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Background: Alzheimer’s disease (AD) is an age-associated neurodegenerative 
disease, and the currently available diagnostic modalities and therapeutic agents 
are unsatisfactory due to its high clinical heterogeneity. Necroptosis is a common 
type of programmed cell death that has been shown to be activated in AD.

Methods: In this study, we first investigated the expression profiles of necroptosis-
related genes (NRGs) and the immune landscape of AD based on GSE33000 
dataset. Next, the AD samples in the GSE33000 dataset were extracted and 
subjected to consensus clustering based upon the differentially expressed NRGs. 
Key genes associated with necroptosis clusters were identified using Weighted 
Gene Co-Expression Network Analysis (WGCNA) algorithm, and then intersected 
with the key gene related to AD. Finally, we developed a diagnostic model for 
AD by comparing four different machine learning approaches. The discrimination 
performance and clinical relevance of the diagnostic model were assessed using 
various evaluation metrics, including the nomogram, calibration plot, decision 
curve analysis (DCA), and independent validation datasets.

Results: Aberrant expression patterns of NRGs and specific immune landscape 
were identified in the AD samples. Consensus clustering revealed that patients 
in the GSE33000 dataset could be classified into two necroptosis clusters, each 
with distinct immune landscapes and enriched pathways. The Extreme Gradient 
Boosting (XGB) was found to be  the most optimal diagnostic model for the 
AD based on the predictive ability and reliability of the models constructed by 
four machine learning approaches. The five most important variables, including 
ACAA2, BHLHB4, CACNA2D3, NRN1, and TAC1, were used to construct a five-
gene diagnostic model. The constructed nomogram, calibration plot, DCA, 
and external independent validation datasets exhibited outstanding diagnostic 
performance for AD and were closely related with the pathologic hallmarks of AD.

Conclusion: This work presents a novel diagnostic model that may serve as a 
framework to study disease heterogeneity and provide a plausible mechanism 
underlying neuronal loss in AD.
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Introduction

Alzheimer’s disease (AD) is a devastating age-associated 
neurodegenerative disease, mainly characterized by progressive 
deterioration of memory and cognitive function (Huynh et al., 2020). 
According to the latest statistics, China has 15 million cases aged 60 years 
with dementia, including 9.83 million with AD, and new cases are 
increasing being reported at an alarming rate (Ren et  al., 2022). 
Epidemiological status of AD in the United States and European nations 
also present a similar phenomenon, with researchers predicting that 
there will be 20 million cases of AD in the United States by 2050 (Richard 
and Mousa, 2022). In this context, the enduring adverse effects on the 
quality of life and the associated comorbidities experienced by patients 
impose a significant burden on economies and healthcare systems 
globally (Jia et al., 2018). Latest scientific developments have expanded 
our understanding of AD from the perspective of neuroimaging and 
neuropathology (Ossenkoppele et  al., 2022), with the pathological 
hallmarks of amyloid β (Aβ) protein accumulation outside neurons and 
twisted strands of the tau tangles inside neurons being identified 
(Gibbons et al., 2019; Cho et al., 2022). Nevertheless, the diagnostic 
modalities and novel therapeutic agents targeting AD remain 
unsatisfactory due to the high clinical heterogeneity and complex 
genomic classification. Moreover, previous studies investigating 
biomarkers associated with AD have been limited owing to the small 
sample sizes and inadequate bioinformatic tools. This underscores the 
need to unravel the molecular classification of AD and identify novel 
therapeutic targets. By doing so, we  can establish a framework for 
making personalized clinical decisions in the management of AD.

