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deeper roots can be utilized by shrubs and herbs with shallower beneficial for root growth of plant. Novák and Knava (2012) found
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roots through hydraulic lift (Yu and D'Odorico, 2015; Barron-

Gafford et al., 2021). However, some studies shown that root depth

is not directly associated with water uptake depth, since the water

uptake of plants depended mainly on active roots (Ehleringer and

Dawson, 1992; West et al., 2007). Therefore, it is very essential to

determine the relationships between root distribution and water use

of plants amongst life forms. In addition, intraspecific or

interspecific competition also can affect the distribution of fine

root and water utilization. Also, roots of trees that grown with

understory vegetations was deeper than those without competition,

while roots of herbs that grown with shrubs are mostly distributed

in shallow soil (Rolo and Moreno, 2012; Cardinael et al., 2015).

Similarly, sea-buckthorn in a mixed forest of trees and shrubs had

higher deep soil water reliance than those in pure sea-buckthorn

forest during the dry season (Wu et al., 2022). Moreover, Robinia

pseudoacacia in the Loess Plateau was found to increase the reliance

of shallow and middle soil water but decrease the reliance of deep

soil water as thinning intensity increased (Liu et al., 2023). Current

researches mainly focus on variations of root and soil water

utilization at the upper 1 m depth of the soil profile, however, the

distribution patterns of fine root and soil water utilization below the
1 m depth are still unclear.
Generally, plant water utilization is related to the distribution of

soil moisture with time and soil depth (Eggemeyer et al., 2009; Chen

et al., 2014; Yang et al., 2015). Plants with dimorphic root systems

could transfer the main water source from shallow soil to deep soil

with soil drying (Quesada et al., 2008; Eggemeyer et al., 2009; Chen

et al., 2014). For example, Yang et al. (2015) discovered that three

coniferous plants in subtropical region with a marked seasonal dry
Frontiers in Plant Science 02
that the existence of rock fragments can reduce soil hydraulic

conductivity and water retention capacity and therefore affect the

soil water availability for plants. In contrast, there are also studies

showed that rock fragments can serve as reservoirs of plants and

water conservation was found to be better in rocky soils under

moderate water stress conditions (Danalatos et al., 1995; Tetegan

et al., 2015). Moreover, light also had an important influence on the

distribution of fine root, though this effect may be dependent on the

availability of soil water and/or nutrients (Valladares and Pearcy,

2002; Schall et al., 2012). Generally, the amount of water that can be

tapped and its transportation from roots to leaves is thought to be

mainly related to transpiration without consuming metabolic

energy (Ksenzhek and Volkov, 1998), which largely depends on

the degree of opening and closing of stomata. However, the tension

gradient caused by transpiration may be not sufficient to stimulate

the transport systems of plants, and then plant would employ root

pressure to pump water into xylem vessels at the cost of minimal

metabolic energy consumption (Schwinning, 2010; Wu et al., 2021).

Therefore, capturing and pumping from deep depth required more

energy (through root pressure) than extracting shallow soil water.

Therefore, low light transmittance could affect the transpiration and

photosynthetic rates of plants and therefore affect the water

utilization of plants (especially deep soil water utilization).

However, studies on determining factors of deep soil water

utilization across life forms still very lack.

In our study area, the understory vegetation species are rich and

the soil heterogeneity is high, which can induce strong variations in

soil conditions at very close distances (Jiang et al., 2023). In turn,

this might affect the distribution of fine root and water utilization
1 Introduction

Under the context of global climate change, the intensity,

frequency, and duration of drought are increasing, leading to

changes in water utilization of plants as well as decreases in plant

productivity and survival (Allen et al., 2010; Adams et al., 2017;

Ripullone et al., 2020). To some extent, water uptake and utilization

patterns of plants reflect the response of ecosystems to variations in

environmental hydraulic status (Gulihanati et al., 2022). A better

knowledge of plants’ water use is necessary to enhance our

understanding of plants adaptations to changes in the forest

hydrologic cycle and our predictions on variations of the

community composition and function in forest ecosystems with

climate drying (Ding et al., 2018; Ripullone et al., 2020).

