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Abstract. The ability of regional air quality models to skil-
fully represent pollutant distributions throughout the atmo-
spheric column is important to enabling their skilful predic-
tion at the surface. This provides a requirement for model
evaluation at elevated altitudes, though observation datasets
available for this purpose are limited. This is particularly true
of those offering sampling over extended time periods. To ad-
dress this requirement and support evaluation of regional air
quality models such as the UK Met Offices Air Quality in the
Unified Model (AQUM), a long-term, quality-assured dataset
of the three-dimensional distribution of key pollutants was
collected over the southern United Kingdom from July 2019
to April 2022. Measurements were collected using the Met
Office Atmospheric Survey Aircraft (MOASA), a Cessna
421 instrumented for this project to measure gaseous nitro-
gen dioxide, ozone, sulfur dioxide and fine-mode (PM2.5)
aerosol. This paper introduces the MOASA measurement
platform, flight strategies and instrumentation and is not in-
tended to be an in-depth diagnostic analysis but rather a com-
prehensive technical reference for future users of these data.
The MOASA air quality dataset includes 63 flight sorties
(totalling over 150 h of sampling), the data from which are
openly available for use. To illustrate potential uses of these
upper-air observations for regional-scale model evaluation,
example case studies are presented, which include analy-
ses of the spatial scales of measured pollutant variability, a
comparison of airborne to ground-based observations over
Greater London and initial work to evaluate performance
of the AQUM regional air quality model. These case stud-
ies show that, for observations of relative humidity, nitro-
gen dioxide and particle counts, natural pollutant variabil-
ity is well observed by the aircraft, whereas SO2 variability

is limited by instrument precision. Good agreement is seen
between observations aloft and those on the ground, particu-
larly for PM2.5. Analysis of odd oxygen suggests titration of
ozone is a dominant chemical process throughout the column
for the data analysed, although a slight enhancement of ozone
aloft is seen. Finally, a preliminary evaluation of AQUM per-
formance for two case studies suggests a large positive model
bias for ozone aloft, coincident with a negative model bias for
NO2 aloft. In one case, there is evidence that an underpredic-
tion in the modelled boundary layer height contributes to the
observed biases at elevated altitudes.

1 Introduction

The World Health Organization identifies atmospheric air
pollution as the single largest environmental risk to hu-
man health globally (World Health Organization, 2017).
Long-term exposure to anthropogenic air pollution is linked
to increased morbidity rates and premature mortality from
chronic diseases (Air Quality Expert Group, 2020; Manisa-
lidis et al., 2020), which in the United Kingdom alone is es-
timated to have an annual impact on shortening lifespans,
equivalent to 28 000–36 000 deaths (DEFRA, 2019). The im-
pacts of air pollution on human health can be most acute
in urban areas, particularly megacities, where high pollu-
tant concentrations coincide with high population densities
(Molina and Molina, 2004). In addition to impacting human
health, air pollution has been shown to have wider detri-
mental impacts on ecosystems, including animal welfare,
crop yields, waterways, biodiversity and visibility (DEFRA,
2019).
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From an atmospheric sciences perspective, air pollution is
a complex, transboundary problem. Gaseous and particulate
pollutants originate from many sources, are subject to trans-
port and mixing over a range of scales, and undergo complex
physical and chemical processing prior to deposition. In or-
der to develop effective strategies for mitigating the impacts
of air pollution, for example through emission control and
limiting population exposure, these processes must be under-
stood and leveraged to provide predictive capability, extend-
ing spatially and temporally beyond the ground truth pro-
vided by observations. Atmospheric chemical transport mod-
els represent a key tool in this domain.

Air quality models vary widely in spatial scale and com-
plexity and have evolved rapidly in sophistication in recent
years. The reader is directed to El-Harbawi (2013) for a com-
prehensive review of air quality modelling systems that span
scales from street canyons to global ones and incorporate a
wide range of schemes representing pollutant emissions, tur-
bulent mixing, advection, gas-phase chemistry and aerosol
processes. Many of these models run online, meaning mete-
orological and pollutant fields evolve prognostically within
the modelling system, allowing feedbacks between the two
to be represented (such as direct and indirect aerosol effects)
(Savage et al., 2013).

In the Met Office, the primary air quality modelling system
is the Air Quality in the Unified Model (AQUM), a 12 km
limited area forecast configuration of the Met Office Uni-
fied Model (MetUM). AQUM provides daily UK national
air quality forecasts of the daily air quality index (DAQI)
up to 5 d ahead (see https://uk-air.defra.gov.uk/forecasting/,
last access: 11 September 2023), generated from the forecast
of nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3)
and particulate matter (diameters (Dp)< 2.5 µm: PM2.5 and
Dp< 10 µm: PM10) concentrations. AQUM has eight verti-
cal levels up to a model top height of 39 km, and mixing is
parameterised throughout the full depth of the troposphere
using a non-local, first-order closure, multi-regime scheme
(Lock et al., 2000). Given the resolution of AQUM, it is best
suited to modelling background and regional air quality away
from strong, very localised sources of pollution (Neal et al.,
2017; Williams et al., 2018). A comprehensive description of
the AQUM is available in Savage et al. (2013).

Air quality models, including AQUM, require high-quality
observations for development and evaluation. Given that air
quality regulatory limits are imposed at ground level only,
air quality model evaluation studies typically focus on as-
sessment of performance using surface measurements. In the
United Kingdom, these observations are commonly provided
by the Automatic Urban and Rural Network (AURN), an au-
tomatic ground monitoring network operated on behalf of
the UK Department of Environment, Food and Rural Affairs
(Environment Agency, 2022).

Comparisons of AQUM to AURN observations (Savage
et al., 2013; Neal et al., 2017) found that AQUM gener-
ally performed well, in particular for large air quality events,

but had a number of systematic biases, including a posi-
tive bias in ozone at urban sites, a positive (negative) nitro-
gen oxide (NO2) bias at rural (urban) sites and small neg-
ative biases in PM2.5. These findings are generally compa-
rable to similar air quality model evaluations that employ
AURN observations, such as Williams et al. (2018) (10 km
CMAQ-Urban model) and Neal et al. (2017) (HadGEM3-
RA 50 km regional composition–climate model), although
the latter showed a small positive bias in modelled PM2.5. For
AQUM, ground-based observations are used to bias-correct
the model data and minimise some of these systematic bi-
ases at the surface (Neal et al., 2014). Models that require
bias correcting through assimilation with observations have
the potential to introduce bias into future predictions, as as-
sumptions that the same factors apply both now and in the fu-
ture can be incorrectly made (Williams et al., 2018). We note
that these biases may not solely be due to model performance
and could also be partially attributable to difficulties in eval-
uating a 12 km resolution model with point observations that
have limited spatial coverage, both in the horizontal (rais-
ing questions of representativity) and in the vertical (limiting
model evaluation away from the surface–atmosphere bound-
ary). These limitations in observational data currently avail-
able for model evaluation provide motivation for the current
work, with a particular focus on the need for observations
away from the surface. Given that vertical mixing serves to
transport pollutants both away from and towards the surface
and pollutant chemical, physical and removal processes oc-
cur throughout the atmospheric column, model skill in this
domain is critical to achieving successful prediction at the
surface (Solazzo et al., 2013).

Observations of pollutants throughout the atmospheric
column are increasingly available from satellite instruments,
e.g. TROPOMI on the European Space Agency’s Sentinel-
5P (Veefkind et al., 2012; Air Quality Expert Group, 2020;
Wyche et al., 2021) and GOME on the European Space
Agency’s ERS-2 (Liu et al., 2005). While these observa-
tions can provide global coverage extending over timescales
of years, they generally contain limited information on the
vertical distribution of pollutants within the column (Flem-
ing, 1996; Peers et al., 2019). Instrumented aircraft provide
one way of addressing this gap. Over several decades, there
have been a number of related large-scale initiatives to in-
strument in-service commercial aircraft to provide such mea-
surements, e.g. Measurements of OZone, water vapour, car-
bon monoxide and nitrogen oxides by Airbus In-service air-
Craft (MOZAIC; Solazzo et al., 2013) and In-service Air-
craft for a Global Observing System (IAGOS; Petzold et al.,
2015). Over 44 000 flights have been conducted under IA-
GOS since 1994; though temporally and spatially restricted
by commercial flight patterns and timings, these projects
serve as a prime example of the use of instrumented aircraft
to provide long-term observations for atmospheric model
evaluation. An alternative approach is the use of atmospheric
research aircraft, ARA, which are instrumented and deployed
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specifically for the pursuit of atmospheric science and moni-
toring. ARA deployments tend to focus on specific locations
or events, and instrument payloads can vary greatly depend-
ing on the phenomenon under study. As such, while ARA
are particularly well suited to the detailed study of chemical
and physical processes (a key requirement for model devel-
opment), the often-sporadic nature of their deployment limits
the generation of consistent, long-term datasets. It is this gap
that this work seeks to fill with a specific focus on air qual-
ity observations over the United Kingdom to allow for the
evaluation of regional models such as AQUM.

The UK Clean Air: Analysis and Solutions research pro-
gramme is led by the Met Office and the Natural Envi-
ronment Research Council and has invested in modelling,
data and analytical tools to assess current and future air
quality and the impact of policies designed to improve it
(DEFRA, 2019). Under this umbrella, a long-term, quality-
assured dataset of the three-dimensional distribution of key
pollutants (NO2, O3, SO2 and PM2.5) has been collected us-
ing the instrumented Met Office Atmospheric Survey Air-
craft (MOASA). Observations have primarily covered the
southern United Kingdom, including Greater London, with
63 flights throughout the period 2019–2022. This sampling
period encompasses the global COVID-19 pandemic lock-
down, when emission of primary pollutants significantly re-
duced as a result of limits on mobility throughout the United
Kingdom. As such, the dataset may serve an additional ap-
plication providing a unique resource with which to ex-
plore changes in atmospheric composition associated with
reduced emissions during this period. This paper introduces
the strategy and quality assurance basis for these observa-
tions and is not intended to be an in-depth diagnostic analy-
sis, rather a comprehensive technical reference for all future
users of these data, including illustrations of the potential
uses of these upper-air observations for regional-scale model
evaluation. In particular it includes descriptions of (i) the
measurement platform and instrumentation, (ii) flight strate-
gies, (iii) analysis of the spatial scales of measured pollutant
variability, (iv) a comparison of ground-based observations
to airborne observations from repeated flight patterns over
Greater London and (v) initial use of these data to evaluate
performance of the AQUM regional air quality model.

2 Measurement capability

The MOASA, shown in Fig. 1, is a Cessna 421 aircraft based
at Bournemouth Airport, operated by Alto Aerospace Ltd for
the Met Office. The MOASA is instrumented to allow air-
borne measurement of key air-quality-relevant aerosol and
gas phase pollutants: gaseous nitrogen dioxide (NO2), ozone
(O3), sulfur dioxide (SO2) and fine-mode aerosol (PM2.5, de-
termined indirectly from measurements of the aerosol size
distribution). The fine-mode aerosol is also characterised in
terms of optical absorption and scattering properties. This

section provides a detailed description of the MOASA instru-
ments (which are summarised in Table 1) and related quality
assurance protocols.