The last decade has witnessed unprecedented strides in terms of the 
characterization of programmed cell deaths as evidenced by the 
identification of monitoring biomarkers and molecular targets for 
diseases (Wang et al., 2023). Among them, necroptosis is one of the types 
of programmed cell death which shares the features of apoptosis and 
necrosis (Dhuriya and Sharma, 2018), and it was first identified in the 
study of AD by Caccamo et  al. (2017). Specifically, the Receptor-
interacting serine/threonine-protein kinase 1 (RIPK1) and activation of 
receptor-interacting protein kinase 3 (RIPK3) are the core taches of 
necroptosis, which can phosphorylate and activate the mixed lineage 
kinase domain-like pseudokinase (MLKL), thereby contribute to plasma-
membrane permeabilization and cell death (Tanzer et al., 2021). Research 
has revealed the mechanisms by which necroptosis affects multiple 
neurological and neurodegenerative disorders, including amyotrophic 
lateral sclerosis (Wang et al., 2020), Parkinson’s disease (Oñate et al., 
2020) and Huntington’s disease (Zhu et al., 2011). In addition, there is 
compelling evidence supporting the involvement of necroptosis in the 
pathogenesis of AD (Koper et al., 2020; Lee et al., 2021), with substantial 
in vivo data demonstrating its participation in development of cognitive 
deficits in APP/PS1 mice (Caccamo et al., 2017). Clinical studies have 
shown that necroptosis is activated in AD patients (Jayaraman et al., 
2021). The feasibility of necroptosis-related genes (NRGs) as the 
diagnostic and therapeutic modalities for AD have been documented 
(Ofengeim et al., 2017). Hence, deciphering the molecular classification 
and genomic heterogeneity of AD populations based on necroptosis and 
its associated gene drivers is of great significance to improving our 
understanding of the pathogenesis and development of AD.

In this study, we  investigated the expression profiles of NRGs, 
identified differentially expressed NRGs between AD and 
non-demented (ND) controls, and then explored the immune profiles 
of the samples. Next, AD samples in the training set were extracted and 

subjected to consensus clustering based on differentially expressed 
NRGs. Results revealed that the patients could be classified into two 
necroptosis clusters, each with distinct immune landscape and 
enriched pathways. Subsequently, key genes related to necroptosis 
clusters were identified using WGCNA algorithm, and intersected with 
the key gene related to AD, thereby obtaining the shared genes between 
module-related genes in AD and in necroptosis clusters. Subsequently, 
a diagnostic model for AD was developed by comparing various types 
of machine learning approaches, with the nomogram, and its 
discrimination performance and stabilities in the diagnosis of AD were 
determined using the calibration plot, decision curve analysis (DCA), 
and independent validation datasets. Furthermore, we  performed 
correlation analyses for the hub genes included in the diagnostic model 
with the age and major risk factors influencing the generation of Aβ, 
and further elucidated its correlation with the pathologic hallmarks of 
AD. The flow chart of the study was shown in Figure 1.

Materials and methods

Data acquisition and sample information

Microarray data of transcription profiles associated with AD were 
acquired from the National Center for Biotechnology Information 
(NCBI) Gene Expression Omnibus (GEO) database (accessed on 
December 31, 2022).1 GSE33000, containing RNA-seq data of prefrontal 
cortex from 310 postmortem brain of patients with AD and 157 ND 
samples, was used as the training set, and used to construct a diagnostic 
model for AD. Given that our analysis focused solely on AD, we excluded 
samples related to Huntington’s disease from this dataset. GSE44770 and 
GSE132903 datasets were used as the independent validation datasets to 
evaluate the predictive performance of the constructed model, both of 
which contain transcription profiles of postmortem brain of AD and 
healthy controls. In addition, the GSE106241 dataset was retrieved from 
the GEO database to investigate the association between the hub genes 
in the diagnostic model and clinical characteristics of AD patients. All 
cases were retained for our analysis in such three datasets. The detailed 
information of datasets used are presented in Table  1. Of note, 
we conducted a power calculation to determine the minimum required 
sample size for a two-sample t-test comparing AD and ND samples. 
We assumed a significance level of 0.05 and a desired power of 0.8. The 
effect size (Cohen’s d) was set to 0.5. Based on these parameters, the 
power calculations indicated that a minimum sample size of 64 samples 
per group is needed to achieve the specified power and significance level, 
which suggested that the sample sizes in the training and validation 
datasets were adequate.

