among these nanomaterials, carbon

nanotubes (CNTs) have garnered substantial attention for their

exceptional properties and biomedical versatility (6). With their

unique ability to easily traverse the blood-brain barrier (BBB),

CNTs open new avenues for targeted drug delivery and

neuroprotection in the intricate environment of the brain (7).

CNTs possess remarkable properties stemming from their sp2

hybridization, allowing them to be functionalized with various

biomolecules and substances (8). This adaptability enables CNTs

to specifically target cells and deliver therapeutic agents precisely

where needed, even under specific environmental conditions.

Additionally, CNTs’ exceptional capacity to penetrate cell

membranes makes them potential game-changers in treating both

AD and brain tumors (9).

CNTs have several advantages as compared to other

nanosystems, such as unique physicochemical properties,

biological interaction with brain cancerous tissues, ability to

penetrate BBB, and bio-corona effect (10).

In this literature review, we aim to explore the transformative

potential of CNTs as a dual therapeutic arsenal for both brain

tumors and Alzheimer’s disease. By comprehending the intricacies

of CNTs’ applications in biomedicine, we seek to shed light on their

role in neuroprotection and targeted medication delivery.

Understanding the mechanisms of CNTs’ action and their

capabilities in targeting affected cells holds promise for devising

innovative and effective disease-modifying strategies.

As the search for more sustainable and potent treatments for

AD and brain tumors intensifies, exploring CNTs as a therapeutic

tool provides hope for groundbreaking advancements in neurology

and oncology. Our quest to unveil the true potential of carbon
02
nanotubes brings us closer to addressing the challenges posed by

these devastating neurological conditions, offering a glimmer of

hope to those affected and their loved ones.

The types of nanoparticles (NPs) can be transported are shown

in (Figure 1).

Carbon nanotubes (CNTs), one of the types of NPs, are a potent

tool for enhancing biomedical methods in treating and managing

many diseases, including AD and Brain malignancies (11, 12).

CNTs can adsorb different molecules of drugs on their surface

(13). CNTs have good electronic properties, significant capability to

cross the cell membrane and BBB, thermal properties, high drug

loading capacity, and can be easily modified with other molecules

(9). In this literature review, we discuss the role of CNTs as a tool for

delivering drugs or chemical compounds to the brain.
2 Nanoparticles: an approach to
manage AD and brain tumor

Nanoparticles have revolutionized medicine, offering new and

promising possibilities for managing challenging conditions like

Alzheimer’s disease and brain tumors. Their unique properties,

particularly their small size, make them excellent candidates for

targeted drug delivery and therapeutic interventions, allowing

precise treatment targeting specific areas, such as the brain (14).

In this context, Table 1 presents a comprehensive overview of

diverse nanoparticle types that have been extensively investigated in

the pursuit of effective Alzheimer’s disease management and

Brain tumor.
2.1 CNTs: characterization, types, synthesis

CNTs discovered in 1991 (11), are a new allotrope of carbon that

warrants special attention because of their inborn characteristics like

their surface, form, and physical properties, which make them

particularly ideal for therapeutic applications (30). A graphene sheet

is folded into a cylindrical shape to create CNTs, which are tubular

objects (31). Single-walled carbon nanotubes (SWCNTs), composed of

one graphene sheet with a diameter between 0.4 and 40 nm, and

multiwalled carbon nanotubes (MWCNTs), consisting of many layers

forming cylinders with a distance of 0.35 nm between the concentric

layers as shown in Figure 2. Typically, half-fullerene molecules shut
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nanotubes’ ends, while pentagonal defects serve as the tips.

Furthermore, CNTs can be divided into three groups on how the

sheets are revolved: zig-zag, chiral nanotubes, or armchair. Each carbon

atom in CNTs is associated with an sp2 hybridization, giving them

exceptional mechanical, optical, thermal, and electrical capabilities.
Frontiers in Oncology 03
One electron in the s orbital is promoted to one of the 2p atomic

orbitals as part of the sp2 hybridization, a combination of one s and two

p atomic orbitals. These two atomic orbitals combine to form three

new, equally energetic hybrid orbitals. The energy of the hybrid orbitals

is higher than the energy of the s orbital, lower than that of the p
FIGURE 1

Representation of Blood Brain Barrier and Transport of Nanoparticles. The transport of NPs across BBB is represented by four prominent
mechanisms commonly enrooted for the transport of solute molecules. A: Transport Proteins - these channel proteins facilitate the passage of
glucose, amino acids, and ketones across the BBB and hence, can be used to transport NPs. B: Diffusion - passage of molecules from higher
concentration to lower such as small lipophilic molecules, O2, and AuNPs. C: Adsorption-mediated Transcytosis - several cationic molecules,
liposomes, and cationic NPs are endocytosed across BBB. D: Receptor-mediated transcytosis is facilitated by receptor-ligand interaction as seen in
the transport of iron mediated by transferrin (receptor). NPs can be transported along this mechanism via the transferrin NPs conjugates.
TABLE 1 Comparative analysis of nanoparticle-based approaches for alzheimer’s disease and brain tumor.