2.1 Instrument overview

Instruments, examples of which can be seen in Fig. 2, are
situated in the cabin, the front hold of the aircraft and un-
der the wings. Wing-mounted probes include the Aircraft-
Integrated Meteorological Measurement System (AIMMS,
Aventech) instrument that provides real-time ambient me-
teorological data including temperature, humidity, pressure
and three-dimensional winds (speed, direction, vertical) as
well as latitude, longitude and (GPS) altitude. The aircraft
also includes a wing-mounted Cloud, Aerosol and Precipi-
tation Spectrometer with Particle-By-Particle (Droplet Mea-
surement Technology) though it does not form part of the air
quality measurement suite and therefore is not discussed fur-
ther here. Nitrogen dioxide, ozone and sulfur dioxide instru-
ments are rack mounted in the cabin and sample at 0.85, 1.8
and 0.5 L min−1, respectively. All instruments have a 1 Hz
sampling resolution, except for the O3 monitor, which sam-
ples at 0.5 Hz. Ambient gaseous samples are drawn from a
stainless-steel air sample pipe that takes air from outside of
the fuselage boundary layer through an on-rack PTFE headed
sample pump (KNF N834.3FTE). Also within the cabin is a
backscatter aerosol lidar (Leosphere), which is used opera-
tionally though it does not form part of the core air qual-
ity measurement suite. The starboard side nose bay compart-
ment contains a custom-built “air quality box” (AQ box) and
a nephelometer (Ecotech, Aurora 3000) (Fig. 2). The air sam-
ple to each of the instruments in the front hold is controlled
by actuated valves and volume flow controllers inside the AQ
box (see Appendix A).

The AQ box contains a Portable Optical Particle Spec-
trometer (POPS, Handix) and a Tricolour Absorption Pho-
tometer (TAP, Brechtel, model 2901) and has the capability
to subselect only PM2.5 sample aerosols for analysis. The
sample in the AQ box is from a Brechtel isokinetic inlet,
which samples at 6.35 L min−1 and has a > 95 % sampling
efficiency for particle diameters from 0.1 to 6 µm (Brechtel
Manufacturing Inc, 2011). The PM2.5 sample flow is dried
via two Perma Pure MD-700 driers, connected in series via
a 180◦ bend. The sample then passes through an impactor
with an aerodynamic cut point size of 2.5 µm, before be-
ing split between the POPS (0.5 L min−1 (sample+ sheath)),
TAP (1 L min−1) and the nephelometer (5 L min−1), which is
situated alongside the AQ box. Measurements at the neph-
elometer and TAP inlet indicate that the PM2.5 sample rela-
tive humidity is typically below 20 %, and therefore the sam-
ple is a good representation of the dry-PM2.5 size distribu-
tion. Within the AQ box the sample line temperature and
pressure are also recorded.

Particle losses through the PM2.5 sampling lines have been
estimated using open-access particle loss calculation soft-
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Figure 1. The Met Office Atmospheric Survey Aircraft, with instrumentation. The aircraft has a maximum cabin altitude of 3048 m, a
maximum (minimum) altitude of 7620 m (152 m) and an ascent (descent) rate of 243 m (300 m). Image courtesy of Debbie O’Sullivan, Met
Office, 2021.

Table 1. MOASA Clean Air instrument summary.

Species Observation technique
(manufacturer)

Wavelength Range Sensitivity

Nitrogen
dioxide

Cavity Attenuated Phase Shift
Spectroscopy (Aerodyne CAPS
NO2)

450 nm
LED

0–3000 ppbv (Kebabian et
al., 2005)

0.17± 0.14σ ppb

Ozone Ultraviolet photometry
(2B-Tech-205 dual-beam)

254 nm Up to 100 ppmv 2.9± 0.4σ ppb

Sulfur
dioxide

UV fluorescence (Thermo 43i) Ultraviolet 0–0.05 to 100 ppm
(Thermo Scientific, 2023)

0.90± 0.26σ ppb

Aerosol
scattering

Multi-wavelength integrating
nephelometer (Ecotech, Aurora
3000)

450, 525,
635 nm

< 0.25 to 2000 Mm−1 Total scattering (Mm−1):
0.05± 0.51σ
0.10± 0.55σ
0.01± 0.69σ
Total backscattering (Mm−1):
0.21± 0.95σ
0.07± 0.49σ
0.14± 0.55σ

Aerosol
absorption

Tricolor Absorption Photometer
(TAP, Brechtel, model 2901).

467, 528,
652 nm

0.22, 0.18 and 0.26 Mm−1 at
wavelengths of 652, 528 and
467 nm

PM2.5 Optical particle counter+ conversion
to mass concentration using iterative
method (Handix POPS; Peers et al.,
2019)

405 nm Approx.
0.1 µm<d < 1 µm

Approx. 0.1 µm<d < 1 µm

ware (von der Weiden et al., 2009) based on the tubing di-
mensions, flow characteristics and a representative particle
density of 1.64 g cm−3. This analysis has suggested losses
downstream of the inlet of < 17 % for particle diameters in
the range 0.1–3 µm.

In addition to particle losses due to flow deposition, we
have considered the extent to which loss of particle mass may
occur due to evaporation of ammonium nitrate, NH4NO3, a
semi-volatile aerosol component that readily repartitions be-
tween condensed and gas phases upon changes in temper-
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Figure 2. Upper left: the AQ box (foreground) and nephelometer (background) in the MOASA nose bay. Lower left: the Brechtel isokinetic
air sample inlet alongside the nose bay of the MOASA. Middle: the aft instrumented rack, housing the O3, NO2 and aerosol lidar control
system. Upper right: inside the AQ box and lower right inside the cabin looking forward.

ature and humidity (Nowak et al., 2010; Langridge et al.,
2012; Morgan et al., 2010). To determine the fractional loss
of NH4NO3 during MOASA sampling, a kinetic model of
the NH4NO3 evaporation process (based on the approach
of Fuchs and Stutugin, 1971, as implemented by Dassios
and Pandis, 1999) was used to calculate the rate of change
in diameter of polydisperse NH4NO3 particles through the
MOASA flow system. The model unsurprisingly showed
that the loss of particulate nitrate had a strong temperature
dependence and varied dynamically as a function of time.
Total mass losses during the MOASA sampling residence
time of 2 s and at a representative sampling temperature of
30 ◦C were approximately 7 %. The NH4NO3 losses showed
a weak dependence on pressure and relative humidity, with
absolute losses increasing by only 2 % at 500 Mbar compared
to 100 Mbar and by approximately 2 % over the relative hu-
midity (RH) range 10 %–50 % (where in-flight PM2.5 sample
RH was typically below 20 %). Although evaporative loss of
NH4NO3 during MOASA sampling will vary on a case-by-
case basis, for representative conditions this work confirms
that the loss is small and likely less than 7 %.

The AQ box also allows for measurement of the aerosol
population without particle size selection or drying. How-
ever, this mode of operation has not been utilised in this work
and is therefore not described further.

2.2 Nitrogen dioxide

A cavity attenuated phase shift spectroscopy nitrogen diox-
ide detector (Aerodyne Research Inc, referred to here as
NO2CAPS) was repackaged in-house, from a 5 U, 12 kg to
a 3 U, 9.7 kg 19 in. (48 cm) rack-mounted unit to optimise
volume and weight for airborne use. The analyser monitors
ambient atmospheric NO2 concentrations, with a lower de-
tection limit of < 1 parts per billion (ppb), using a 450 nm
LED-based absorption spectrometer utilising cavity attenu-
ated phase shift spectroscopy (Kebabian et al., 2005). A com-
prehensive review of the theory of operation is detailed in
Kebabian et al. (2005). The NO2CAPS analyser has been
shown to be insensitive to other nitro-containing species and
variability in ambient aerosol, humidity and other trace at-
mospheric species (Kebabian et al., 2005).

While some cavity-based absorption techniques are often
referred to as calibration free (Langridge et al., 2008), this
feature relies on knowledge of the variation in absorption
cross section across the spectral range of the light source be-
ing used. Given the broadband nature of the NO2CAPS light
source, which is difficult to characterise accurately and may
be subject to change over time, we chose to undertake routine
direct calibration of the instrument. As such, full multi-point
calibrations are carried out annually at the National Cen-
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tre for Atmospheric Science (NCAS) Atmospheric Measure-
ment and Observation Facility (AMOF) COZI Laboratory at
the University of York. Here, a multi-gas calibrator is used to
dilute a high-concentration NO standard into zero air (grade
Pure Air Generator 001) at varying levels. Ozone is added in
excess to ensure full conversion of NO to NO2. Seven con-
centration levels are used, and zero checks are also carried
out. Calibration coefficients are determined from linear fits
and applied to the NO2CAPS during data post-processing.

NO2 analyser baseline pressure dependency correction

During normal operation, the NO2CAPS analyser periodi-
cally establishes a baseline to account for the optical losses
associated with light transmission by the cavity mirrors
(which depend both on mirror cleanliness and alignment) and
Rayleigh scattering of light by air (Kebabian et al., 2005).
This is achieved by passing NO2 free air through the analyser
every 15 min (automated). The standard NO2CAPS software
then applies a constant baseline correction based on these pe-
riodic measurements for the sampling segment that follows.
For variable-pressure aircraft operation, this approach is not
adequate as changes in Rayleigh scattering that accompany
pressure changes lead to shifts in the instrument baseline be-
tween filter periods.

To account for these changes, a new correction scheme has
been developed. During post-processing, the pressure depen-
dence of the baseline is determined by applying a linear fit to
the pressure variation in Rayleigh-corrected filtered-air mea-
surements recorded across the full flight. This dependence is
used to calculate a new time-varying baseline based on sam-
ple pressure measurements alone. This baseline is then used
to recalculate the NO2 concentration across the flight. Spikes
due to valve switches are also removed from the data series
at this stage.

Figure 3 shows raw (red) and processed (blue) NO2 con-
centration during flight M304 in November 2021, where the
NO2CAPS sample inlet was fitted with a zero-air filter such
that measurements were sensitive only to baseline changes.
Following take-off at 11:52:00 UTC the aircraft climbed to
an altitude of 5.5 km, resulting in an ambient pressure change
of 509 Mbar and a NO2CAPS measurement–cell-pressure
change of 250 Mbar. The profile shows that corrected data
are markedly more stable in comparison to the raw data and
suggests a mean error in NO2 concentration due to pressure-
dependent baseline corrections of ±0.09 ppbv (data aver-
aged over 10 s intervals). The sensitivity of the NO2CAPS
was empirically derived to be 0.17± 0.14σ ppbv (during a
separate ground-based zero test, where data are also av-
eraged over 10 s intervals). As such, following correction,
NO2CAPS pressure sensitivity is not considered a significant
source of uncertainty for aircraft NO2CAPS observations.