Identification and analysis of differentially 
expressed necroptosis-related genes

Necroptosis-related genes were retrieved from the Deathbase 
database (Díez et al., 2010; accessed on December 31, 2022),2 the Gene 
Set Enrichment Analysis (Subramanian et al., 2005; GSEA, accessed on 

1 https://www.ncbi.nlm.nih.gov/geo/

2 http://deathbase.org/
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December 31, 2022),3 and GeneCards database (Stelzer et al., 2016) 
with a relevance score threshold of 1.5 (accessed on December 31, 
2022).4 The search was conducted using the term “necroptosis,” which 
yielded 46 NRGs. Next, the R package “limma” was used to identify 
differentially expressed NRGs between AD and ND samples, and 
results of differentially expressed NRGs were visualized using R 
packages “ggpubr” and “pheatmap,” while the correlation between 
varying NRGs was visualized using “circlize” packages.

Classification of Alzheimer’s disease 
samples using consensus clustering

Based on the differentially expressed NRGs, we employed the 
“ConsensusClusterPlus” package (Wilkerson and Hayes, 2010) to 

3 http://www.gsea-msigdb.org/gsea/index.jsp

4 https://www.genecards.org/

cluster the AD samples in the training set. This allowed us to 
determine the optimal number of clusters through the analysis of 
consensus matrix plots, consensus cumulative distribution function 
(CDF) plots, and trace plots. Subsequently, principal component 
analysis (PCA) was conducted to visualize the distribution of samples 
based on necroptosis-related patterns, focusing on the first two 
principal components after clustering.

Gene Set variation analysis (GSVA)

Gene set variation analysis enrichment analysis was performed to 
determine the biological processes and pathways related to the 
disparate clusters using “GSVA” packages, based on the gene sets of “c2.
cp.kegg.v7.2.symbols” provided by the Molecular Signatures Database 
(MsigDB).5 The most significant terms with p-value less than 0.05 

5 https://www.gsea-msigdb.org/gsea/msigdb

TABLE 1 Detailed information for the datasets used in this study.

Accession 
number

Platform Sample size Sample source Female: Male Mean age of 
AD (year)

Mean age of 
NC (year)

GSE33000 GPL4372 310 AD and 157 NC Prefrontal cortex 209:258 80.6 63.52

GSE44770 GPL4372 129 AD and 101 NC
Dorsolateral prefrontal cortex, 

visual cortex and cerebellum
86:144 80.15 62.12

GSE132903 GPL10558 97 AD and 98 NC Middle temporal gyrus 96:99 85.02 84.98

GSE106241 GPL24170 60 AD Inferior temporal cortex 42:18 80.67 /

AD, Alzheimer’s disease; ND, non-demented controls.

FIGURE 1

The flow chart of the study. We first investigated necroptosis-related gene (NRG) expression profiles and identified differential expression between 
Alzheimer’s disease (AD) and non-demented (ND) controls. Then, we explored immune profiles and conducted consensus clustering on AD samples, 
followed by identifications of key genes related to necroptosis clusters and AD using weighted gene co-expression network analysis (WGCNA) 
algorithm. Next, we developed a diagnostic model for AD using diverse machine learning approaches and assessed its performance.
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calculated by student’s t-test were displayed on a barplot, with red and 
blue representing up- and downregulated pathways, respectively.