Nanoparticle
Type

Application in Alzheimer’s Disease Application in Brain Tumors

Lipid-based
Nanoparticles

Delivering anti-amyloid drugs to the brain to reduce amyloid plagues
and prevent disease progression (15)

Targeted delivery of chemotherapeutic agents, reducing systemic toxicity
and enhancing drug accumulation in tumor tissues(16)

Polymeric
Nanoparticles

Encapsulating neuroprotective agents to shield neurons from
degeneration and improve cognitive function (17).

Delivering gene therapy to brain tumor cells interferes with tumor
growth and promotespoptosis (18).

Metal-based
Nanoparticles

Binding to amyloid beta peptides and facilitating their clearance from
the brain, potentially slowing down Alzheimer’s progression (15).

Acting as a contrast agent in imaging techniques for brain tumor
detection and monitoring (19).

Mesoporous Silica
Nanoparticles

Loading and releasing therapeutic molecules in a controlled manner,
offering sustained drug release for Alzheimer’s treatment (20).

Delivering a combination of therapeutic agents for synergistic effects in
brain tumor therapy (21).

Dendrimers Enhancing drug solubility and stability, improving drug delivery
efficiency in Alzheimer’s disease (22).

Penetrating the blood-brain barrier (BBB) and delivering a variety of
therapeutics, including chemotherapy drugs and immunotherapies (23).

Carbon Nanotubes Facilitating targeted drug delivery by functionalization with ligands
that bind to specific receptors in Alzheimer’s-affected brain region (24).

Acting as nanocarriers for brain tumor-targeting agents, such as small
interfering RNA (siRNA) for gene silencing (25).

Nanogels Formulating hydrogel-based nanoparticles for sustained drug release
and increased therapeutic efficacy in Alzheimer’s treatment (26).

Encapsulating anticancer drugs for brain tumor therapy, reducing side
effects and improving drug bioavailability (27).

Nanoparticle-Drug
Conjugates

Attaching drugs to nanoparticles for improved stability and targeted
delivery to the brain in Alzheimer’s disease (28).

Utilizing targeted drug delivery for brain tumor treatment, delivering
cytotoxic agents directly to tumor cells (29).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1265347
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Elsori et al. 10.3389/fonc.2023.1265347
orbitals, but closer to the energy of the p orbitals. Trigonal structures

are produced by the newly created hybrid orbitals, giving rise to a 120-

degree molecular geometry. Therefore, sp2 hybridization makes

stronger bonds. They are among the most reliable nanomaterials for

potential uses in nanomedicine and nanoelectronics (11). Moreover,

because of their capacity to cross cell membranes, these substances have

been studied for their ability to generate ion transport channels, i.e.,

transporters for various drugs, biomolecules, and Deoxyribonucleic

acid (DNA), and Ribonucleic acid (RNA). Additionally, because of

their smaller internal size and unique electrical properties brought on

by the curvature of their walls, CNTs have also been employed as

nanoreactors (32). However, despite having a huge range of biomedical
Frontiers in Oncology 04
uses, carbon nanotubes possess two flaws that need to be addressed:

their limited solubility in water and inherent toxicity induced by the

metal catalyst residue left over from their production process.

Three methods are frequently utilized to create carbon nanotubes:
1. Chemical Vapor Deposition (CVD) method

2. Arc Discharge method

3. Laser Ablation method
These techniques are based on forming single or multiple

carbon atoms that can merge to form carbon nanotubes. To

synthesize carbon nanotubes, all processes require a source of

energy and carbon (Figure 3). Carbon sources can be gases or

carbon electrodes, and energy sources can include arc discharge,

heat, or laser beams (33). Additionally, it is proposed that the CNT

diameter is influenced by the dimensions of the metal catalyst’s

particle; finer metal catalyst particle sizes are likely to produce

SWCNTs with a narrower diameter, whilst bigger metal catalyst

particle sizes seem to make MWCNTs with a broader diameter (34).
2.1.1 Chemical vapor deposition method
The most popular technique for producing carbon nanotubes on

a substantial scale is chemical vapor deposition. It uses hydrocarbons

such as carbon monoxide, CH4, or acetylene, and elevated

temperature gives the hydrocarbons enough energy to break down

and generate carbon nanotubes. Commonly, SWCNTs can be created

by chemical vapor deposition of acetylene utilizing a catalyst (iron or

cobalt) supported by silica or zeolite; this leads to the production of

large volumes of carbon nanotubes (34).
FIGURE 3

Common techniques for the generation of CNT.
FIGURE 2

Shows the Single and multiwalled structures of Caron nanotubes.
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2.1.2 Arc discharge method
The arc discharge method is the most popular and simple

method for manufacturing CNTs, which has been used for many

years to create fullerenes. Carbon electrodes are being employed as

the source, and with the help of current (roughly within the range of

50 A to 100 A) and potential difference (nearly 20V), an electric

discharge is generated, which acts as an energy source. It is considered

that an electric discharge inside an inert environment at reduced

pressure and with a catalyst such as nickel, iron, or cobalt creates

enough high temperature to cause one of the carbon electrode

surfaces to evaporate and create a tiny rod-shaped deposition of

nanotubes on another electrode (35). This technique produces

nanotubes with a diameter ranging between 0.6 nm - 1.2 nm (34).