Figure 3. (a) Time series of raw (uncorrected) and processed (cor-
rected) NO2 concentration. Oscillations seen in the raw and pro-
cessed data during the filter test are an artefact of the filter, which
impacted performance of the instrument pump. These oscillations
have been minimised by arbitrarily smoothing (60 s rolling). The
data are for visualisation purposes only. (b) Baseline against cell
pressure, coloured by altitude, with a linear fit is shown as a red
line. All data from 11:55:00 to 12:50:00 UTC during flight M304
on 4 November 2021 are averaged over 10 s intervals.

2.3 Ozone

A dual-beam ozone monitor (2B Tech, model 205) enables
measurements of atmospheric ozone up to 100 ppmv (parts
per million by volume). Measurements are based on the ab-
sorption of ultraviolet (UV) light at 254 nm in two absorp-
tion cells: one with ozone-scrubbed (zero) air and one with
unscrubbed (sample) air from which the Beer–Lambert law
can be used to determine ozone concentration. The instru-
ment sensitivity, empirically derived by sampling filtered air
at 0.5 Hz during a test flight, is 2.9± 0.4σ ppb. The moni-
tor is calibrated annually at the NCAS AMOF COZI Labora-
tory, where the instrument is compared with a NIST-traceable
standard ozone spectrometer over a wide range of ozone mix-
ing ratios. These results are used to calibrate the ozone mon-
itor with respect to gain and sensitivity, which are applied to
the instrument directly.

A known but not widely recognised issue with UV absorp-
tion ozone monitors is that rapid changes in humidity (as
may occur during airborne ascents and descents) can cause
a large zero shift. This is due to modulation of humidity of
the sample stream by the ozone scrubber, which can cause
the humidity in the sampling and zero cells to go out of
equilibrium. To equilibrate the humidity, Nafion tubes known
as DewLines are used in the 2B Tech monitor (Dewline,
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2020; Wilson and Birks, 2006). Biases may become apparent
should the DewLines stop working effectively; thus, follow-
ing some initial issues with negative calculated ozone val-
ues during MOASA measurements (impacting the first seven
flights, which do not have valid ozone data), the DewLines
were regularly replaced.

2.4 Sulfur dioxide

A pulsed florescence SO2 analyser (Thermo Scientific,
43i Trace Level-Enhanced) detects sulfur dioxide up to
1000 ppbv. It operates on the principle that SO2 molecules
fluoresce following absorption of ultraviolet light, with the
fluorescence intensity proportional to the number of SO2
molecules in the air sample (Beecken et al., 2014). The in-
strument sensitivity was empirically determined using zero-
air checks to be 0.90± 0.26σ ppb (averaged over 10 s in-
tervals). The SO2 instrument is calibrated (zero and span)
monthly in the field using an 863 ppb BOC alpha standard
gas.

2.5 Aerosol scattering

A multi-wavelength integrating nephelometer (Ecotech, Au-
rora 3000) measures the light-scattering coefficient of the
aerosol population in both forward- and back-scatter direc-
tions. It uses three high-power LED sources operating at
wavelengths of 450, 525 and 635 nm.

Instrument sensitivity, determined from baseline statistics
when sampling filtered air over 30 min at wavelengths of
450, 525 and 635 nm, was 0.05± 0.51σ , 0.10± 0.55σ and
0.01± 0.69σ Mm−1 for total scattering and 0.21± 0.95σ ,
0.07± 0.49σ and 0.14± 0.55σ Mm−1 for backscattering,
respectively (data averaged over 10 s intervals). This falls
within the manufacturer-specified sensitivity of< 0.3 Mm−1.
A monthly CO2 calibration and annual in-house service are
completed for the nephelometer as per manufacturer proce-
dures (Ecotech, 2009).

Uncertainties in scattering measurements using the neph-
elometer are dependent on sample flow (empirically de-
rived over all flights as < 0.05 %), the uncertainty of cali-
bration, inhomogeneities in Lambertian angular illumination
and truncation of light due to cell geometry. Corrections for
angular truncation and non-Lambertian light source effects
are applied according to the recommendations of Müller et
al. (2011).

Müller et al. (2011) empirically calculated an uncertainty
of 4 % (450 nm), 2 % (525 nm) and 5 % (635 nm) for to-
tal scattering and 7 % (450 nm), 3 % (525 nm) and 11 %
(635 nm) for total backscatter, which are adopted here. The
signal-to-noise ratio for backscattering is worse than for total
scattering, since the backscattering signal is about 1 order of
magnitude smaller than the total scattering signal for ambient
air (Müller et al., 2011).

2.6 Aerosol absorption

Aerosol absorption is measured using a Tricolor Absorp-
tion Photometer (TAP, Brechtel, model 2901). The TAP is a
three-wavelength (467, 528, 652 nm) filter-based absorption
photometer which derives real-time aerosol light absorption
from the difference in light transmission measured between
two 47 mm diameter Pallflex (E70-2075W) glass-fibre filter
spots, one of which receives particle-laden air and the sec-
ond of which receives aerosol-filtered air (Davies et al., 2019;
Bond et al., 1999; Perim De Faria et al., 2021; Ogren et al.,
2017). The TAP employs empirical corrections to account for
scattering effects that complicate the derivation of aerosol
absorption from filter transmission measurements. The the-
ory of operation and characterisation of the TAP is given in
Ogren et al. (2017) and Davies et al. (2019) (where it is pre-
viously known as a “CLAP”).

Mean 1σ detection limits of the MOASA TAP, empir-
ically derived by sampling filtered air and averaging over
60 s, are 0.22, 0.18 and 0.26 Mm−1 at wavelengths of 652,
528 and 467 nm, respectively. These values are in line with
the manufacturer-provided noise level characterisation of
0.20 Mm−1 over the same integration time.

The errors in absorption measurements from filter-based
photometry are dominated by uncertainties in the empirical
scattering corrections and also have contributions from un-
certainties in the spectral response of the light source (±1–
2 nm; Ogren et al., 2017), sample flow rate (< 1 %; Ogren et
al., 2017), filter spot size and the penetration depth of parti-
cles within the filter matrix (Bond et al., 1999; Davies et al.,
2019; Müller et al., 2014; Virkkula, 2010; Ogren et al., 2017).
Internal particle losses within the instrument flow system due
to diffusion, impaction and sedimentation are estimated to be
< 1 % for particles with diameters in the range 0.03–2.5 µm
(Davies et al., 2019; Ogren et al., 2017). To minimise the ef-
fects of instrument noise observed in-flight, a low-pass filter
is applied to raw data with a cut-off frequency of 0.08 Hz, al-
though this had minimal impact on optical properties derived
from these data.

We apply scattering corrections to the low-pass-corrected
TAP data using the Virkkula (2010) correction scheme,
which relies on simultaneous measurements of the light-
scattering coefficient, which in this case are provided by the
nephelometer. The correction scheme is implemented as de-
scribed by Davies et al. (2019). Ogren et al. (2017) provided
an estimate of the accuracy of TAP absorption measurements
of 30 %, and this value is adopted here. However, as sum-
marised by Davies et al. (2019), given the empirical nature of
filter-based correction schemes and strong source and wave-
length dependencies, these correction schemes are unlikely
to fully bound uncertainties associated with filter-based ab-
sorption measurements.
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2.7 Aerosol size distributions

A portable optical particle counter (POPS, Handix) measures
the size of dried particles predominantly in the accumulation
mode (approximately 0.1 µm<d < 1 µm) (Haywood, 2008)
using a light-scattering technique. The POPS uses a spherical
mirror to collect a fraction of light scattered sideways (38–
142◦) by individual particles traversing a 405 nm laser beam.
The scattered light is directed to a photomultiplier tube, the
signal from which is digitised and placed into 1 of 32 bins
that are spaced logarithmically in scattering amplitude space.
For a given laser power, the measured scattering amplitude is
determined by the particle size, shape and index of refraction
(IOR), thus allowing the bin boundaries to be converted to ef-
fective particle size subject to assumptions about shape and
optical properties. In addition to particle size, given the POPS
is a single particle instrument, it also provides a measure of
the total particle number within its detection size range. A
comprehensive review of POPS theory of operation is pro-
vided by Gao et al. (2016).

2.7.1 Calibration

Particle sizing by the POPS is calibrated by measuring the
scattering amplitude of atomised NIST-traceable polystyrene
latex (PSL) spheres of known size, spherical shape and IOR
(Rosenberg et al., 2012; Peers et al., 2019; Gao et al., 2016).
Calibrations use 10 discrete sizes of PSL between 0.15 and
3 µm. The PSL is atomised and dried prior to entering the
POPS sample inlet. PSL sizes between 0.15 and 0.70 µm are,
where possible, also passed through a differential mobility
analyser (TSI 3082 Electrostatic Classifier) in order to help
minimise the impacts of contaminants from the PSL genera-
tion process.

For each PSL diameter, Mie theory is used to calculate the
particle-scattering cross section (Fig. 4), using a PSL IOR at
405 nm of 1.615+ 0.001j (Gao et al., 2016). Linear regres-
sion is then used to fit the relationship between the POPS-
measured scattering amplitude and the theoretical PSL scat-
tering amplitude (Rosenberg et al., 2012). The error in re-
sponse is determined from the standard error in the mean for
each 15 s period of sampling, averaged over the duration of
the PSL run. The error in PSL diameter is the NIST-certified
range of the PSL diameter. The linear regression function is
used to assign calibrated scattering amplitudes to the desig-
nated POPS bin boundaries. At this point, the POPS mea-
surements are calibrated.

To size ambient particles, it is necessary to convert the bin
boundaries to equivalent diameters for particles with differ-
ent optical properties. The impact of particle index of refrac-
tion on the POPS response is shown in Fig. 4, which shows
the relationship between particle diameter and theoretical
POPS response for both PSLs and particles representative
of urban sampling. To account for the significant differences
seen, we again apply Mie theory. The calibrated POPS bin

Figure 4. Theoretical MOASA POPS Mie responses for PSL
calibrant (1.615+ 0.001j ) and ambient aerosol over London:
1.59− 0.022j (McMeeking et al., 2012). Crosses are PSL responses
from calibration on 16 September 2021.

boundaries in scattering cross-section space are converted to
diameter space based on Mie calculations. These calculations
integrate scattering over the angular range of collection an-
gles of the POPS and use an estimate of the ambient parti-
cle IOR (further details below) (Rosenberg et al., 2012; Gao
et al., 2016). To overcome inherent Mie resonance oscilla-
tions in calculated scattering signals (where Dp> 600 nm in
Fig. 4), which result in non-monotonic behaviour with in-
creasing particle diameter (Gao et al., 2016; Rosenberg et
al., 2012), each Mie response curve is smoothed using spline
interpolation (Hagan and Kroll, 2020). As particle morphol-
ogy and inter- and intra-particle homogeneity of the ambi-
ent sample are unknown, an assumption of spherical, homo-
geneous particles is implicit to the application of this Mie-
theory-based approach.