The distribution of roots is closely associated with the water

access of plants. In forest ecosystems, trees usually distribute more

fine roots in deeper layer than understory shrubs and herbs, and

shrubs often distributed their fine root deeper than herbs (Achat

et al., 2008; Sun et al., 2015). According to the two-layer model of

woody and herbs coexistence (Walker and Noy-Meir, 1982), herbs

with shallower roots are competitors of shallow soil moisture, and

woody plants with deeper roots could monopolize the deep soil

moisture. This model has been confirmed by many studies (Le Roux

et al., 1995; Moreira et al., 2000; Eggemeyer et al., 2009). Previous

studies also shown that deep soil water absorbed by trees with

season transferred their main water source to deep soil layer in the

dry season. Also, Vitex negundo in the Loess Plateau was found to

primarily utilize top soil water of 0-40 cm layer and gradually

transferred to soil water of deeper layers as the season progressed

(Wang et al., 2017). Similarly, Zhu et al. (2021) found that R.

pseudoacacia and Jiziphus jujuba in the Taihang Mountains mainly

used soil water of the top soil layer (0-10 cm) in the wet season and

that of the deeper soil layer (30-50 cm) in the dry season. However,

plants’ water use strategies can be variable due to the micro local

changes in soil conditions, i.e. soil depth, stoniness, water holding

capacity (Love et al., 2019; Carrière et al., 2020b). Because the water

retention capacity of shallow soil was poor, plants growing on

continuous dolostone outcrops and nearby thin soil layers mainly

used deep soil moisture in both the wet and dry seasons (Nie et al.,

2011). Similarly, woody plants with poor surface conditions (i.e. low

water holding capacity) could allow their roots to utilize deep water

reserves more intensively than those with better surface conditions

(Carrière et al., 2020a).

Other abiotic factors (e.g. soil bulk density, rock fragment

content, and light) can also affect the distribution patterns of fine

roots and water use of plants. Generally, the development of root

was severely restricted with the increase of soil bulk density since

high mechanical could impede the elongation and proliferation of

root (Pabin et al., 1998; McIvor et al., 2014). However, there are

different opinions on whether the existence of rock fragment is
frontiersin.org
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for vegetations (Gargiulo et al., 2016; Love et al., 2019; Carrière

et al., 2020a). This provides a suitable opportunity to research the

distribution patterns of fine root and water utilization as well as

their determining factors. Therefore, we measured the fine root

distribution and water use of trees, shrubs, and herbs, community

structure parameters (stem density of trees, and the dominance,

richness and evenness of understory shrubs and herbs), light

transmission, and soil properties (soil bulk density, pH, water
content, rock fragment content, total carbon and nitrogen

from the soil samples, and then air-dried and weighed. The rock
concentration) in subtropical pine plantations with seasonal

droughts. The main aims of our study were: (i) to compare the

deep fine root and water utilization allocation strategies amongst

trees, shrubs and herbs; (ii) to determine the allocation of deep fine

root and their determinants (including community structure

parameters, soil properties, and light transmission) amongst trees,

shrubs and herbs; (iii) to examine the deep soil water utilization

strategy and their determinants (including fine root biomass,

community structure parameters, soil properties, and light

transmission) amongst life forms.

2 Materials and methods

2.1 Site description

This research was conducted at the Qianyanzhou Forest

Ecosystem Research Station of the Chinese Academy of Sciences

(QYZ for abbreviation; 26°44′39′′N, 115°03′33′′E), which is located

in the Jiangxi Province of southeastern China (red circle in

Figure 1A). Due to the uneven distribution of rainfall, seasonal
droughts occur frequently in this region. The mean annual
temperature and precipitation are 18.0°C and 1509.0 mm,

respectively. The soil is an iron-rich red soil classified as Typic

Dystrudept and Udept Inceptisols by the USDA soil taxonomic

system. The vegetation mainly consists of Pinus massoniana and P.

elliottii plantations which were planted in 1983, and the vegetation

picture was shown in Figure 1C.