2.1.3 Laser ablation method
This approach uses carbon electrodes as the carbon and energy

sources through laser pulses. The surface is uniformly vaporized by

consecutive laser pulses, which also minimizes the quantity of

carbon that has settled down as soot (36). The second pulse is

believed to break up the bigger particles and the first laser pulse

ablates smaller particles, subsequently developing into structures

called nanotubes. Typically, transition metal catalysts are employed

in this procedure, and the nanotubes produced with it are often

achieved as rope-like structures with consistent diameters of around

10 nm to 20 nm, and the length of tubes is around 100 µm (37).
2.2 CNTs: holistic approach in managing
AD and brain tumor

Since their discovery in the 1990s, the application of

carbon nanotubes has been explored in several areas, including

nanotechnology, industrial production, construction, electronics,

wastewater management, and others (38–42). CNTs demonstrate

a variety of distinctive attributes, including electrical and optical

properties, a substantial surface area, and defined physicochemical

characteristics. Solubility and toxicity limit the application of

CNTs in biomedical sciences, but they can be reduced to a great

extent with functionalization. The use of nano drug delivery in

treating chronic neurological disorders results in neuroprotection.

Nanomedicine encompasses various nanotechnology therapeutic

applications (43). According to recent studies, significantly less

nanomedicine has been used for treating neurodegenerative

diseases compared to diseases like cancer and some infectious

diseases (44). Although several studies have demonstrated that

CNTs can efficiently permeate the BBB (45), the respective

impermeability of the BBB is caused by tight connections

created by endothelial cells of the brain’s capillaries. This causes

some tiny and huge therapeutic molecules to not pass the BBB

(46). The CNTs can penetrate the BBB through receptor-mediated

pathways. CNTs have a massive surface area that allows loading

and distributing high medication dosages to the therapeutic site.

They also have inherent optical and thermal capabilities that could

be used for photo-thermal and multimodal real-time tracking

applications (45). The intrinsic barrier-crossing capacity of CNTs
Frontiers in Oncology 05
makes them ideal for use as nanocarriers for brain delivery, but

because of unspecific bioaccumulation, this capacity is limited. As

a result, choosing a particular brain target is crucial to enhance

brain inflammation and minimizing side effects (45).

A study by Lohan et al. demonstrated that berberine (BRB)

loaded MWCNTs with phospholipid and polysorbate coating

effectively manage AD (47). In the SH-SY5Y cell lines, there was

potential uptake of BRB-loaded MWCNT (47). Moreover, in rats,

the enhanced performance was seen using the Morris Maze test.

Also, the coating of phospholipid and polysorbate on MWCNT

showed significant recovery in memory (47). The preservation of

the usual biochemical amount in brain tissue established the ability

of these coated MWCNTs to lessen b-amyloid-induced AD. The

results show that polysorbate/phospholipid-coated MWCNTs of

BRB have substantial potential for treating AD. A study by Mirali

et al. showed that CNTs loaded with tacrine (Alzheimer’s drug) are

safe for the specific delivery of drugs (36). The arrangement of Ab
(16-22) octamers was studied both in the presence and absence of

SWCNT (48). It was observed that SWCNT could inhibit the Ab
(16-22) octamers and Ab fibrillation (48). Furthermore, by

correcting aberrant mTOR signaling activity and deficiencies in

lysosomal proteolysis, SWNT restored healthy autophagy and

facilitated the removal of autophagic substrates. These results

suggest SWNT as a potential neuroprotective strategy for treating

AD (49).
2.3 CNTs: holistic approach in
managing brain tumor

A holistic approach to managing brain tumors involves the

innovative utilization of Carbon Nanotubes (CNTs) across various

facets of diagnosis and treatment. A comprehensive strategy

emerges by leveraging CNTs’ unique properties, such as their

exceptional surface area and ability to traverse the blood-brain

barrier. Functionalized CNTs can be tailored to target and image

brain tumor cells, enabling early and precise detection through

advanced imaging techniques. Figure 4 vividly illustrates the stark

comparative distinction between conventional drugs and the

remarkable efficacy of nanoparticles, carbon nanotubes (CNTs),

and liposomes in traversing the formidable blood-brain barrier.

While traditional drugs struggle to breach this barrier, the visual

depiction showcases the extraordinary capability of nanoparticles,

CNTs, and liposomes to overcome this challenge, opening new

avenues for enhanced drug delivery to the brain.