2.7.2 Index of refraction

The IOR of the aerosol sample used for determination of
POPS bin boundaries for ambient sampling is estimated
using the method described in Liu and Daum (2000) and
Peers et al. (2019). This is an iterative approach whereby the
single-scattering albedo (the wavelength-dependent ratio of
aerosol scattering to total extinction, ω0) is calculated from
the dry-POPS particle size distribution (ω0psd, λ= 405 nm)
using an initial-guess IOR and then compared to the mea-
sured single-scattering albedo at 405 nm derived from inde-
pendent observations from the MOASA nephelometer and
TAP (ω0nt). The IOR is then adjusted iteratively until accept-
able closure is reached between calculated and measured ω0,
noting that the POPS bin boundaries are adjusted upon each
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iteration. This process is summarised in Fig. 5; more details,
including a case study, are in Appendix B.

A strength of the MOASA dataset is that the POPS, TAP
and nephelometer all share a common sample inlet, which re-
duces the potential source of sampling bias that may impact
this analysis. Further, to minimise differences in sampling
volumes and response times, all ω0 calculations are per-
formed using 30 s averaged data, and only data from straight
and level runs (SLRs; flight transects at approximate constant
altitude and velocity) of at least 3 min duration are included.
The iterative IOR analysis step is performed on the flight
mean of these SLR data. While this approach does not allow
in-flight variability to be accounted for, it minimises potential
for erroneous impacts on the POPS size distribution arising
from noise and uncertainty in the ω0 measurements, which
can be large at low aerosol loading levels. The flight-average
approach adopted here has been shown to lead to modest er-
rors in particle diameter of < 10 % compared to analysis at
finer temporal scales (see case study in Appendix B). We also
note that while the IOR derived here provides closure be-
tween MOASA optical instruments, it is subject to potential
uncertainties, such as assumptions of aerosol homogeneity
and sphericity, and we caution against its use as an accurate
measure of the true ambient particle IOR (Frie and Bahreini,
2021).

2.7.3 Size distribution uncertainties

A review of uncertainties for the POPS instrument is given
in Gao et al. (2016). For particle number measurements, the
main source of uncertainty for particles within the instru-
ment’s size detection range is the sample flow rate. Gao et
al. (2016) report a nominal sample flow rate of 3 cm3 s−1

with an upper limit of 6.67 cm3 s−1 and an associated error
of < 10 % (Gavin McMeeking at Handix, personal commu-
nication, October 2020). For the MOASA POPS the sam-
ple flow over all flights ranged from 2.7 to 5.9 cm3 s−1 (data
averaged over 10 s intervals). The higher values arose due
to flow system cross-interference issues that generated flow
noise impacting the first 11 MOASA flights, following which
the source of noise was removed and a more representative
range of normal operation was 2.9 cm3 s−1

± 3.2 %.
Coincidence errors, whereby two or more particles tra-

verse the laser beam at the same time leading to sizing errors,
are a common feature of all optical particle counters when
used in high-aerosol-loading environments. The impact of
coincidence errors on the MOASA POPS observations is ad-
dressed during data processing by flagging all data in which
particle concentrations exceed 7000 cm3 s (Gavin McMeek-
ing at Handix, personal communication, 2020).

Particle sizing uncertainties arise from a number of
sources, including scattering amplitude measurement uncer-
tainty (leading to an estimated 3 % 1σ sizing error for 500 nm
particles) and laser intensity instability (±3 % diameter siz-
ing error for temperatures from 43 to 46 ◦C). In addition, for

reasons already discussed above, uncertainty in the IOR of
particles being measured also impacts uncertainty in particle
sizing. Gao et al. (2016) used a theoretical ambient aerosol
population to investigate the potential magnitude of this er-
ror. They assessed the accuracy in the location and width
of lognormal fits to both a theoretical population fine mode
(10 % and 10 % respectively) and coarse mode (1.4 % and
19 % respectively). These uncertainties were propagated to
derive an estimated uncertainty in the total particle volume of
19 %. Though based on a single theoretical ambient size dis-
tribution, this analysis provides an indication of the magni-
tude of error arising from IOR variation. For MOASA POPS-
derived size distributions, it is likely to provide an upper in-
dication of the error, given that efforts to correct the POPS
bin boundaries based on the iterative IOR method described
above should serve to improve sizing accuracy.

Based on the information above, an upper estimate for the
error in total particle volume from POPS measurements (re-
quired for subsequent calculation of particle mass) is derived
by combining in quadrature contributions from IOR (19 %),
sample flow (3.2 %) and laser amplitude (6 %) to yield an
uncertainty of 20 %.

2.8 Determination of mass concentration (PM2.5)

To calculate particulate mass, we convert the calibrated, IOR-
corrected POPS particle size distributions to volume distri-
butions and subsequently mass distributions by assuming a
fixed particle density. The total mass is then calculated by in-
tegrating across the distribution within the PM2.5 size range.
Calculations are performed on 10 s averaged data and work
on the basis of fitting lognormal functions to the measured
distributions to represent a fine and coarse mode (the dashed
line in Fig. 6 shows the combined lognormal modes from a
straight and level run during flight M270 on 15 September
2020). This approach serves to reduce the impact of residual
structure from Mie resonances in the POPS distribution on
mass derivations.

The selection of an appropriate particle density for con-
verting volume to mass is an important part of the above
analysis. The composition and therefore density of ambient
aerosol vary dynamically in the atmosphere (Hinds, 1999;
Crilley et al., 2020). In the absence of co-located aerosol
composition observations on MOASA, we apply a fixed den-
sity to all data of 1.64± 0.07 (1σ ) g cm−3. This value is
derived by weight averaging the densities of PM2.5 aerosol
components measured during a range of UK field experi-
ments, as detailed in Appendix C.

The total uncertainty in the determined PM2.5 mass con-
centration, estimated by combining uncertainties in the mea-
sured particle volume (20 %) and the assumed particle den-
sity (4.2 %), is 20.4 % and thus dominated by the volume er-
ror.
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Figure 5. Process to estimate the IOR of the ambient sample by iteratively adjusting the index of refraction of the POPS size distribution
measurements until the POPS single-scattering albedo matches the single-scattering albedo from the nephelometer and TAP.

Figure 6. An example of raw, calibrated (no IOR correction) and
calibrated with IOR correction (IOR= 1.59+ 0.12j ) particle size
distributions, where the y axis is normalised to 1. Overlaid are log-
normal accumulation and coarse modes (dotted) plus the combina-
tion of these lognormal modes (dashed) fitted to the calibrated with
IOR correction (blue solid line) size distribution.

3 Observation and data strategy

The MOASA air quality flight strategy was based on flying
a series of repeated sorties, each designed to provide data
suitable for various aspects of model evaluation work. On a
week-to-week basis, sorties were selected based on the pre-
vailing weather conditions, and any required modifications
to flight plans were made at that time. This section describes

the rationale behind each of the sortie types, together with a
summary of flight activities.

Given the MOASA home base is at Bournemouth on the
south coast of the United Kingdom, operations have predom-
inantly focused on sampling over the south of the United
Kingdom. This includes work over the English Channel
(e.g. sampling transboundary pollution), over varied land-
use types (urban and rural) including pollution hotspots
such as London, and over isolated source regions such as
docks and industrial sites. In addition to regular sorties, in
June–July 2021 (summer) and January–March 2022 (winter),
the MOASA also participated in intensive observation peri-
ods (IOPs) in conjunction with ground-based Integrated Re-
search Observation System for Clean Air (OSCA) air qual-
ity supersites, located in London, Birmingham and Manch-
ester (UKRI, 2021; OSCA, 2020). All flights are performed
within operational airspace regulations which limit minimum
and maximum flight levels. Observations are mostly in the
boundary layer and, as shown in Fig. 7, bottom panel, typi-
cally near or below 1 km GPS altitude. The lowest altitudes
(0.15 km minimum) are permitted in offshore and rural ar-
eas, whereas minimum altitudes in urban areas (or in regions
with significant topography or obstacles like masts or chim-
neys) are limited to > 0.3 km. Where possible profile mea-
surements extending into the free troposphere are also col-
lected, which allow the boundary layer height to be deter-
mined in addition to sampling of aged and/or transported pol-
lutants.

A total of 63 flight sorties were flown between July 2019
and April 2022, comprising over 150 h of atmospheric sam-
pling. Flight details are summarised in Table 2, and Fig. 7
shows horizontal and vertical spatial coverage of flights over
the Clean Air campaign.
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Table 2. MOASA Clean Air flights by sortie. The numbers in brackets indicate the number of straight and level transects used to derive
the index of refraction for PM2.5 (where applicable) and (from flights M247 to M302) the analysis in Sect. 4.1. “n/a” indicates that no runs
were used in forward analysis. London flights which include a central overpass are postfixed with an asterisk. Flights with limited data are
postfixed with a double asterisk. London flights during the summer and winter IOPs are also postfixed with superscript “iop”. London flights
with no NO2 data or O3 data are postfixed “NO2” or “O3” (applicable to Sect. 4.4).

Sortie type Number Flight numbers (number of designated runs in flight)
flown

South-west ground network survey 7 M247 (4), M256 (3), M263 (5), M266 (3), M267 (5), M286 (7), M288 (4)

North-east ground network survey 2 M253 (4), M262 (3)

South coast survey 5 M250, M258 (5), M265 (4), M269 (4), M301 (6)

Coastal transition 6 M272 (3), M280 (9), M283∗∗ (n/a), M285 (11), M289 (9), M322 (n/a)

High-density spatial mapping 5 M257 (2), M270, Cambridge (7), M274, Strait of Dover (4), M281, Port
Talbot (10), M284, Port Talbot (4)

London 23 M251NO2 (5), M252 (3), M264 (3), M273 (4), M275∗ (3), M276∗ (4),
M277∗ (5), M278∗ (4), M279∗ (3), M282∗ (6), M287∗ (4), M294∗,iop

(5), M297∗,iop (9), M302∗ (6), M305∗∗,NO2,O3 (n/a), M311∗,iop (4),
M314∗,iop (5), M315∗,iop (5), M319∗,iop (6), M323∗ (5), M324∗ (5),
M325∗ (4), M326∗ (4)

Birmingham IOP 8 M290 (8), M291 (9), M295 (10), M296 (9), M310 (7), M312 (12), M313
(12), M316 (n/a),

Manchester IOP 7 M292 (7), M293 (7), M298 (5), M299 (6), M300 (6), M317 (5), M320 (6)

Total flights 63

In terms of meteorology, conditions representative of both
the general background environment and elevated pollution
events have been targeted. As the southern United Kingdom
has a maritime climate, with the frequent passage of mobile
low-pressure systems from the North Atlantic, conditions in
the operating area are not always conducive to the build-up of
pollution. For the targeting of elevated pollution conditions,
synoptic high-pressure conditions with light winds and lit-
tle cloud and precipitation are favoured. Strong sunshine and
elevated temperatures are also conducive to the production
and build-up of pollutants such as ozone, and as such, high
pollution events tend to be more frequent and severe in the
summer (Savage et al., 2013).

3.1 Ground network survey

Ground network survey sorties describe two flight patterns
that sample both rural and urban background regional pol-
lution at various altitudes. One flight pattern is focused on
the south-western United Kingdom (Fig. 8a1) and the other
on the eastern United Kingdom (Fig. 8a2). A particular fea-
ture of these sorties is that they overfly a number of AURN
ground sites, allowing pollutant concentrations at the surface
to be compared to those aloft. Characterisation of pollution
at regional scales is important for air quality model evalua-
tion, particularly for models operating at coarse resolutions
such as AQUM, which encompass point source emissions

data but cannot accurately represent them in terms of loca-
tion and concentration.