Identification of key genes using weighted 
gene co-expression network analysis 
(WGCNA)

To explore the connections between gene modules and disease 
traits in the context of AD, we employed WGCNA in conjunction 
with hierarchical clustering. This analysis, performed using the 
“WGCNA” package, enabled us to identify crucial genes that are 
closely associated with the pathogenesis of AD. Briefly, the genes 
with the top 25% variance were extracted from the GSE33000, and 
used to cluster the samples and remove outliers. Next, Pearson’s 
correlation value between varying gene pairs was calculated, and 
utilized to construct a similarity matrix, the latter of which was 
converted into the adjacent matrix with a suitable soft threshold 
power. Furthermore, a topological overlap matrix (TOM) was 
generated, and genes that shared similar expression pattern were 
categorized into disparate modules via a dynamic tree-cutting 
algorithm using minimum module size of 100 genes a threshold. 
Finally, we  defined the hub genes within each module as those 
exhibiting a gene significance (GS) value greater than 0.2 and a 
module membership (MM) value exceeding 0.6.

Analysis of immune cell infiltration

CIBERSORT algorithm was used to identify the relative composition 
of 22 immune cells based on expression profiles of the samples in 
GSE33000 dataset, which is a widely used analytical tool that is based on 
linear support vector regression principle for deconvolution analysis 
(Chen et al., 2021, 2022). The relative compositions of 22 immune cells in 
different groups and their correlations with NRGs were performed and 
visualized using “ggplot2” and “ggpubr” packages.

Establishment and verification of 
diagnostic model for Alzheimer’s disease 
using various machine learning algorithms

After intersection analysis of the genes in the most significant 
modules in WGCNA, “caret” R package was utilized to divide the 
samples into two datasets using the createDataPartition function, and 
a 70 to 30% split was applied, ensuring a representative distribution of 
samples across the sets. Then, the key genes with high diagnostic 
potential for AD were identified using four machine learning 
algorithms, including Random Forest (RF), Support Vector Machines 
(SVM), Extreme Gradient Boosting (XGB), and Generalized Linear 
Model (GLM), were applied to rank features by importance in the 
training set via “kernlab,” “randomForest,” “xgboost” R packages. In the 
RF algorithm, we  implemented the train function with the “rf ” 
method, and trainControl function was employed to establish the 
settings for repeated cross-validation. Additionally, we defined the p_
fun function to predict class probabilities. For the SVM model, 
we  employed the train function with the “svmRadial” method for 
training, and the parameter prob.model was set to TRUE to enable 

probability modeling. In the case of the XGB model, we constructed it 
using the train function with the “xgbDART” method, and the cross-
validation settings were specified via the trainControl function. 
Similarly, we used the train function with the “glm” method to create 
the GLM model. To handle binary classification, the family parameter 
was set to “binomial.” Besides, diseases phenotype was used as the 
response variable, whereas the genes obtained by WGCNA were used 
as the explanatory variable. Next, the explain function of “DALEX” R 
package was employed to perform exploratory analysis for the model 
and plot function was used to generate the cumulative residual 
distribution map and residual boxplot, thereby identifying the optimal 
diagnostic model combined with time-dependent receiver operating 
characteristic (ROC) curve with evaluation of the area under the ROC 
curve (AUC) through “pROC” package. Finally, five most important 
variables were used to construct a five-gene diagnostic model, and such 
a diagnostic model was validated through multiple validation sets.

Statistical analysis

The nonparametric Wilcoxon test was used to compare two groups 
of non-normally distributed data, while student’s t-test was applied to 
analyze normally distributed data. Correlation analyses were conducted 
using the Spearman correlation test. These analyses were performed using 
the R software 4.1.2, and p < 0.05 was considered statistically significant.