Various studies have highlighted the significant role of CNTs in

managing brain tumors. Glioma cells that cause brain tumor

produce immunosuppressive compounds such as transforming

growth factor-b, prostaglandins E, and interleukin (IL)-10, which

could make them capable of staying away from the host’s immune

system. Because of this, it is difficult to treat these tumors with

conventional chemotherapy properly. To address this problem, Van

Handel and Colleagues proposed an innovative immunotherapy

strategy utilizing the multiwalled carbon nanotubes (MWCNTs),

leveraging that macrophages preferentially absorb CNTs over
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glioma cells. The administration of MWCNTs led to heightened

macrophage infiltration into glioma cells, resulting in a time- and

dose-dependent increase in tumor cytokine levels, particularly IL-

10. Notably, this treatment did not induce notable toxicity in either

healthy mice or mice with tumors. These findings indicate that

employing CNTs for immune modulation could be a promising

approach for brain tumor therapy.

Indeed, the results imply that harnessing the immune-

modulating characteristics of CNTs holds great promise as a

strategy for addressing brain tumors. By bolstering the immune

response against glioma cells, this approach offers a potential

avenue for a more effective therapy for brain tumors.

Fan et al. (50) conducted a study investigating the systemic

antitumor response when CpG was delivered intracerebrally with

CNTs. They confirmed that this intracranial CNT–CpG therapy

not only inhibited the growth of brain tumors but also

subcutaneous melanomas in a melanoma mouse model. Based

on their results, they suggested that intracerebral CNT–CpG

therapy could be a viable treatment for gliomas and metastatic

brain tumors.

In a similar study, Zhao et al. (51) examined using CNTs to

deliver CpG in brain tumor models. The researchers observed

that CNTs enhanced the uptake of CpG by tumor-associated

phagocytic cells, leading to their activation both in vitro and in

vivo . When a low dose of CNT–CpG complexes was

administered via a single injection, it eradicated intracranial

GL261 gliomas in half of the tumor-bearing mice by activating

NK and CD8 cells. These findings demonstrated that CNTs

facilitated improved CpG uptake into tumor-associated

inflammatory cells without causing toxicity and resulted in a

robust antitumor response.
Frontiers in Oncology 06
3 Potential role of CNTs in the
treatment of AD and brain tumors

3.1 Role of CNTs in drug, gene, and
vaccine delivery for treatment of AD
and brain tumor

The key challenges with present drug administration methods

include lack of selectivity among normal and diseased tissues,

metabolic elimination, failure to pass the cellular and blood-brain

barrier (BBB), and drug degradation before reaching the target

organs, which can drastically limit the overall therapeutic effects. As

the outcome, ongoing research is focusing more on developing a

mechanism for delivering drugs that is highly effective, intending to

create tailored medicines using a carrier or vehicle. Targeted drug

delivery can be accomplished using several approaches and routes,

Table 2. For instance, several vectors, including nanocomposites,

quantum dots, emulsions, dendrimers, and polymers, are used.

These approaches, however, have a few drawbacks. For example,

since the polymers in a polymer hydrogel formulation containing

erythropoietin (EPO) are not biodegradable, surgical removal is

necessary once the medicine has been delivered. CNTs can be used

to solve these problems instead of polymers. Additionally, since

CNTs are biodegradable, there is no need for surgical removal

following drug administration. Due to their excellent drug-loading

capacity, extensive surface area, remarkable mechanical strength,

and adequate chemical stability, CNTs can be ideal nanocarriers for

drug delivery (57).

Numerous anti-cancerous CNT-based drug delivery schemes

work by incorporating a particular drug or gene into the tips and

walls of CNTs that find cancer-specific cell surface receptors. This
FIGURE 4

Bridging the Barrier – Nanoparticles, CNTs, and Liposomes Showcase Effective Blood-Brain Barrier Penetration.
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allows CNTs to pass through the membrane of a mammalian cell

through main endocytosis, carrying therapeutic drugs/genes more

effectively and reliably into cells that were not previously

accessible. Functionalized CNTs have been evaluated as a vehicle

for drug delivery for a range of antineoplastic drugs, including

topoisomerase inhibitors (irinotecan, topotecan, doxorubicin

(DOX), and epirubicin), platinum-based compounds (cisplatin, 5-

fluorouracil, carboplatin), and anti-microtubule drugs (paclitaxel,

docetaxel). Interestingly, Maleki et al. also evaluated N-isopropyl

acrylamide carbon nanotube as a drug delivery structure through

molecular dynamics simulation study using DOX loading (58). The

interactions between the medicines and the carrier, hydrogen bonds,

the gyration radius, and the radial distribution function are key

notable elements for examining this carrier. Furthermore, by

analyzing the DOX simulation studies, N-isopropyl acrylamide and

carbon nanotubes can be used for drug delivery.

CNTs are also being researched as potential carriers for other

diseases, including HIV, diabetes, and brain disorders (9, 59–61).

Additionally, Yoosefian et al. conducted a molecular analysis study

of the drug delivery system for an anti-Perkinson drug, Droxidopa,

loaded with functionalized SWCNTs. The result of this simulation

study showed improved bioavailability with reduced systemic

toxicity (55).