3.2 High-density plume mapping

High-density plume mapping flights (Fig. 8b) use intensive
model grid-box scale sampling to allow for assessment of the
(often subgrid in models) scale of pollutant variability in a
high-pollution region. Repeated runs upwind, downwind and
within the plume are performed at a range of altitudes. This
sortie has primarily been flown over Port Talbot in south-
ern Wales, a heavily industrialised area and AQUM pollution
hotspot, but has also been flown once north of Cambridge
(eastern United Kingdom). In that case, horizontal transects
sampling the plume at multiple altitudes downwind of the
city were conducted.

3.3 South coast survey

South coast surveys were flown onshore and offshore along
the south coast of the United Kingdom, typically from Dart-
moor National Park in the western United Kingdom to East-
bourne in the east (Fig. 8c). These surveys have been flown
under background and polluted southerly flows to charac-
terise transboundary and long-range transport of pollutants
from continental Europe. In late 2019, a persistent emissions
hotspot (primarily PM2.5 and SO2) was seen in the AQUM
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Figure 7. Horizontal (top) and vertical (bottom) spatial coverage of
63 MOASA Clean Air flights from 27 July 2019 (flight M247) to
11 April 2022 (flight M326). AURN sites are shown as triangles,
airports as squares and stars as ground-based supersites in Birming-
ham, Manchester and London. The annotations relate to the sortie
type detailed in Fig. 8, where A1 and A2 are ground network sur-
veys, B high-density plume mapping flights, C south coast surveys,
D coastal transition surveys, E London City Surveys, and F and G
the Birmingham and Manchester IOP flights, respectively. Map by
Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under
ODbL.

forecasts, potentially originating from ships in Southampton
Docks. Therefore, from late 2019 onwards, overflights of the
Solent and Southampton waters were added to the stock sor-
tie.

3.4 Coastal transition survey

The coastal transition sortie (Fig. 8d) also operates along the
south coast of the United Kingdom. The primary distinc-
tion from the south coast survey was a zigzag manoeuvre
whereby observations across the land-to-sea transition are re-
peatedly sampled. The objective for this sortie is to obtain
data for benchmarking model performance across the land–
sea interface, where strong gradients in humidity and tem-
perature can impact forecast pollution fields. In later flights,
these surveys have also been extended eastwards to encom-
pass the Strait of Dover to allow sampling of pollutants trans-
ported from industrial activities around the Dunkirk region of
northern France, which is another emissions hotspot that can

lead to strong pollutant transport over the United Kingdom
when meteorological conditions permit.

3.5 London city survey

Circumnavigational flights of London (Fig. 8e) were per-
formed during high- and low-pollutant loadings to charac-
terise city scale emission and dispersion of pollutants from
the heavily populated, commercial and industrial Greater
London area. Busy air space and air traffic control due
to the close proximity to major airports (Gatwick, London
City, Heathrow) restrict the operational area of the MOASA.
Broadly, following a short transit to Reading, the sortie
takes the MOASA clockwise following the M25 London or-
bital motorway, which encircles Greater London. Missed ap-
proaches are frequently performed at Elstree airfield to the
north and Biggin Hill airfield to the south-east.

A substantial decrease in air traffic during the COVID-19
pandemic provided a unique opportunity to fly at low level
(approx. 1000 ft= 300 m) over central London. This central
city sampling was added to the stock sortie in November
2020 and became the primary sortie for flights during the
COVID-19 pandemic. The central London overpass follows
the river Thames to approximately 0.087◦W, where it de-
viates south-westerly to comply with air traffic control re-
strictions. During later flights, north–south and/or east–west
transects were also completed to observe the urban heat is-
land effect on boundary layer height. During the summer and
winter IOP’s MOASA observations were also made close to
the surface air quality IOP supersite (stars, Fig. 8e).

3.6 Birmingham and Manchester IOP

During the summer and winter IOP’s MOASA observations
were also made over Birmingham (Fig. 8f) and Manchester
(Fig. 8g). These city scale sorties were tailored to best suit
meteorological conditions on the flight day; they typically
involved circumnavigational orbits or box patterns over the
cities at altitudes ranging from approximately 0.3 to 0.9 km
and/or runs north–south, upwind and downwind of the city
and the supersite. Passes directly overhead of the Birming-
ham and Manchester ground supersites (stars, Fig. 8f and g)
were made at each altitude, when possible. During the IOPs,
MOASA operated both in the morning and late afternoon,
allowing observation of the build-up of regional-scale pollu-
tants over the day.

3.7 The measurement database

Datasets obtained during the MOASA Clean Air project are
openly available from the Centre for Environmental Data
Archive (CEDA) “MOASA Clean Air Project: airborne at-
mospheric measurements collection” repository (DOI: https:
//doi.org/10.5285/0aa1ec0cf18e4065bdae8ae39260fe7d,
Met Office and Mynard, 2023).
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Figure 8. Aircraft flight tracks for a typical (a) ground network survey over the south-west (a1) and east (a2), during M288 and M262
on 19 May 2021 and 10 January 2020, respectively, (b) high-density vertical mapping over Port Talbot, southern Wales, during M284 on
24 March 2021, (c) south coast survey flight, during M301 on 27 July 2021, with focus on overpasses of the Solent and Southampton waters,
(d) coastal transition flight, during M285 on 30 March 2021, (e) London city survey flight IOP, M297 on 2 July 2021. (f) Birmingham IOP
flight (left), during M296 on 1 July 2021, and (g) a typical Manchester IOP flight, during M300 on 20 July 2021. AURN sites are shown as
triangles, airports as squares and stars are ground-based supersites in Birmingham, Manchester and London. The geographical location of
each sortie is shown in Fig. 7. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

Data files are NetCDF format and contain observations of
NO2 (ppbv, 1 Hz), ozone (ppbv, 0.5 Hz), SO2 (ppbv, 1 Hz),
light scattering (Mm−1, 1 Hz), light absorption (Mm−1,
1 Hz), particle counts (number, 1 Hz), particle concentration
(cm3, 1 Hz), calibrated, IOR-corrected particle mass (µg m−3

per bin, 1 Hz) including PM2.5 (µg m−3, 1 Hz). Data files
also contain the meteorological parameters ambient temper-
ature (◦C), relative humidity (%), pressure (hPa), wind speed
(m s−1) and wind direction (◦), all at 1 Hz. Each instru-
ment parameter is presented as a time synchronised, three-
dimensionally geo-located time series, with calibrations and
corrections applied (where applicable). Each instrument pa-
rameter has a standard name, long name, unit and measure-
ment frequency (compliant with Climate and Forecast (CF)
naming conventions where possible). Some, but not all, also
have a comment, minimum and maximum limits, and/or a
positive attribute. Each variable has the coordinates of time,
latitude, longitude and altitude. Measurements from all in-
struments are reported at ambient pressure and temperature.

To ensure optimal traceability and transparency of data,
comprehensive metadata are included in the NetCDF, which
details any calibration constants and/or corrections applied
to data alongside general information about the data, such

as contacts, abbreviations and references. Where possible,
data are range checked to ensure observations fall inside the
recommended operational limits of the instrument, and out-
liers to these limits are flagged. The standard flag name is
the parameter name, postfixed with “_flag”. The three flag
values are 0= good_data, 1= outside_ valid_ranges, and
2= sensor_nonfunctional. Where a flag is available, the valid
ranges are given in the variable metadata. Each flag parame-
ter has standard name, frequency, flag value and flag meaning
attributes. Housekeeping variable flags are carried forward to
the primary variables; primary variable flags are carried for-
ward to secondary variables. The configuration file used to
process each flight data is available alongside the NetCDF
as a text file and provides the range check limits and the
source of these limits. Records of all work done on the instru-
ments (calibrations, cleaning, and maintenance) are digitally
recorded and available on request by contacting the author.

4 Example case studies

This section provides a limited number of case studies apply-
ing the MOASA dataset to different scientific applications.
These examples are intended to showcase different uses of
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the database and are not intended as comprehensive analyses
in their own right. We present (i) a statistical analysis of the
scales of pollutant variability observed across the MOASA
air quality dataset, (ii) an introduction to the vertical struc-
ture of pollutants by comparing ground-based observations
to airborne observations from repeated flight patterns over
Greater London and (iii) example use of the dataset for eval-
uation of a regional air quality modelling system (AQUM).

4.1 The spatial scales of pollutant variability

The evaluation of limited-resolution regional air quality
models (such as AQUM with a 12 km grid length) using
high-resolution in situ surface or airborne data is complicated
by the differences in spatial scale between the two (Qian et
al., 2010). While instrumentation may be capable of mea-
surements at high precision and accuracy, these uncertainty
metrics often do not determine the degree to which models
and observations should be expected to agree. In many cases
the magnitude of natural pollutant variability at scales that
are subgrid for models provides an important additional con-
sideration. Quantifying subgrid-scale pollutant variability is
also important for wider applications beyond model evalu-
ation, such as pollutant exposure studies (e.g. Denby et al.,
2011) and in understanding satellite-derived data (e.g. Tang
et al., 2021). With this in mind, in this section we use the
MOASA Clean Air database to assess how observed pollu-
tant variability changes, on average, as a function of length
scale, and how this variability compares to fundamental in-
strument measurement precision. As with each analysis pre-
sented in this section, the intention is to provide insight into
potential application areas for the MOASA dataset rather
than provide a comprehensive study.

High-temporal-resolution datasets corresponding to each
straight and level run formed the basis for the analysis. An
example of a straight and level run is shown in Fig. 9, which,
notably, shows that SO2 data were generally below the sen-
sitivity of the instrument except during exceedance events.
Measured values in each dataset were split into groups of
equal size, with sizes corresponding to equivalent ground dis-
tances (dint) ranging from 0.42 to 17 km, in 0.085 km (1 s)
intervals (where a true airspeed of 85 m s−1 is assumed to be
equivalent to 0.085 km s−1 straight-line distance at ground
level). The variability observed at each of these length scales
was calculated by first calculating the standard deviation (σ )
of points within each group of data, before calculating the
mean deviation across all groups in the transect.

The variability observed in a given transect depends on a
range of factors and will clearly change on a case-by-case
basis. Despite this, it is also useful to examine how average,
subgrid variability changes as a function of length scale (e.g.
Tang et al., 2021, and references therein). This has been in-
vestigated here by using averaging data from all MOASA
SLRs, over 63 flights between July 2019 and April 2022 (322
SLRs representing 1952 min of sampling). The number of

Figure 9. SO2 time series from 13:22:30–13:26:50 UTC during
high-density mapping flight M284. The solid blue line is SO2 con-
centration (in ppb), with the mean shown as the horizontal dotted
line, with 1 and 2 standard deviations as the shaded grey areas. The
mean SO2 zero (0.9 ppb) is the dashed red line, with red shading
showing 1 standard deviation of the mean.