Results

Aberrant expression pattern of 
necroptosis-related genes in Alzheimer’s 
disease

We searched for previously reported NRGs from public databases 
and identified 46 NRGs. To investigate the expression profiles of 
NRGs in AD, 310 postmortem brain samples of patients with AD and 
157 ND samples in the GSE33000 were analyzed after log2 
transformation. Results showed that 36 out of the 46 NRGs were 
differentially expressed in AD samples. The expression levels of 
RIPK1, RIPK3, MLKL, CASP8, TNF, CASP6, TRPM7, FADD, PELI1, 
PGLYRP1, TNIP1, TP53, TNFRSF1A, BIRC2, MEFV, AIM2, 
TNFAIP3, SERTAD1, TRAF2, NFKB1, CFLAR, FAS, GSK3B, 
TRADD, and TLR3 were significantly enhanced in AD samples, 
whereas that of CYLD, ITPK1, MAP3K7, SPATA2, SIRT3, HMGB1, 
UCHL1, CTSB, MAPK14, SFTPA1, and FASLG were downregulated 
in AD samples (Figure 2A), and a heatmap displaying the disparate 
expression levels of such differentially expressed NRGs between 
postmortem brain of patients with AD and ND was constructed 
(Figure  2B). The chromosomal locations of the differentially 
expressed NRGs are shown in Figure 2C. Moreover, the correlations 
among these differentially expressed NRGs were diverse (Figure 2D), 
further revealing their potential interactive regulation of AD.

Studies have demonstrated that the innate and adaptive immune 
responses participate in the progression of AD (Lee et al., 2021), 
and various cellular identities in the immune microenvironments 
are associated with the neuropathological hallmarks of AD (e.g., Aβ 
protein deposits, and neurofibrillary tangles; Baruch et al., 2015; 
Zenaro et al., 2015; Marsh et al., 2016). Therefore, immune cells are 
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promising therapeutic targets for the control of AD. Consequently, 
we  employed the CIBERSOTR algorithm to assess the relative 
proportions of immune cells of samples in the GSE33000, and 
visualized the results using a heatmap (Figure 3A). The relative 
proportions of multiple infiltrating immune cell varied among the 
groups (Figure 3B). Alzheimer’s disease samples exhibited higher 
proportions of naive CD4 T cells, resting memory CD4 T cells, 
resting NK cells, monocytes, neutrophils and macrophages M2, 
whereas ND samples had higher levels of plasma cells, CD8+ T cells, 
follicular helper T cells, activated NK cells, and eosinophils. 
Subsequent correlation analysis revealed that the expression levels 
of the afore-mentioned differentially expressed NRGs were closely 
linked with the abundance of immune cells in the local environment 
(Figure  3C), especially with neutrophils and macrophages M0, 
which are strongly associated with 20 and 18 immune cell subtypes, 
respectively. This further confirmed the strong cooccurrence 
between NRGs and the immune cell subpopulations in the local 
environment of brain, which create bridges between necroptosis 
and AD occurrence and development (Zenaro et  al., 2015; 
Salvadores et al., 2022). In conclusion, these results demonstrated 

that NRGs contribute to the development of AD and have profound 
influence in the immune microenvironment.

Construction of unsupervised necroptosis 
clusters in Alzheimer’s disease samples and 
investigation of the mechanisms

Next, 310 AD samples in the training set were extracted and 
subjected to consensus clustering based on the differentially 
expressed NRGs. It was observed that the most optimal number of 
clusters was two in consensus matrix plots (k = 2; Figure 4A), with the 
consensus CDF curves showing minimal fluctuations at different 
consensus indexes (Figure  4B) and the trace plot (Figure  4C) 
representing its stability. Moreover, when the value of k was set to 2 
(Figure 4D), we observed a high consistency score exceeding 0.9 for 
each cluster. Based on this finding, we divided the 310 AD samples 
into two distinct clusters: Cluster 1 (C1, n = 72) and Cluster 2 (C2, 
n = 238), with the clinical characterization of necroptosis clusters of 
AD samples being displayed in Table 2. Subsequently, a PCA revealed 

FIGURE 2

The expression patterns of NRGs in AD. (A) Boxplots displaying the expression patterns of 36 differentially expressed NRGs between AD and ND 
samples. *p  <  0.05, **p  <  0.01, and ***p  <  0.001. (B) Heatmap showing the relative expression levels of 36 detected and differentially expressed NRGs. 
*p  <  0.05, **p  <  0.01, and ***p  <  0.001. (C) Chromosomal locations of 36 differentially expressed NRGs. (D) Correlation analysis for the 36 differentially 
expressed NRGs, with red and green lines indicating positive and negative correlations, respectively.
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FIGURE 3