2.2 Experimental design and

stand structures

Frontiers in Plant Science 03
was measured. Three shrub subplots of 5 × 5 m were set along the

diagonals within each tree plot. Then, the basal diameters, heights,

and number of bushes of all shrubs in each subplot were measured.

One herb quadrat of 1 × 1 m was set within each shrub subplot, and

the heights and coverages of all herbs were then measured in

each quadrat.

2.3 Soil properties and fine-
root distributions

Soil cores of 10 cmdiameter were sampled every 20 cm at the up-,

mid-, and down slopes from soil surface to 200 cm depth in each plot.

Living fine roots were carefully picked out and gently washed with

running water. Living fine roots were then sorted to trees, shrubs, and

herbs, according to their contrasting traits in terms of morphological

structure, color, and mechanics (e.g. rigid or soft, rough or smooth).

More details can be seen in Jiang et al. (2018a). The fine roots were

classified using an order-based approach described by Pregitzer et al.

(2002). Fine roots of woody species (trees and shrubs) were then

divided into absorptive (1-3 order) and transport (4-5 order)

categories, while those of herbs were not distinguish between the

absorptive and transport categories.

After root extraction, rock fragments (> 2 mm) were picked up
fragment content of each soil sample was determined by using a

stone density of 2.65 g cm-3 (Diochon et al., 2009). Due to the rocky

properties of soil in our study area, the use of standard soil core

method could not accurately determine the soil bulk density, and

therefore the differences between volumes of soil cores and stones

were applied to determine the soil bulk density (Klinka et al., 1981;

Diochon et al., 2009). Soil pH was determined in a 1:2.5 mixture of

air-dried soil/distilled water mixture by using an electrode pHmeter

(S40, Mettler Toledo, Switzerland). Total carbon and nitrogen

contents of the surface layer (0-20 cm) were measured by an

elemental analyser (vario MACRO cube, Germany).

2.4 Soil water utilization of plants
Plant samples for water isotope analysis was collected during

mid-morning in both the dry season (August 2016) and the wet
A total of 29 plots (30 × 30 m) were established in the pine

plantations, including 18 plots of P. massoniana and 11 plots of P.

elliottii. The distribution of these plots was shown in Figure 1B. The

dominant shrub species across 29 plots were Loropetalum chinensis,

Adinandra millettii, Camellia oleifera, Rhus chinensis, Eurya muricata

and Rhaphiolepis indica. The dominant herb species across 29

plots were Dryopteris atrata, Woodwardia japonica, Dicranopteris

dichotoma, Morinda umbellate, and Lophatherum gracile.

The community structure was investigated in August 2015.

Each plot was divided into nine quadrats (10 × 10 m) and then

taken photos below the canopy. Light transmission was then

determined by Side look and Gap Light Analyzer (Frazer et al.,

1999). In each plot, the diameter at breast height (DBH) of each tree

season (April 2017). For trees, stems from two to three sample trees

of middle diameter were collected in each plot, and phloem tissue

was peeled off to avoid potential contamination (Querejeta et al.,

2007). For shrubs and herbs, ten shrub species and three fern

species were sampled in each plot, with the average coverage of the

collected species relative to the total coverage of all shrubs or herbs

was 63.6 ± 3.3% and 75.3 ± 5.8% across 29 plots, respectively. The

water use of these collected shrubs and herbs was used for

representing the overall water use of the shrub and herb layers.