Carbon nanotubes can function as an efficient vector system for

the production and delivery of the therapeutic gene in the target

tissues because nucleic acids and carbon nanotubes interact

electrostatically to generate a variety of chemical complexes. This

makes a variety of procedures involving gene therapy, vaccinations,
Frontiers in Oncology 07
and immuno-stimulating activities possible. (62). The delivery

capability of CNTs is demonstrated by Cationic Polymer Brush-

Modified Carbon Nanotubes for effective siRNA suppression of PD-

L1 (Programmed death-ligand 1), enhanced biocompatibility, and

cellular uptake in cancer immunotherapy (63). SWNTs demonstrate

improved biocompatibility and stability as a delivery system. Chen

et al. created SWNTs with amylose derivatives containing poly(L-

lysine) dendrons and TNFa (ADP@SWNT/TNFa). Invitro and in-

vivo studies were done on the complex’s aqueous dissipation stability,

cytotoxicity, gene transfection potency, and photothermal effect. The

findings suggested that ADP@SWNT/TNFa had a high potential for

use in tumor therapy by being able to inhibit tumor growth and

metastasis in both studies (64).

The carbon nanotube’s adjuvant property might be able to resolve

the main obstacles associated with vaccine delivery. The fundamental

idea behind using CNTs in vaccine delivery is to attach the antigen to

them while maintaining its conformation, which will cause an antibody

response with the appropriate specificity (65). The CNTs can activate

several immune response-related genes, including NF- kB, ILs, and
TNFa. This activation can lead to both acute and chronic immune

responses. Acute inflammation occurs rapidly after exposure, while

chronic activation can result from prolonged or repeated exposure.

Chronic immune activation can contribute to sustained inflammation,

oxidative stress, and neurodegenerative processes. Reactive oxygen

species (ROS) and oxidative stress may be produced due to CNT-

induced immune activation. The study byMostovenkoet al. reveals that

exposure to carbon nanomaterials can cause neurological changes

reflected in the peptidomics profile of the cerebral spinal fluid (CSF).
TABLE 2 Shows different CNTs used for drug delivery for various diseases.

S.No. Principle of study Type
of

CNT

Disease Result Reference

1. Functionalized single-walled CNTs were
conjugated with CpG
(oligodeoxynucleotides) (CNT–CpG).

SWCNT Glioma CNT-CpG enhanced CpG uptake, increased cytokine
production, and eradicated gliomas in half of the mice,
resulting in durable tumor-free remission and protection from
tumor rechallenge.

(51)

2. SWCNT–COOH Forming Supramolecular
Complexes through p–p Stacking

SWCNT Parkinson’s
disease

SWCNT–COOH complexes with levodopa (LD), exhibited
favorable sustained-release characteristics for over 20 hours,
while the LD-loaded nanohybrid demonstrated pH-activated
drug release and no compromise in cell viability in PC12 cell
lines.

(52)

3. MWCNTs-PEI-R-Nb was a targeted
delivery system constructed using
MWCNTs conjugated with
polyethylenimine, ribavirin, and a PGNNV
(virus)-specific nanobody.

MWCNT Virus-
induced
CNS disease

MWCNTs-PEI-R-Nb showed targeted distribution, strong anti-
PGNNV activity, and reduced mortality (27%) compared to the
control group (100%) in infected zebrafish larvae.

(53)

4. Chemically modified SWCNT with COOH
and MADOPAR(Levapoda+benserazide)

SWCNT Parkinson’s
disease

Exhibits high adsorption efficiency, increased dispersibility in
water, and improved safety, making it a promising drug carrier
for benserazide and an effective treatment option for
Parkinson’s disease.

(54)

5. SWCNTs were carboxylated and loaded
with Droxidopa (DOPA).

SWCNT Parkinson’s
disease

Droxidopa loading on carboxylated single-walled carbon
nanotubes improves their dispersibility, enhances
bioavailability, and reduces systemic toxicity.

(55)

6. PEGylated oxidized multiwalled carbon
nanotubes (O-MWNTs) were modified
with angiopep-2 (O-MWNTs-PEG-ANG).

MWCNT Glioma DOX-O-MWNTs-PEG-ANG showed improved anti-glioma
effects, good biocompatibility, and low toxicity, making it a
promising carrier for brain tumor treatment.

(56)
frontiersin.org

https://doi.org/10.3389/fonc.2023.1265347
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Elsori et al. 10.3389/fonc.2023.1265347
These changes resemble early-stage neurodegenerative disease,

emphasizing the need to monitor CSF peptidomics markers for

assessing neurotoxicity and identifying potential risks associated with

carbon nanomaterial exposure. The duration, dose, and frequency of

exposure determine the extent of immune activation and its long-term

effects on the brain (66, 67). Further research is needed to understand

the underlying mechanisms associated with this fully.