The immune landscape of AD and ND samples evaluated using the CIBERSORT algorithm. (A) Heatmap showing the relative proportions of infiltrating 
immune cells in AD and ND samples from the GSE33000 dataset. (B) Barplot showing the differential analysis of various infiltrating immune cells 
between AD and ND samples. *p  <  0.05, **p  <  0.01, and ***p  <  0.001. (C) Correlation analysis between 36 differentially expressed NRGs and infiltrating 
immune cells. *p  <  0.05, **p  <  0.01, and ***p  <  0.001.

FIGURE 4

Construction of unsupervised necroptosis clusters of AD samples. (A) Unsupervised consensus clustering matrix when k  =  2. (B) Consensus CDF curves 
showing minimal fluctuations at different consensus indexes. (C) Trace plot illustrating the clustering of each sample when k values were set from 2 to 
9. (D) The scores of consensus clustering when k values were set from 2 to 9. (E) Principal component analysis (PCA) analysis showing the distribution 
of two necroptosis clusters identified using unsupervised consensus clustering.
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a clear distinction between these two clusters (Figure 4E). To further 
investigate the molecular underpinnings between disparate 
necroptosis clusters, we then performed systematic analyses of the 
necroptosis clusters constructed previously. Results showed that 
multiple NRGs were differentially expressed between C1 and C2. 
Specifically, 32 out of the 36 NRGs were differentially expressed 
between two necroptosis clusters (Figure  5A), and a heatmap to 
display the relative expression patterns of such 36 NRGs in the AD 
samples was constructed (Figure 5B). Furthermore, GSVA analysis 
was performed to investigate the pathways involved between clusters. 
It was noted that metabolism-related pathways, spanning purine 
metabolism, alanine aspartate and glutamate metabolism, as well as 
taurine and hypotaurine metabolism were upregulated in C2. 
Conversely, immune-related pathways, including chemokine 
signaling pathway and JAK STAT signaling pathway, were enriched 
in the C1 (Figure 5C). Likewise, the CIBERSORT algorithm was 
employed to estimate the infiltrating immune cells in the two clusters, 
and a barplot showing the relative abundance of infiltrating immune 
cell in samples was established (Supplementary Figure 1A). A boxplot 
(Supplementary Figure  1B) showing the comparisons of various 
infiltrating immune cells was plotted. Surprisingly, six types of 
infiltrating immune cells exhibited significant differences in relative 

abundance, most of which were enriched in C2, including the naive 
B cells, naive cells CD4, resting NK cells, Macrophages M0 and M1. 
In contrast, activated NK cells were more abundant in C1. These 
findings demonstrate differences between the two necroptosis 
clusters, and reveal the mechanism underlying their association.

Construction of a co-expression network 
and identifications of key gene associated 
with Alzheimer’s disease and necroptosis 
using weighted gene co-expression 
network analysis

To identify the key genes linked with AD, the WGCNA algorithm 
was utilized to construct a co-expression network and modules for 
AD and ND subjects as previously described. After extraction of the 
genes with the top  25% variance and removal of the abnormal 
samples in the GSE33000 dataset, a scale-free network was established 
with a soft threshold of 15 and the scale-free R2 was equal to 0.85 
(Figure  6A). In total, 11 disparate co-expression modules were 
identified (Figure 6B). Among them, the turquoise module showed 
the highest correlation and most significant p value with AD (r = 0.7, 

TABLE 2 Clinical characterization of necroptosis clusters of AD samples.

Cluster number Sample size Female: Male Mean age of AD (year)

Cluster 1 72 28:44 80.60

Cluster 2 238 147:91 80.71

AD, Alzheimer’s disease.