For shrubs, green tissues were removed from the branches to avoid

contamination (Ehleringer and Dawson, 1992). Meanwhile, the

basal diameter of shrub individuals was controlled between 10

and 25 mm to avoid the potential effects of plant age on water
frontiersin.org
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absorption. For herbs, the thick and fleshy root crowns were

collected, since this part had the most stable water isotopic ratios

(Barnard et al., 2006). Soil samples were collected at depth of 0-20,

20-60, 60-100, 100-150, 150-200 cm in each plot. Then, each soil

sample was separated into two subsamples: one subsample was used

for water extraction, and the other subsample was used for

measuring the soil water content. Soil water content was then

measured by dividing fresh weight minus dry weight by dry weight.

We extracted water from plant and soil samples through an

automatic low-temperature vacuum distilled water extraction system

(Li-2100, Beijing, China). The extraction time for plant and soil sample

was 3 h and 2.5 h, respectively. We analyzed the water isotope ratio of

FIGURE 1

Location of study area (in red circle, A), and distribution (B) and vegetation
P. massoniana plantations and E1-E11 represent the 11 plots of P. elliottii p
water samples using a liquid water isotope analyzer (912-0050, LGR,

California, USA). The IsoSource model was applied to calculate the

Frontiers in Plant Science 04
depth was defined as the deep soil layer. Then, fine root biomass in

the deep soil layer was determined by the sum of fine root biomass

below the 100 cm depth of the entire 0-200 cm soil profile. The deep

soil water utilization was determined by the sum of soil water

proportions in 100-150 and 150-200 cm depth. Since the P.

massoniana and P. elliottii plantations had the similar root

distribution and water utilization allocation patterns (Yang et al.,

2015, Yang et al., 2017; Jiang et al., 2020b), we combined the data

from the two pine plantations. For trees, the seasonal plasticity of

deep soil water utilization (DWP) was calculated as:

DWP =
2� (DDW −WDW)

(1)

icture (C) of the sampling plots. In (B) M1-M18 represent the 18 plots of
tations.
DDW +WDW

where DDW is the deep soil water utilization during the dry
relative contribution of soil water at different depths to plant (Phillips

et al., 2005). See Jiang et al. (2020b) for details. Because the accuracy in

hydrogen isotopes analysis was relatively lower than that of oxygen

stable isotopes when using the Isotopic Ratio Infrared Spectroscopy

(IRIS) method (Wen et al., 2012), d18O was shown to be more sensitive

than dD in evaluating water uptake of plant and therefore d18O was

used to detect the water uptake depths of plants.

2.5 Data analysis

Due to the 0-100 cm soil depth accounts for over 90% of the

total fine root biomass of the entire 0-200 cm soil profile in all life

forms and the d18O value of the upper 100 cm soil was different

from the below 100 cm depth (Figures S1, S2), the 100-200 cm

season and WDW is the deep soil water utilization during the wet

season (Padilla et al., 2007; Jiang et al., 2020a; Jiang et al., 2020b). For

shrubs and herbs, the community-weightedmeanDDW in each plot

was calculated. First, dividing the number of individuals of each

species by the total number of shrub (or herb) species to determine

the weight of each species in each subplot, and then calculate the

weight of each species in each plot as the mean value of the three

subplots. Second, the community-weighted mean DDWof each plot

was calculated as the sum of the product of the average weight of

each species and its DDW. Then, the community-weighted mean

DDW of shrubs and herbs was used to calculate the DWP according

to equation (1). The biodiversity index of each plot was determined

by “Biodixcel.xlsx” inMicrosoft Office Excel 2007 (Kong et al., 2012).

To test the differences of fine root biomass and water source in

deep soil layer amongst life forms, a one-way analysis of variance
frontiersin.org
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FIGURE 2

Deep fine root biomass (A) and proportion (B) for different life forms. Diffe
proportion across life forms.
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nt letters represent significant differences in deep fine root biomass or
To test the differences between trees and shrubs (or between

seasons), the independent sample T test was applied in SPSS. To

analyse the relationships between the fine root biomass and water

utilization in the deep soil layer and the abiotic and biotic factors,

the RDA-ordination biplot was carried out in the CANOCO

software (ver.5.0, Ithaca, NY, USA). Significance was defined at

the 0.05 level.