This inspired clinical research on CNT-based delivery systems

to improve the body’s immune response to challenging diseases like

cancer (68). Luna Labs recently created the “CNTVac” delivery

platform, which uses short carbon nanotubes. Carbon nanotube size

is carefully regulated to have an HIV-1 particle-like morphology

and be effective at intranasal delivery of a wide variety of antigens. It

has increased local IgA and systemic antibody IgG responses in

mice and rabbits. In addition to acting as an effective delivery

system, CNTVac lowers the number of lipids necessary for vaccine

dosing, thereby removing potential side effects. The information

points to a possible platform technology for the delivery of

vaccines (69).
3.2 CNTs and regenerative mechanism via
targeting amyloid beta plaques and
neurofibrillary tangles

The utilization of carbon nanotubes in tissue engineering is yet

another significant application. The primary goal of tissue

engineering is to switch out unhealthy or eroded tissue with

biological alternatives that can be repaired and maintain normal

function. Whereas the study of self-healing, in which the body

employs its systems occasionally with extra assistance from external

biological material to regenerate cells and repair tissues and organs, is

a component of regenerative medicine, which also encompasses

tissue engineering (31). The 3D scaffold is applied in tissue

engineering to keep the tissues’ mechanical integrity, flexibility, and

cell-specific biochemical environment. CNT-based 3D scaffolds are

better compared for use in composite scaffolds due to their superior

mechanical attributes, which include high tensile strength and elastic

moduli. In neurology, osteology, and cardiology fields, using CNTs as

scaffolds for neural system rejuvenation is a promising advancement.

Researchers have demonstrated that MWCNTs can oxidize and

aggregate enzymes like rhBMP-2 (Recombinant bone morphogenetic

protein 2), promoting the stimulation of alkaline phosphatase and the

genomes Cbfa1(Core-binding factor subunit alpha-1) and COLIA1

(Collagen type 1), which supports osteogenic discrepancy in cultured

mesenchymal stem cells distinct from human adipose. MWCNTs can

also control subsequent gene therapy reactions without adding

exogenous signaling molecules or any other particular ligands, as

evidenced by the frequent stimulation of in-vivo ectopic bone repair

inmouse dorsal muscles. Therefore, the cultivation of renewable bone

tissue is also made possible by this CNT material (70). Nanofiber

scaffolds based on chitosan, polyvinyl alcohol, and carbon nanotube

seem to be a favorable approach in cardiovascular tissue

engineering (71).

A recent study by Li et al. raises the possibility of a new method

for repairing transected peripheral nerves that combines electrical
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stimulation with an electric conductive CNT/sericin conduit. This

CNT/sericin conduit has advantageous qualities like bio-

compatibility, bio-degradability, porous microarchitecture, and

appropriate swelling properties (72). According to a study by Xia

et al., multivalent polyanion-dispersed CNTs can be used to create

nano-structured fibrous scaffolds that can control the future of

induced pluripotent stem cells (IPS). These hPGS (hyperbranched

polyglycerol sulfate) CNTs have a distinct 1D morphology, are

stable in both physiological medium and water, and have good

biocompatibility compared to commercially available dispersed

SDS (sodium dodecyl sulfonate) and PSS (poly sodium-styrene

sulfonate). It was discovered that the suggested technique could act

as a biocompatible program for encouraging IPS cells’ adhesion and

growth. Additionally, it opens up a new method for creating

composites with functionalized carbon nanomaterials to

regenerate musculoskeletal and cardiovascular tissue (73).

In a recent article, functionalized single-walled carbon

nanotubes (f-SWCNTs) were used to reinforce high molecular

weight polyethylene (UHMWPE) material used to make

unicompartmental knee implants. The surface biocompatibility of

the prepared nanocomposite samples tested with human osteoblast

cells leads to an improvement in cell viability with great cell

differentiation and growth and affirms the effectiveness of the

produced nanocomposite matter in the formation of artificial hip

and knee inserts (74). The dispersibility of the CNTs was enhanced

by using functionalized MWCNT (f-MWCNT). In the presence of

human osteoblast cells, the manufacturing of silver-exchanged

hydroxyapatite/functionalized multiwall carbon nanotube (Ag-

HA/f-MWCNT) implants significantly inhibits proliferation and

induces significant apoptosis (75).
3.3 CNTs for neuroprotection
and neuroregeneration

Neuroprotection is the protection of neurons’ structure and

functionality. This method is frequently selected for patients with

CNS disorders such as stroke, brain injuries, and neurodegenerative

diseases, including AD, to end or slow the loss of neurons. Despite

varied signs and symptoms, the mechanisms causing

neurodegeneration are the same (76). Using neuroprotective

medications can shield neurons from neurodegeneration by

diminishing neuro-inflammation and apoptotic pathways (77).