Figure 10. Density distributions of RH, particle counts, NO2
and SO2 variability, for dint= 0.42, 0.85, 2.55, 5.10, 12.07 and
15.04 km, for 322 straight and level runs over 63 flights of the
MOASA Clean Air campaign. Vertical dashed lines show the in-
strument sensitivity ±1 standard deviation.

SLRs per flight varies depending on the type of sortie flown,
with a minimum of 2 and a maximum of 11 (see Table 2).
The minimum permissible SLR length was capped at 3 min
to ensure adequate counting statistics. We focus here on mea-
surements of relative humidity, NO2, SO2 and total particle
number concentration. The results are presented in Fig. 10 as
probability density functions that indicate the range of vari-
ability observed at dint of 0.42, 0.85, 2.55, 5.10, 12.07 and
15.04 km.

Of particular note, it is clear that measured variability
in SO2 was generally close to or below the noise limit of
the MOASA instrumentation; thus instrument performance
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dominates not only SO2 background data (as seen in Fig. 9)
but also observed SO2 variability in the MOASA database.
For RH, NO2 and particle counts, natural variability is gener-
ally well sampled by the MOASA instrumentation. It is inter-
esting to note how the peak position and width of the distribu-
tions changes upon moving to progressively longer sampling
scales. Changes are particularly marked for relative humidity
and somewhat less so for NO2 and particulate counts. Focus-
ing on the 12 km AQUM grid length as an example, > 99 %
of NO2 variability observed over the campaign is above in-
strument noise. This indicates that a significant amount of the
variability in the NO2 dataset can be interpreted as real pol-
lutant variability that could be used to help bound model pa-
rameterisations of subgrid variability, evaluate the accuracy
of exposure estimates in air quality models, as discussed in
Denby et al. (2011), and facilitate estimations of sampling
uncertainties for satellite product validation, which has his-
torically been limited by the availability of such in situ mea-
surements (Tang et al., 2021).

4.2 Ground-based and airborne observation
comparison using long-term observations over
London

To enable meaningful comparison of airborne and ground-
based observations during model verification, the relation-
ship between observation methods must first be understood.
To achieve this understanding, in this section, a comparison
of airborne and ground-based observational data is presented.

The ground-based observations consist of OSCA mast and
AURN data. AURN consists of around 70 sites in rural, re-
mote, urban background and suburban settings, providing
hourly measurements of NOx , SO2, O3, carbon monoxide
(CO), PM2.5 and coarse particulate matter (PM10) (Environ-
ment Agency, 2022), although not all species are measured at
all sites. For this paper, we only consider background AURN
sites applicable to regional air quality models such as AQUM
(Neal et al., 2014).

For the comparison, first, the vertical structure of NO2,
PM2.5, SO2 and O3 were plotted as altitude profiles of
airborne data alongside all available ground data within
Greater London (longitudes from −0.60 to 0.40, latitudes
from 51.23 to 51.80). The agreement (ratio) between air-
borne and ground-based observations was moderately low
for all species for most flights, likely due to large variation
between ground sites, in terms of site proximity to the air-
borne data and variation in concentration due to proximity to
emission sources. An example of the vertical and horizonal
spatial variation of airborne and ground-based observations
for NO2 during flight M325 over Greater London is shown in
Fig. 11. Here, the 84 µg m−3 NO2 observed at the HIL AURN
site (Fig. 11 left: grey square and right: red triangle) is signif-
icantly higher than both other ground sites in the region and
the airborne data (boxplot whiskers in Fig. 11 left and track
colour in Fig. 11 right). This skews the airborne : ground ra-

tio to 0.32 (the ratio discounting this site is 0.48). This sug-
gests a region-wide observational comparison is insufficient
in determining whether the airborne data can be meaning-
fully compared to the ground data and is an inefficient metric
when using these observations for model evaluation, where
models can have significantly higher resolution. As shown
in Sect. 4.1, MOASA instrument precision did not limit the
ability to sample the natural pollutant variability at spatial
scales of 0.42 km, important for representing the magnitude
of natural pollutant variability at scales that are subgrid for
models.

To minimise the effects of the horizontal spatial variation
of concentrations and utilise the high spatial resolution of
the airborne data, the average airborne observation within a
12 km radius (the AQUM grid length) of each ground site
was calculated. For each species, these airborne averages
were plotted against the local ground-based average obser-
vation, for each ground site, for each IOP flight. Linear re-
gression was then modelled for each species and site. The
result of this approach is shown in Fig. 12 for the Greater
London area.

4.2.1 PM2.5

Linear regression of airborne vs. ground-based observations
of PM2.5 inside the London area suggests very good agree-
ment between the two datasets, with r2 of 0.90. The agree-
ment between observations suggests a well-mixed atmo-
sphere, with little gradient in PM2.5 throughout the column.
The majority of observations are obtained using the same
measurement technique (optical particle counter with conver-
sion to mass concentration) with just one AURN site (Lon-
don Westminster) using a beta ray attenuation (BRA) tech-
nique. As discussed in Sect. 2.8, airborne PM2.5 is derived
from size distributions that are refractive index corrected on a
per-flight basis and a density of 1.64 g cm−3. For the majority
of AURN ground sites, both refractive index and density are
derived internally to the instrument, using 24 h average gravi-
metric data. This comparison suggests these correction meth-
ods yield agreeable results. The parity of the BRA observa-
tions with the majority equivalent method provides further
reassurance that, for this study, all observations of PM2.5 are
comparable, regardless of observation technique employed.

4.2.2 SO2

Due to limited AURN sites that observe SO2, as well as low
concentrations of SO2, which generally do not exceed the un-
certainty thresholds of the airborne instrumentation, there are
insufficient observations to explore agreement between the
observational platforms, which both employ a UV fluores-
cence technique. However, at the low concentrations shown
and the site data available, the observations show reasonable
agreement. That both airborne and ground-based observa-
tions are made using the same measurement technique pro-
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Figure 11. Flight M325 on 24 March 2022 from 12:09:25 to 13:46:01 UTC. Left: altitude profile, where airborne observations of NO2 within
Greater London are shown in grey, and the boxplot represents the inter-quartile range, the data range (whiskers), the median (vertical dashed
black line) and mean (vertical red solid line) of these data. The London IOP supersite is shown as a black star, and AURN ground sites within
the region are shown as various markers (see key). Ratios of airborne : mast (0.44) and airborne : aurn (0.32) are calculated as the ratio of
mean airborne observations to the mast, and to the mean of all individual ground-based sites, respectively. Right: track of aircraft coloured by
NO2 concentration (representative of the range of the airborne data in the profile plot), with mast-based (star) and ground-based (triangles)
NO2 observations. Map by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

vides further confidence that the observations are compara-
ble.

4.2.3 NO2 and O3

A weak positive agreement is shown for NO2 where
r2
= 0.40, suggesting a more variable relationship between

airborne and ground-based observations. The model shows
systematically lower NO2 observations aloft at most sites,
which diverge further away from unity with an increase in
concentration. A moderate, positive agreement is seen for
O3, where r2

= 0.63. Contrary to the NO2 model, the agree-
ment between observations aloft and at the ground moves to-
wards unity at higher concentrations, and systemically higher
observations are seen aloft at all sites. Flight dates for obser-
vations at lower O3 concentration were in winter, whereas
flight dates for observations of the highest concentrations –
where agreement is strongest – are in the summer and spring
months.

All observations of O3 use ultraviolet photometry, whereas
for NO2, observations aloft and at the OSCA mast sites use
cavity attenuated phase shift spectroscopy, and the AURN
sites employ chemiluminescence. There are numerous pos-
sible explanations as to why we might not expect observa-

tions at the ground and aloft to agree well for these reactive
chemical species, including instrument bias (particularly for
NO2, which employs different observation techniques), com-
plex chemistry and mixing throughout the column.

Assuming the simplest mechanism linking chemistry
at the ground to that aloft, whereby NO emitted at
the surface reacts with O3 via titration to form NO2
(NO+O3⇒NO2+O2), odd oxygen (Ox , in this case de-
fined as the sum of O3 plus NO2; Bates and Jacob, 2019) is
expected to be conserved throughout the atmospheric profile.
Figure 13 shows a comparison of Ox observed at the surface
versus aloft for the London sites, which yields a regression
model gradient of near 1. These results – noting that this sim-
ple model neglects mixing, O3 production, deposition, and
other loss mechanisms – are broadly consistent with chem-
istry via O3 titration being dominant for the cases observed
here and indicate that the airborne air masses were coupled
to the surface, conducive to the findings of the PM2.5 anal-
ysis. An r2 of 0.87 also provides confidence that the obser-
vations are comparable, regardless of observation technique
employed.
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Figure 12. Average airborne observations within a 12 km radius of ground site, against local ground site average, for PM2.5 (a), NO2 (b),
SO2 (c) and O3 (d), for all available London IOP flights. Comparisons against OSCA mast data are shown in red and against AURN ground
sites in black. For PM2.5, blue markers identify those AURN sites that employ beta ray attenuation technique (black employs an optical
particle counter with conversion to mass technique) . Linear regression between airborne and ground- and mast-based data is shown in black.
Error bars (grey) show the range of data; the 1–2–1 line, representative of a perfect linear relationship, is shown as a dotted grey line.

4.3 Preliminary model evaluation

In this section we show examples from two flights illustrating
how the MOASA Clean Air database can be used for model
evaluation purposes. These flights are M270 high-density
plume mapping on 15 September 2020, selected to measure
the vertical distribution of pollutants in the lower atmosphere
north of Cambridge (52.2053◦ N, 0.1218◦ E) and M296, a
Birmingham city survey as part of the IOP on 1 July 2021.
Meteorological conditions for the flights are summarised in
Fig. 14. For M270, there were largely clear skies with light
winds (< 10 m s−1) in the south-eastern United Kingdom
where sampling was undertaken and high temperatures (Na-
tional Meteorological Library, 2020), conducive to the accu-

mulation of pollutants in the boundary layer. M296 was influ-
enced by high pressure, light winds and thin, broken clouds.

Case studies of the flight days have been run using the
AQUM UK domain model. This is the same model config-
uration used for the operational air quality forecasting, but
for these case studies, no routine statistical post-processing
(SPP, which uses surface level observations to apply correc-
tions to the surface model level only) has been applied to
the data. Given that this study focuses on those data above
the surface level, the omission of the SPP has no impact on
the evaluation. Each simulation has been run with a 7 d spin-
up period. No adjustments have been made to the emissions
used by the model to account for changes in activities during
the COVID-19 restrictions. Model data points have been lin-
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Figure 13. Odd oxygen, calculated from average airborne observations of O3+NO2 (in ppb) within a 12 km radius of ground site, against
local ground site average O3+NO2 (in ppb), for all available London flights. Comparisons against OSCA mast data are shown in red;
comparisons against AURN ground sites are shown in black. Linear regression between airborne and ground- and mast-based data is shown
as a black line. Error bars (grey) show the range of O3+NO2 data; the 1–2–1 line, representative of a perfect linear relationship, is shown
as a dotted grey line.

early interpolated using the time, latitude, longitude and al-
titude coordinates of the aircraft at 1 s frequency. The model
and aircraft data along the flight tracks have then been aver-
aged into 10 s, non-overlapping intervals.