3 Results

3.1 Deep fine root biomass and water
utilization amongst life forms

In our study, trees and understory vegetations showed contrast

deep fine allocation and water use strategies (Figures 2, 3). We

found trees and shrubs distributed more fine roots than herbs in

deep soil layer (Figure 2). The fine root biomass of trees was

significantly higher than that of shrubs, however, the differences

in deep fine root proportion between them was not significant.

Trees tended to distribute more absorptive fine roots than shrubs in

deep soil, however, the deep transport fine root biomass between

trees and shrubs didn’t show significant differences (Figure 3). Trees

have a significant deep soil water reliance in both the wet and dry

seasons, while shrubs and herbs had a lower deep soil water reliance

during the wet season and a higher deep soil water reliance during

the dry season (Figures 4, S3). Therefore, trees showed a smaller

seasonal plasticity of deep soil water reliance than shrubs and

herbs (Figure 4).

3.2 Determining factors of fine root and
water utilization in the deep soil layer
amongst life forms

The RDA ordination biplot displayed that the major

determining abiotic and biotic factors of deep fine root and water

utilization were different (Figures 5, 6). For the deep fine root

biomass, the C%, N%, light transmission, and rock fragment

contributed 35.7%, 25.3%, 17.0%, and 11.3% variations in these

factors; the dominance and richness of shrubs were the major biotic

factors (Figure 5B), which contributed 33.8% and 23.9% variations

in these factors, respectively. For details, C% and N% displayed a

predominantly positive relationship with total and absorptive fine

root biomass of shrubs and herbs, while light transmission showed a

predominantly negative relationship with fine root biomass of trees;

the dominance of shrubs displayed a positive relationship with fine

root biomass of shrubs and herbs, while the richness of shrubs was

negatively related to total and absorptive fine root biomass of trees.

For the deep soil water utilization in the dry season and its plasticity

between seasons, the soil bulk density and water content were the

major abiotic factors (Figure 6A), which contributed 32.7% and

26.2% variations in these factors; the dominance and evenness of

shrubs, and the richness of herbs were the major biotic factors

(Figure 6B), which contributed 16.0%, 13.3% and 12.5% variations

in these factors. For details, soil bulk density and water content were

negatively correlated with deep soil water utilization in the dry

season and its plasticity between seasons amongst life forms;

dominance and evenness of shrubs was positively related to deep

soil water utilization of trees and its seasonal plasticity, while the

richness of herbs was positively associated with the deep soil water

utilization of shrubs as well as its seasonal plasticity (Table S1).

4 Discussion

4.1 Deep fine root biomass and water
utilization amongst life forms

We found trees and shrubs distributed more fine roots than

herbs in deep soil. Though the proportion of total deep fine root

biomass in trees and shrubs was not significant, trees had higher

proportion of absorptive fine root biomass than shrubs in deep soil.

Generally, absorptive roots can make more efficient use of soil

resources due to the thinner diameter and thus occupying a

dominant position in total length and surface area of root (Guo

et al., 2004). That is, trees can effectively improve deep soil nutrient

absorption efficiency by increasing root branching capacity
frontiersin.org
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FIGURE 4

Deep soil water utilization in the wet and dry season (A) and its seasonal p
letters represent significant differences in deep soil water utilization during
represent significant differences in seasonal plasticity of deep soil water us
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ticity (B) for different life forms. In (A) different uppercase and lowercase
e wet or dry season across life forms, respectively; in (B) different letters
across life forms.
(increase the proportion of absorptive roots) and thus adapt to the

limited soil conditions (Liu et al., 2015; Li et al., 2017). This might

be a key strategy for overstory trees to avoid competing with

understory vegetations for limited surface soil resources.