Nanotechnology has several benefits in managing CNS

disorders; in the future, patients and doctors may have access to

more therapeutic alternatives. It is crucial to connect the

development of synthetic and characterization approaches in

chemistry and materials science with the advancement of nano-

engineered applications in the nervous system (78). Although there

are many published studies and proven conclusions, there are few

treatments for neurodegenerative diseases, and more research is

required to understand the mechanisms underlying neurological

disorders. Regrowth of axons and rearrangement of the neural

circuitry are the two critical strategies for encouraging the self-

repair of broken axonal connections in neurons. Thus, for

successful regenerative engineering (neuroplasticity) as a
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therapeutic approach for managing AD, the preservation of

neurons (neurorestorative), promotion of an environment

favorable for the regrowth of the degenerated neurons, also

known as neurogenesis, and reconnection of neuronal circuits,

followed by advancement of the plasticity of neuronal tissue, are

required (79). According to Lovat et al., using a pure MWNT

substrate improved hippocampus neuron cell adhesion and

dendritic elongation. The signal processing of neurons is better

when the dendritic extension is increased (80). Similarly,

Mazzatenta et al. demonstrated that pure SWNTs encourage the

development of neural circuits and the growth of hippocampus

neurons. The neural circuit expands noticeably as electrical signal

transmission within the neuronal network increases ((81) Jan et al.

evaluated the compatibility of CNT substrates with neural stem cells

based on cell survival and the development of neuronal processes

equivalent to those seen with the frequently used growth substrate

poly-L-ornithine (NSCs) (82). The successful transport of NSCs to

CNS injury sites and their differentiation into neurons served as

evidence of the effectiveness of CNTs (82).
4 CNTs as a diagnostic tool for
Alzheimer’s disease and brain tumor

4.1 CNTs in biosensors

Numerous groups of researchers have investigated CNTs as

sensing elements for biosensors because of their robust electrical or

optical properties, which are highly sensitive to be changed by exposure

to biomolecules. The increased surface/volume ratio of CNTs allows

the ultra-rapid detection of biological components even at lower

concentrations. CNT-based biosensors possess better sensitivity,

faster response times, higher stability, greater lifespans, and improved

shelf life compared to most metal oxide or silicon-based commercially

available sensors. Hence, CNT-based biosensors are acknowledged as a

next-gen aspect of ultrasensitive biosensing systems (83).

Biosensors for glucose are essential. They monitor glucose

levels, making them an excellent product for people with diabetes.

Protein sensors, immuno-sensors, nucleic-acid sensors, and

infection sensors are critical attributes of nanotube biosensors

(84–87). Azimiet al. proposed a new technique for modifying

straight lined-up carbon nanotube arrays (VACNTs) for targeted

glucose detection. The constructed electrode worked well as a point-

of-care (POC) biosensor to identify glucose in human blood plasma

with a detection limit of 1.1 mM (88). Amidated MWCNTs coupled

with gold nanocage decorated SPCE (screen-printed carbon

electrode) were capable of ultrasensitive detection of MALAT1

(Metastasis Associated Lung Adenocarcinoma Transcript 1)

biomarkers in non-small cell lung cancer. The formed biosensor

depicted a broad linear range and low detection limit (42.8 fM) with

sufficient selectivity and stability (89). A paper-based peptide-

encapsulated SWCNTs dipstick optical biosensor has been

advanced for protease observation. The feasibility of the sensor

was demonstrated by detecting trypsin activity in a urine sample of

a pancreatitis patient (90).
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An electrochemical biosensor was created on a carbon nanotube

field-effect transistor (CNT-FET) to detect SARS-CoV-2 S1 in saliva

samples. The biosensor was generated using CNT printing on a Si/

SiO2 surface and immobilized anti-SARS-CoV-2 S1. The presented

biosensor achieves a diagnosis range of 0.1 fg mL-1 - 5.0 pg mL-1

and a detection limit of 4.12 fg mL-1 in 2-3 minutes. And hence, it

can serve as an example for detecting SARS-CoV-2 S1 antigen (91).
4.2 CNTs in imaging

Utilizing CNTs allows for the enhancement of imaging features

and functionality. Carbon nanotubes are very desirable in the area

of biomedical imaging due to their optical, mechanical,

physiochemical, and versatile photophysical properties. In nuclear

imaging, Raman scattering, magnetic resonance, photoacoustic,

optical detection, and fluorescent video imaging, CNTs can be

exploited as imaging contrast agents (92). Semiconductive

SWCNTs make remarkable fluorescent bioimaging sensors due to

their near-infrared (NIR) fluorescence emission. A Fluorescence

near-infrared (NIR) nanosensor based on SWCNTs was developed

to visualize the release of the neurotransmitter serotonin from

blood platelets in real-time. Such nano-sensors have great

potential for defining how cells modulate chemical signals in

space and time to convey information (93). Another real-time

imaging strategy for tumor imaging has been proposed in which

bioengineered small mussel adhesive proteins (MAPs) CNTs were

used as tumor-targeted carriers. Brief CNT hybrid near-infrared

fluorophores (NIRF) were deposited in the tumor cells with

excellent targeting and clearance (94). Stronger NIR emission of

SWCNTs in contrast with E11 release by radical polymer grafting

on the SWCNT surface can be achieved by radical polymerization

utilizing surfactant-dispersed SWCNTs (95).