4.3.1 Flight M270

In consonance with Savage et al. (2013), a large ozone bias
is seen for flight M270 (Fig. 15a). The model data show a
large overprediction when compared against the aircraft data
at corresponding locations (mean model bias of 18.49 ppb).
The bias is lowest near the surface and increases with alti-
tude up to approximately 700–800 m, above which the bias
decreases. The variability observed is poorly represented by
the coarse-resolution model. Variation in the AQUM model
data is largely caused by changing from one grid box to the
other, and ozone shows a typically smooth gradient between
model grid boxes. We note that in this case the stacked flight
transects only cross a very small number of model cells (three
or four) in the horizontal, which may be accountable for the
low model variability seen here. Figure 16 shows the compar-
ison between the model and aircraft NO2 data for vertically
stacked transects for the same time period. The agreement is
generally good (within ±2 ppbv) below 650 m altitude, but
the model shows large underprediction above this altitude.
Temperature and relative humidity profiles measured by the
aircraft (not shown) suggest a boundary layer height of ap-

proximately 1100 m on this day, which corresponds with a
decrease in observed NO2 concentration above this height.
However, the average boundary layer height in the model for
the observed area is approximately 620 m. This indicates a
potential underprediction in boundary layer height that may
be responsible for the poor predication of NO2 at elevated
altitudes and elucidates the altitude dependence on the ozone
model bias discussed above.

4.3.2 Flight M296

A large positive model ozone bias is also seen for flight M296
(Fig. 15b) when compared against the aircraft data at corre-
sponding locations (mean model bias of 48.93 ppb). Unlike
flight M270, the bias appears relatively constant with alti-
tude, likely due to the flight being solely inside the boundary
layer. Also unlike flight M270, the observations and model
show similar variability. This is likely due to the flight track
crossing a larger number of model cells, which encompass
more model predictions and may also be due to the model
capturing more variability for this case.

Figure 17 shows model and observed NO2 concentration
throughout the first and fourth stacked box patterns per-
formed around Birmingham during M296. Strong variation
is observed in NO2 concentration aloft of the city, including
enhanced NO2 at all altitudes (maximum 55.70, 49.44, 56.31
and 54.06 µg m−3 NO2 for circuits 1–4, respectively; see Ap-
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Figure 14. Met Office synoptic chart and combined infrared and rain-radar images for 12:00 UTC 15 September 2020 (top) and 1 July 2021
(bottom) (National Meteorological Library, 2020).

Figure 15. Correlation of model and aircraft O3 concentrations.
Data averaged over 10 s intervals. Markers coloured by altitude.
Dashed grey line represents agreement between the two datasets.
Data shown for (a) flight M270 on 15 September 2020, from
12:13:00 to 13:38:00 UTC (the duration of the stacked level runs
north of Cambridge) and (b) flight M296 on 1 July 2021 from
11:23:00 to 12:52:00 UTC (the duration of the Birmingham city cir-
cuits).

pendix D for circuits 2 and 3). The enhanced NO2 plume is
seen above the western quadrant of the city during the lowest-
altitude circuit (circuit 1, 423 m, 11:23 to 11:43 UTC) and
moves south-east with increasing altitude, until the plume is
observed primarily over the south-east quadrant of the city
during the highest-altitude circuit (circuit 4, 657 m, 12:33 to
12:52 UTC). In contrast, observed O3 aloft (not shown) is
inverse to the NO2 observations and shows a reduction of
approx. 20–30 µg m−3 at the plume locations at all altitudes.
Comparison of NO2 aloft with average surface level obser-
vations over the transect time (triangles, 1 h data frequency)
shows similar concentrations. In consonance with AQUM,
light north-westerly winds (0< 5 kn) associated with the
high-pressure system are observed in all circuits. These slack
winds (equivalent to a maximum velocity south-eastward at
9.26 km h−1) likely pushed the plume (which is seen in the
ground data to be present east of the flight track) south-
eastward, accounting for the shift in the observed plume with
altitude and time (approximately 1 h between the first and fi-
nal circuits). The proximity of the plume to Birmingham air-
port is also of note in run 4. The AQUM model shows little
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Figure 16. Longitude–altitude plot of NO2 concentration for vertically stacked transects during flight M270 on 15 September 2020. Panel (a)
shows the aircraft data, (b) the model data and (c) the difference between the model and aircraft, where opacity and thickness increase as
the difference diverges away from zero. Data averaged over 10 s intervals.

variation and low NO2 concentration in comparison to both
airborne and ground-based observations in all circuits above
the city (maximum 14.44, 13.91, 11.43 and 10.33 µg m−3

NO2 for circuits 1–4, respectively, which decrease impercep-
tibly with altitude). A negative NO2 model bias is evident at
the observed plume locations, with maximum differences of
−44.26, −44.30, −49.22 and −49.79 µg m−3 NO2 for cir-
cuits 1–4, respectively. This model bias is expected to have
been larger if the AQUM data were produced using emis-
sions modified for the COVID-19 pandemic (Grange et al.,
2021).

Given the flight track is mostly within just four model
grid boxes, variation in NO2 concentration from point source
emissions is not expected to be represented in fine detail in
the model. As the observed peak in NO2 is located downwind
of important sources (motorways and a heavily urbanised
area) and given the dependence of surface concentrations of
this primary pollutant on local emissions (Neal et al., 2017),
the lack of enhanced NO2 at all levels of the model could be
attributed to emissions being too low at the observed plume
location.

5 Summary and conclusions

A long-term, quality-assured dataset on the three-
dimensional distribution of NO2, O3, SO2 and fine-mode

PM2.5 aerosol, including optical absorption and scattering
properties, has been collected over the United Kingdom
using the instrumented Met Office Atmospheric Survey
Aircraft from July 2019 to April 2022. Observations allow
for the evaluation of regional air quality models such
as AQUM. A description of the MOASA measurement
platform and instrumentation is presented, along with details
of flight plans, designed to allow repeatable, comparable
observations of pollutants.

A total of 63 flight sorties, totalling over 150 h of sam-
pling, were flown during the campaign. These flights include
observations of city scale pollution over Birmingham and
Manchester during two periods of intensive observations in
June–July 2021 and January–February 2022, as well as long-
term (2019 to 2022) observations over London, including
central London overpasses (from October 2020).

Analysis of relative humidity, total particle counts and
NO2 over the campaign shows that instrument precision did
not limit the ability to sample the natural pollutant variability,
at length scales down to 0.42 km. In contrast, SO2 variability
is shown to be limited by instrument precision at all length
scales. Comparison of airborne to ground-based observations
generally shows good agreement between the observation
platforms, regardless of observation technique. The overall
strong correlation between airborne and ground-based PM2.5
(r2 of 0.9) implies that the observations are likely compa-
rable when carried out within a well-mixed boundary layer.
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Figure 17. Aircraft flight tracks coloured by NO2 concentration (µg m−3) for the first (left, 11:23 to 11:43 UTC) and fourth (right, 12:33
to 12:52 UTC) circuit, at altitudes of 423 and 657 m, respectively, around Birmingham during flight M296 on 1 July 2021. The top row
shows the aircraft data. The middle row shows the model data. The bottom row shows the difference between the model and observations.
Observation data are from straight and wing level transects, and all data are averaged over 10 s intervals. Wind barbs are only shown where
the observed wind components exceed the measurement uncertainty. Data in triangles are the hourly surface level AURN NO2 concentration
for the circuit. Stars and squares show the location of the Birmingham supersite and airport, respectively. Map tiles by Stamen Design, under
CC BY 3.0. Data by OpenStreetMap, under ODbL.

The low-sample, low-concentration SO2 observations anal-
ysed here also suggest that the observations are comparable.
For NO2 and O3, chemical processing in the atmospheric
column yields an intricate, poorly correlating relationship
between airborne and ground-based observations. In con-
trast, odd oxygen (Ox =NO2+O3) at the ground and aloft
strongly agrees (r2

= 0.87, gradient= 1), suggesting that, for
the cases analysed here, ozone titration played a dominant
role in the chemistry of these species throughout the atmo-

spheric column. A slight offset in the regression model indi-
cates that O3 is higher aloft, suggesting processes unrepre-
sented by this simple model (recalling the limitations noted
in Sect. 4.2.3) may also be present.

Preliminary comparison of aircraft, ground-based and
mast-based observations with AQUM data highlights the
use of the database for air quality model evaluation work,
to substantially augment sparse ground observations. Large
ozone biases are seen for both flight M270 and M296, where
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the model data show large overpredictions when compared
against the aircraft data at corresponding locations. The bias
appears to be relatively consistent across the latitude and
longitude ranges of the flights and does not show any par-
ticular correlation with location, although it appears to de-
crease with altitude in flight M270. Potential underpredic-
tion of model boundary layer height in flight M270 may be
responsible for this altitude-dependent ozone model bias, as
well as the poor predication of NO2 seen at elevated alti-
tudes in the model. It is of note that the model biases seen
are expected to have been larger if the AQUM data were
produced using emissions modified for the COVID-19 pan-
demic (Grange et al., 2021). Variability in modelled ozone
appears to be dependent on the number grid boxes encom-
passed by the flight track. It is expected that ozone concentra-
tion in higher-resolution models (> 12 km) will better match
variation in the airborne observational data, as model resolu-
tion moves towards natural-scale variability. During M296,
contrary to the model, enhanced concentration of NO2 is ob-
served downwind of important sources. Observations aloft
are in reasonable agreement with the available ground-based
observations, suggesting the air mass aloft is coupled with
the ground. Meteorological conditions are broadly consis-
tent between the model and observations, which implies low
emission estimates may be responsible for the negative NO2
model bias in this case. These example case studies provide
handles for further investigation associated with biases in
modelled O3 and NO2 concentrations, boundary layer height
and representation of emissions in coarse-resolution models.
We anticipate that the airborne dataset may also be useful
for derivation of bias-correction factors that can be applied
to model data during post-processing.

This paper serves as a reference for all future database
users. The MOASA Clean Air database is comprised of
quality-assured observations, presented in NetCDF for-
mat with robust metadata to ensure traceability and trans-
parency of data. Data are openly available from the CEDA
(MOASA Clean Air Project: airborne atmospheric measure-
ments collection) repository (DOI: https://doi.org/10.5285/
0aa1ec0cf18e4065bdae8ae39260fe7d, Met Office and My-
nard, 2023).
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Appendix A: AQ box schematic

The air quality box, as introduced in Sect. 2.1 and shown
schematically in Fig. A1, houses the POPS and TAP instru-
ments, as well as actuated valves and flow controllers which
control the sample flow to instruments.