Moreover, the proportion of deep fine root biomass (below 1 m

depth) is only 0.2-5.1%, but their proportion of deep soil water

utilization can reach 20.9-38.6% in the dry season, which highlight

the importance of deep fine root in plant drought resistance.

In our study, we found that trees and understory vegetations

had contrast deep water use strategies. For details, trees have a

significant deep soil water reliance throughout the year (especially

with the addition of water source from 60-100 cm soil layer;

Figures 4, S3), and thus had low seasonal plasticity of deep soil

water use. In contrast, shrubs and herbs are less dependent on deep

soil moisture during the wet season but highly dependent on deep

soil moisture during the dry season, and thus had high plasticity of

deep soil water reliance. This might be because trees have more fine

roots distributed in deep soil layer than understory vegetations, and

fine roots in the deep soil would increase the diameter of stele and

xylem conduits to and thereby minimizing flow resistance and

maximizing water absorption efficiency (Pate et al., 1995; Pate et al.,

1998; McElrone et al., 2004). Moreover, trees tend to have higher

proportions of absorptive fine roots in deep soil layer than those of

shrubs. Considering that the deep soil is less fertile than the shallow

soil (Jobbagy and Jackson, 2001; Jobbagy and Jackson, 2004), trees

can improve their deep soil nutrient absorption efficiency by

increasing their branching capacity of absorptive fine roots in the

deep soil. Compared with trees, understory vegetations had greater

seasonal plasticity in deep soil water utilization. This may be due to

the fact that the volume of trees was larger and therefore they are

more resistant to droughts than understory vegetations. Since the

water storage capacity in stems of trees was larger and thus could

more efficiently buffer the daily fluctuation and decrease of leaf

water potential with soil drying (Chapotin et al., 2006; Oliva

Carrasco et al., 2015), and their large horizontal area for root

foraging can to some extent compensate for the decrease in

shallow soil moisture content (Meinzer et al., 1999). Second, the

seasonal plasticity of shrubs and herbs was closely correlated with

fine root biomass of trees and shrubs (Figure 6), which indicated

that the important role of hydraulic lift. Also, the high deep water

use plasticity of shrubs and herbs suggests that they are good at

utilizing shallower soil moisture that is briefly replenished by dry

season precipitation, while trees tend to rely on deeper soil moisture

which is more stable over time (Cui et al., 2017).

BA

FIGURE 3

Biomass (A) and proportion (B) of the absorptive and transport fine root biomass for trees and shrubs in deep soil layer. Different uppercase and lowercase
letters represent significant differences in deep fine root proportion for absorptive and transport fine root between trees and shrubs, respectively.
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4.2 Determining factors of fine root and
water utilization in deep soil layer amongst
life forms

We found that the distribution of deep fine root biomass was

closely associated with soil nutrient content. This may be because

when the availability of soil resources increases, the carbon allocated

to the belowground part would increase, and fine roots can increase

B

A

FIGURE 5

RDA-ordination biplot for the fine root biomass of deep soil layer amongs
absorptive fine root biomass of trees/shrubs; TreeTran/ShrubTran, transport
root biomass of trees/shrubs/herbs; LT, light transmission; C%, total soil c
RC, rock fragment content in deep soil layer; BD, soil bulk density in deep
soil layer. The same below.
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the absorption capacity of water and nutrients in soil by changing

root morphological characteristics (Curt and Prévosto, 2003).