Saghatchi et al. reported that the multiwalled carbon nanotubes

equipped with magnetic Fe3O4 and gold NPs (mf-MWCNT/

AuNPs) are favorable in comparison with factors in imaging by

ultrasounds, CT scans, and MRI due to the beneficial qualities in

radio-, thermo-, and imaging therapies. Moreover, mf-MWCNT/

AuNPs is a strong candidate for use as a multi-modal instrument in

cancer therapy (96).
5 Limitations of CNTs

5.1 Biocompatibility and biodegradation
of CNTs

Due to their carcinogenicity and other harmful effects, nano-

biomaterials may have adverse effects if they break down in the

body. Nanoparticles that are not biodegradable can build up in

tissues and be detrimental to people’s health. Studies on toxicity

have been carried out to learn more about how to regulate the effects

of CNT-based drugs on degradation (97). The degree of aggregation

has also been shown to be one of the major factors affecting SWNT

cytotoxicity. It has been demonstrated that human mesothelial cells
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are less damaging to CNT bundles than to CNT agglomerates.

When dispersing nanotubes, cytotoxicity can be decreased by

adding biocompatible surfactants such as poly-oxyethylene

sorbitan mono-oleate 80 (PS80) (98).

(CNTs interact with different organs and bodily fluids.

According to several experimental findings, CNTs are harmful to

varying degrees in different tissues. Cells have been observed to

experience oxidative stress when exposed to CNTs. Numerous

studies have shown that the spleen, kidneys, and lungs are among

the organs that are most susceptible to the oxidative stress brought

on by the generation of free radicals. ROS are often produced as by-

products of the metabolism of oxygen. Because CNTs induce

oxidative stress within the cell, the quantity of ROS also rises.

However, research into how they affect various organs is required

before using them for medicinal purposes (99) Figure 5.

Numerous investigations into the biocompatibility and

carcinogenicity of CNTs have been made. The results have been

quite inconsistent; while some have claimed that the substance has

great biocompatibility, others have claimed that it is carcinogenic

(100). While more research has revealed that CNTs are potentially

dangerous substances that may have adverse acute and long-term

effects on a variety of living systems, some preliminary studies have

revealed that CNTs are physiologically benign to particular cells,

tissues, and organs like kidneys, stomach, bones, lymph nodes and

lungs. In bone, CNTs may interfere in bone repair and new bone

formation (101, 102). Whereas it seems that the biological effects of

CNTs are sample-dependent and must be assessed individually.
Frontiers in Oncology 10
Therefore, more study is required to determine the nanotoxicity

of CNTs.
5.2 Other challenges associated
with CNTs are
• Lack of solubility in the majority of biologically compatible

(aqueous-based) solvents.

• The creation of batch CNTs with the same chemically and

structurally repeatable properties.

• Maintaining high quality and minimizing contaminants is

challenging (103).
CNTs have a relatively low specific surface area and density and

are often challenging to manufacture into thick electrodes using

standard electrode preparation procedures, in contrast to advanced

activated carbons(Acs), Carbide-derived carbons(CDCs) and zero

-templated carbons (ZTCs) (104).
6 Future prospects

The potential applications of carbon nanotubes (CNTs) in the

field of medicine and biotechnology are vast and promising. CNTs

have already proven to be effective gene delivery and drug carriers
FIGURE 5

The figure represents the cytotoxic effects of CNTs on different body organs and immune systems. It depicts that penetration of carbon nanotubes
leads to oxidative stress, increasing ROS (reactive oxygen species) levels in organs. The organs, such as the spleen, kidneys, and lungs, are most
susceptible to the oxidative stress brought on by the generation of free radicals. Moreover, an inflammatory reaction is also observed towards the
CNTs due to their immunogenicity, as these are considered foreign material, thus, eliciting a foreign body response (FBR) (99).
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for a wide range of medical purposes, including cancer treatment

and anti-inflammatory therapies. The ability to transport various

anticancer agents and therapeutic substances such as docetaxel

(DTX), doxorubicin (DOX), methotrexate (MTX), paclitaxel

(PTX), gemcitabine (GEM), and osteogenic dexamethasone

(DEX) steroids via CNTs showcases their versatility.

Moreover, CNTs possess unique optical properties that make

them valuable in phototherapy applications. Their simple surface

functionalization has enabled their use as gene delivery vectors for

addressing various diseases, including cancer, by transferring genes

like plasmid DNA (PDNA), micro-RNA (miRNA), and small

interfering RNA (siRNA). These advancements hold great

promise for personalized medicine and targeted therapies.

However, it's important to acknowledge that concerns regarding

CNT nanotoxicology and environmental impact remain. Since CNTs

are not biodegradable, their long-term effects on the environment and

human health need thorough investigation. Furthermore, despite

decades of research and numerous in vivo and in vitro studies,

widespread use of CNTs in medical applications awaits regulatory

approval from agencies like the FDA (105).
7 Conclusion

Carbon nanotubes (CNTs) hold immense promise as versatile

tools in the fields of medicine and biotechnology. Their ability to

efficiently deliver genes and therapeutic agents to a wide range of cell

types, including cancer cells, has the potential to revolutionize drug

delivery and personalizedmedicine. Additionally, CNTs' unique optical

and physiochemical properties make them valuable assets in imaging

techniques and biosensors, enhancing their diagnostic capabilities.
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