Figure A1. Air quality box flow schematic.
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Appendix B: Index of refraction

ω0nt is determined by calculating the average single-
scattering albedo over the same flight transect as ω0psd. First,
the Virkkula-corrected TAP (absorption) data are smoothed
to a 10 s triangular window to match the Muller-corrected
nephelometer (scattering) data. The scattering and absorp-
tion Ångström exponents (SAE and AAE, respectively), cal-
culated as per Eq. (B1), were used to adjust the multi-
wavelength nephelometer (λ= 635, 525 and 450 nm) and
TAP (λ= 652, 528 and 467 nm) instruments to the POPS
wavelength (λ= 405 nm) using Eq. (B2) (Perim De Faria et
al., 2021). Uncertainties in derivation of AAE (from poten-
tial asynchronous sampling response times and flow rates)
were reduced by applying maximum and minimum bounds
estimated by considering the extremes of expected ambient
AE values. Here, the AAE upper and lower bounds are 3 and
0.7, respectively. AAE is removed when raw red absorption
< 1 Mm−1, and the AAE is set to 1.5 if the difference be-
tween absorption channels is< 1 Mm−1. For the SAE, upper
and lower bounds are 2.5 and 0.5, respectively. SAE is re-
moved when raw red absorption < 10 Mm−1, and the AAE
is set to 0.5 if the difference between scattering channels is
< 1 Mm−1. The data are then further averaged over 30 s to
minimise variability from instrument noise and precision and
any mismatch of data. To minimise uncertainties in wave-
length correction using the Ångström exponents, ω0nt is de-
rived from the blue wavelengths only, using Eq. (B3).

AE=
− log

(
AOCtλ1
AOCλ2

)
log

(
λ 1
λ2

) , (B1)

where AE is the Ångström exponent, AOC the aerosol opti-
cal coefficient (scattering or absorption), and λ1 and λ2 are
wavelengths pairs.

AOCλ405 = AOCλi

(
λ405

λi

)−AE

, (B2)

where λ405 is the POPS wavelength (nm), λi is the wave-
length of the given scattering or absorption coefficient and
AE is the Ångström exponent.

ω0nt =
scat_blueλ405

scat_blueλ405 + abs_blueλ405

, (B3)

where the bar indicates the 30 s rolling average, for scatter-
ing (scat) and absorption (abs) for the blue wavelength neph-
elometer and TAP channels, converted to POPS wavelength
(λ405).

Determining ω0 using separate instruments with different
uncertainties and principles can lead to potentially signifi-
cant errors and biases (Perim De Faria et al., 2021). The
uncertainty in the ω0nt calculations is related to the corre-
sponding uncertainties in the scattering and absorption co-
efficients (Peers et al., 2019) measured by the nephelometer

(4 % at 450 nm, 2 % at 525 nm and 5 % at 635 nm; Müller
et al., 2011) and TAP (30 %; Ogren et al., 2017). These to-
tal measurement uncertainties are propagated according to
Appendix A of Perim De Faria et al. (2021) to give an uncer-
tainty for ω0nt (Eq. B4).

1ω =

√(
σsc

(σsc+ σa)

2
·1σsc

)2

+

(
σa

(σsc+ σa)
2 ·1σa

)2

, (B4)

where σsc is independent scattering and σa is independent
absorption coefficients.
ω0 is not very sensitive to the real part of the index of re-

fraction, and as such the real part of the estimated index of
refraction is not very well constrained (Peers et al., 2019).
Figure B1 shows ω0psd derived using IOR= 1.615+ 0.012j
and IOR= 1.59+ 0.012j , which both yield a mean ω0psd of
0.917. As such, we use a real aspect of 1.59 as derived by
McMeeking et al. (2012) during their airborne measurement
campaign over London, United Kingdom, in 2009. Where
insufficient data are available to enable calculation of the ω0
and thus IOR, an IOR of 1.59+ 0.0j is adopted. The un-
certainties associated with applying a flight-mean IOR are
investigated in more depth in the following case study.

Section 2.7 describes the processing applied to particle siz-
ing measurements to account for sizing errors caused by dif-
ferences in the IOR between the calibrant and ambient par-
ticles. The method applies corrections based on the assump-
tion of a single ambient IOR per flight, which was derived
via an iterative process based on achieving closure with inde-
pendent observations of particles single-scattering albedo. In
this section we undertake a sensitivity study to evaluate the
magnitude of error arising from the assumption of a flight-
mean IOR, based on variability observed during an example
flight: M270, a high-density plume mapping sortie north of
Cambridge, where a sequence of straight and level runs at
altitudes from 0.30 to 1.32 km were performed (Fig. B2 and
Table B1). The wide range of altitudes over a single flight al-
lows examination of the impact of a potentially changing air
mass with altitude on derivation of a flight mean IOR. Refer
to Sect. 4.3 for a description of meteorological conditions for
this flight.

The range of measured single-scattering albedos, ω0nt,
during flight M270 varied throughout the boundary layer
(0.886 to 0.944, Fig. B1 red crosses) and yielded a flight
mean ω0nt= 0.921± 0.019σ (Fig. B1, red line). These val-
ues fall within the range of single-scattering albedos ob-
served by McMeeking et al. (2011) during airborne obser-
vations over London (typically from 0.85 in urban plumes to
0.95 in regional pollution and background aerosol).

A flight mean ω0psd= 0.917± 0.10σ (Fig. B1, blue line)
was calculated using a particle size distribution (PSD) cor-
rected with an optimally derived IOR= 1.59+ 0.12j (herein
referred to as IORDER). To examine sensitivity in parti-
cle sizing due to variability in observed ω0 throughout
the column, we also undertook PSD corrections based on
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Figure B1. Empirically derived nephelometer and TAP single-scattering albedo (ω0nt, red, crosses) and theoretically derived particle size
distribution single-scattering albedo (ω0psd, blue, triangles) for seven straight and level runs for flight M270 on 15 September 2021 north of
Cambridge. Flight mean ω0nt and ω0psd with 1σ variance (solid lines and shaded areas in red and blue, respectively) are shown. Also shown
are the mean ω0psd derived using particle size distributions (PSDs) corrected with the IOR, which yielded ω0psd that closely matches the
minimum ω0nt (run 0, dashed grey line) and maximum ω0nt (run 4, dotted grey line), where PSD IOR= 1.59+ 0.016j and 1.59+ 0.008j ,
respectively. The mean ω0psd derived using uncorrected (PSL-calibrant IOR= 1.615+ 0.001j ) PSDs is also shown (grey dot–dash line).
The mean ω0psd derived using a real component of 1.615 and imaginary component of the retrieved IOR (0.12) is detailed in the legend (line
not shown).

Figure B2. MOASA flight track for M270 north of Cambridge on 15 September 2020 in the vertical (left) and horizontal (right). Triangles
are AURN sites; the square is Cambridge Airport. Map tile by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

achieving closure between ω0psd and the maximum observed
ω0nt (IORMAX, 1.59+ 0.008j ), minimum ω0nt (IORMIN,
1.59+ 0.016j ) and an uncorrected PSD (which retains the
calibrant (PSL) IOR; IORPSL, 1.615+ 0.001j ), shown as
the dotted grey, dashed and dash–dot lines, respectively, in
Fig. B1.

Regression analysis (Fig. B3, left column) of normalised
PSDs corrected to IORMIN (top), IORMAX (middle) and
IORPSL (bottom) against IORDER shows good agreement,
with an r2 of 0.9998, 0.9980 and 0.9983, respectively. Mean
differences between IORMIN : IORDER, IORMAX : IORDER
and IORPSL : IORDER (Fig. B3, right column) are 9 %, 10 %
and 23 %, respectively. The comparatively large uncertainty
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Table B1. Mean altitude and single-scattering albedo derived using the nephelometer and TAP (ω0nt) and particle size distributions (ω0psd)
for seven runs during flight M270 on 15 September 2020.

Run Times (UTC) Mean ω0nt ω0psd
altitude (m) (IOR= 1.59+ 0.012j

0 12:16:20–12:20:20 304 0.886± 0.03 0.912
1 12:37:50–12:42:20 378 0.904± 0.03 0.915
2 12:52:30–12:57:50 686 0.929± 0.03 0.923
3 13:00:00–13:04:50 851 0.937± 0.04 0.925
4 13:08:40–13:13:10 1002 0.943± 0.04 0.927
5 13:16:20–13:21:10 1162 0.928± 0.03 0.921
6 13:23:50–13:29:20 1320 0.911± 0.03 0.897

Flight averages 814.71 0.920± 0.019σ 0.917± 0.010σ

Figure B3. Regression analysis (a, c, e) and corresponding ratios (b, d, f) of flight M270 run 0 normalised particle size distribution (PSD)
derived using IOR= 1.59+ 0.012j (IORDER) against PSD derived from IOR= 1.59+ 0.008j (IORMAX, a, b), IOR= 1.59+ 0.016j
(IORMIN, c, d) and IOR= 1.615+ 0.001j (IORPSL, e, f).

between corrected and uncorrected size distributions under-
lines the importance of accounting for IOR corrections when
making ambient aerosol measurements. Mean differences in
all comparisons are largest whereDp ' 0.4 µm (PSD bin 15).
Particle sizes in this region are comparable to the wavelength

of light of the POPS (405 nm), which are the most efficient
at scattering short-wave radiation, and sizes larger than this
can be influenced by Mie resonances (Liu and Daum, 2000).

Flight M270 was chosen based on it showing significant
variability compared to other Clean Air flights; uncertainty
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in using a flight-mean IOR for less varying flights is expected
to be less. For example, flight M302, a typical London sur-
vey on 22 July 2021, performed numerous runs at altitudes
≈ 0.5 km and yields a difference of < 2 % between distribu-
tions corrected by IORMIN and IORMAX.

In summary, we conclude that use of a flight-mean IOR
approach in correcting size distribution data introduces mod-
est uncertainty of < 10 % compared to applying a variable
IOR approach.

Appendix C: PM2.5 composition and density

As discussed in Sect. 2.8, mass concentration (PM2.5) is de-
rived from particle volume using the mean of a range of UK
field experiments, which are detailed in Table C1.
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Appendix D: M296 runs 2 and 3

Figure D1 shows model and observed NO2 concentration
throughout the second and third stacked box patterns per-
formed around Birmingham during M296. Here, we see the
intermediate stages of the plume as it begins to transition
from the western quadrant of the city to the south-east with
increasing altitude and time. As with runs 1 and 4, a com-
parison of NO2 aloft with average surface level observations
shows similar concentrations, and the plume is not captured
by the model.

Figure D1. Aircraft flight tracks coloured by NO2 concentration (µg m−3) for the second (left, 11:43:00 to 12:10:00 UTC) and third (right,
12:10:00 to 12:33 UTC) circuit, at altitudes of 511 and 573 m, respectively, around Birmingham during flight M296 on 1 July 2021. The top
row shows the aircraft data. The middle row shows the model data. The bottom row shows the difference between the model and observations.
Observation data are from straight and wing level transects, and all data are averaged over 10 s intervals. Wind barbs are only shown where
the observed wind components exceed the measurement uncertainty. Data in triangles are the hourly surface level AURN NO2 concentration
for the circuit. Stars and squares show the location of the Birmingham supersite and airport, respectively. Map tiles by Stamen Design, under
CC BY 3.0. Data by OpenStreetMap, under ODbL.
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