Generally, the fine root biomass of understory vegetations

(especially the shallow layer) increased with light transmission

(Matjaž and Primož, 2010; Noguchi et al., 2021), and thus the

competition between overstorey and understory vegetations would

intensify. Therefore, we discovered that the fine root biomass of

trees in deep soil layer was negatively related to the light

fe forms and abiotic factors (A) and biotic factors (B). TreeA/ShrubA,
e root biomass of trees/shrubs; TreeTotal/ShrubTotal/HerbTotal, total fine
on content in subsoil layer; N%, total nitrogen content in subsoil layer;
il layer; SWC, soil water content in deep soil layer; pH, soil pH in deep
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transmission. We also found that the fine root biomass of trees

displayed a negative correlation with rock fragment content, which

may be explained by that the existence of rock fragments could

reduce soil hydraulic conductivity and water retention capacity and

therefore decrease the soil water availability for plants (Novák and

Knava, 2012). However, previous studies also shown that rock

fragments can serve as reservoirs for plants and water

conservation was found to be better in rocky soils under

moderate water stress conditions (Danalatos et al., 1995; Tetegan

FIGURE 6

RDA-ordination biplot for deep soil water utilization and its seasonal plast
TreeDry/ShrubDry/HerbDry, deep soil water utilization of trees/shrubs/herbs
water utilization of trees/shrubs/herbs; TD, tree density; DOS/DOH, domin
evenness of shrubs/herbs.
et al., 2015). The reason for these contrast results may be that rock

fragments had a positive effect on plant growth and water

consumption below a certain threshold, and therefore it is

necessary to optimize the rock fragment content when evaluating

water relations of plants in rocky ecosystems (Mi et al., 2016). In our

study, the deep soil water utilization of plants increased with the

decrease of deep soil water content. Similarly, the shallow soil water

content was found to remain low and the deep soil moisture showed

a downward trend in previous studies, which indicated that plants

y amongst life forms and abiotic factors (A) and biotic factors (B).
the dry season; TreeP/ShrubP/HerbP, seasonal plasticity in deep soil
ce of shrubs/herbs; ROS/ROH, richness of shrubs/herbs; EOS/EOH,
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increase the deep soil water utilization to ensure growth in the dry

season (Jia and Shao, 2014; Cao et al., 2018; Li et al., 2021). Also,

deep soil bulk density was negatively related to the deep soil water

utilization of plants, which was mainly due to high mechanical

could restrict the elongation and proliferation of root (Szota et al.,

2007; McIvor et al., 2014; Miyatani et al., 2016).

Our results showed that the main biotic determining factors of

the distribution of deep fine root biomass were the dominance and

richness of shrubs (Figure 5B). In our study, the biomass of fine

roots of shrubs displayed a positive correlation with shrub

dominance. However, the absorptive and total fine root biomass

of trees were negatively related to the richness of shrubs, indicating

that deep fine root biomass of trees decreased due to intense

competition with shrubs. Our results showed that the main biotic

factors affecting the distribution of deep soil water utilization were

the dominance and evenness of shrubs, and the richness of herbs

(Figure 6B). Also, deep soil water utilization of trees could increase

the dominance of shrubs, and that of shrubs could increase the

richness of herbs in our study (Figure 6, Table S1). Similarly,

previous studies showed that trees likely influence local resource

availability (e.g. light, soil) and serve as a biotic filter in the

understory community assembly (Jiang et al., 2018b; Luo et al.,

2019). This might because the plots with higher deep soil water

utilization of trees increased the probability of hydraulic uplift, and

therefore the companion shrubs could obtain more water resource,

thus increasing the dominance of shrubs. Similarly, the plots with

higher deep soil water utilization of shrubs could also enhance the

probability of the deep soil water being lifted and released into the

surface soil, which could provide more water resources for shallow-

rooted herb plants. This induced the enrichment of shallow-rooted

herbs in the areas of hydraulic uplift to some extent, thus improving

the richness of herbs in these regions (Maestre et al., 2003; Šenfeldr

et al., 2016). Moreover, the plots with deep soil water utilization of

trees (or shrubs) meant that shallow soil water consumption was

more severe and the competition of water resource between

different life forms was more intense. Therefore, the positive

relationships between deep soil water utilization of trees and the

dominance of shrubs and between deep soil water utilization of

shrubs and the richness of herbs indicated that shrubs and herbs

exhibited different “strategy” in response to competition. For

details, shrubs exhibited a “conservative strategy” and tend to

increase individual competitiveness and could maximize their

resource acquisition in habitats with little disturbance. In

contrast, herbs exhibited an “opportunistic strategy” and tend to

increase variety and quantity to adapt to the competition and could

survive in habitats with frequent disturbance. Our results

highlighted the roles of deep soil water utilization in shaping

community assembly as well as the necessary of linking

biodiversity to ecosystem function (Schwartz et al., 2000;

Dudgeon, 2010).

In our study, the explanation degree of RDA ordination biplot was

only c. 30%, which was relatively low. This may be explained by that

the traits we didn’t measure (e.g. photosynthetic related properties,

traits related to plant’s water status), could further play important roles

in determining the deep fine root and water utilization and thus the
Frontiers in Plant Science 09
community assembly. Compared with shallow root, deep fine roots

have larger diameters and higher tissue density and thus require more

carbon investment (Prieto et al., 2015; Fort et al., 2017). Therefore,

deep roots should be more closely related to physiological functions

such as photosynthesis. Also, plant deep soil water utilization should

be closely correlated with stomatal conductance and transpiration rate,

since capturing and pumping from deeper soil required more energy

(through root pressure) than extracting shallow soil water (Ksenzhek

and Volkov, 1998; Wu et al., 2021). Similarly, plant water uptake was

found to be closely associated with stomatal conductance,

transpiration rate, and stomatal density (Romero-Aranda et al.,

2001; Hepworth et al., 2016). This can also explain the positive

correlation between light transmission and deep soil water

utilization. Previous studies proposed that root hydraulics (instead

of root length) could determine the water consumption of crops

(Vadez, 2014; Cai et al., 2022), since root conductance synthesizes the

effects of the architecture, length, and anatomy of root (Doussan et al.,

2006; Strock et al., 2021). Similarly, our previous studies at the species

level in the study area showed a positive correlation between deep

water utilization and stem hydraulic conductance (Jiang et al., 2020a).

Also, recent studies have showed that water uptake depth was

coordinated with leaf economic spectrum in water-limited

ecosystems (Pivovaroff et al., 2021; Illuminati et al., 2022).

Therefore, future studies on plant water use should also focus on

plant physiological properties (e.g photosynthetic related properties,

hydraulic related properties) and economic spectrum traits.

5 Conclusion

Our results provide new insights into the different deep fine root

distribution and water use strategies between trees and understory

vegetations and improve our understandings of plants adaptations

to variations in the forest hydrologic cycle and thus the community

assembly processes. Although the proportion of deep fine roots

(below 1 m depth) is only 0.2-5.1%, their proportion of deep soil

utilization can reach 20.9-38.6% in the dry season, which highlight

the roles of deep fine root in drought resistance. Compared with

understory vegetations, trees had a significant deep soil water

reliance throughout the year and distributed a higher proportion

of absorptive roots in deep soil layer. This indicated that trees could

improve deep soil water capture capacity by enhancing their

dominance in occupying deep soil volume, and enhance their

deep resource foraging by increasing their branching capacity of

absorptive roots. Moreover, shrubs and herbs showed different

strategies for deep water competition: shrubs and herbs exhibited

different “strategy” in response to competition: shrubs exhibited a

“conservative” strategy and tend to increase individual

competitiveness, while herbs exhibited an “opportunistic” strategy

and tend to increase variety and quantity to adapt to the

competition. Due to the low interpretation rate of RDA

ordination biplot, we assumed that traits we didn’t measure might

further play important roles in determining the deep fine root and

water utilization and thus the community assembly. Future studies

on deep fine root and water use patterns should also focus on plant
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physiological properties (e.g photosynthetic related properties,

hydraulic related properties) and economic spectrum traits.
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