FIGURE 5

The expression patterns of NRGs in two necroptosis clusters identified by unsupervised consensus clustering. (A) Boxplots displaying that 32 out of 36 
NRGs were differentially expressed between two necroptosis clusters. *p  <  0.05, **p  <  0.01, and ***p  <  0.001. (B) Heatmap presenting the relative 
expression levels of 36 NRGs in two necroptosis clusters of C1 and C2. (C) Differences in hallmark pathway activities between two necroptosis clusters 
of C1 and C2 samples ranked by t-value of gene set variation analysis (GSVA) enrichment analysis.
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FIGURE 6

Construction of co-expression network and identifications of key gene associated with AD using WGCNA. (A) Selection of the best soft threshold 
power β. (B) Clustering dendrogram of the co-expression network, with various colors representing disparate co-expression modules. (C) Correlation 
analysis between disparate co-expression modules and clinical traits. (D) Correlation of module membership (MM) and gene significance (GS) in the 
turquoise module with the AD.

p = 1e−70; Figure  6C), and the 983 genes in such module were 
obtained after the analysis, with the scatter plot showing a 
significantly positive correlations between the turquoise module and 
corresponding genes (Figure 6D).

In further analyses, we  employed the WGCNA algorithm to 
identify the key gene related to necroptosis clusters with the AD 
objectives in GSE33000. β = 6 and R2 = 0.87 were used as the most 
suitable soft threshold to establish a scale-free network (Figures 7A,B). 
Turquoise module showed the highest correlation and most significant 
p value with necroptosis clusters (r = 0.74, p = 8e−55; Figure 7C), and 
the 877 genes in turquoise module were selected for the subsequent 
analysis, especially for the genes that showed significant correlation 
with such module (Figure 7D).

Next, intersectional analysis of the key genes obtained in 
WGCNA was conducted, yielding 622 shared genes between module-
related genes in AD and ND as well as module-related genes in 
necroptosis clusters (Figure 8A). Specific gene lists are provided in 
Supplementary Table S1. Subsequent Gene ontology (GO) functional 
enrichment analysis indicated that such shared genes were mainly 
enriched in the synaptic development, neurotransmitter transport, 
neurogenesis, and axonogenesis, suggesting their key roles in the 

preservation of cognitive and neurologic function and homeostasis 
(Figure 8B). Similarly, the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway signaling enrichment analysis demonstrated that 
such shared genes were mainly enriched in the GABAergic synapse, 
axon guidance, and synaptic vesicle cycle pathways (Figure 8C).

Construction of a diagnostic model for 
Alzheimer’s disease using various types of 
machine learning approaches

To further analyze the 622 shared genes obtained in WGCNA 
and identify the hub genes with diagnostic potential for AD, four 
machine learning approaches, including RF, SVM, XGB and 
GLM, were used to construct the diagnostic models using 70% 
of the samples in GSE33000. As shown in the cumulative residual 
distribution map (Figure 9A) and residual boxplot (Figure 9B) 
of the four machine algorithms, XGB and SVM exhibited a 
comparatively smaller size in residual values, demonstrating the 
reliability of the constructed models. Figure 9C shows the top 10 
variables for each model ranked by root mean square error 
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(RMSE). Next, ROC curve was plotted to evaluate the diagnostic 
performance of each model using the remaining 30% of the 
samples in GSE33000 (Figure  9D). Notably, three machine 
learning models demonstrated excellent discrimination 
performance, as evidenced with an AUC > 0.9. Based upon the 
predictive ability and reliability of the models constructed by 
four machine learning approaches, XGB was considered as the 
most optimal diagnostic model for the AD, and the five most 
important variables including ACAA2, BHLHB4, CACNA2D3, 
NRN1, and TAC1 were used to construct a five-gene diagnostic 
model for AD.

Next, a nomogram based on ACAA2, BHLHB4, CACNA2D3, 
NRN1, and TAC1 was established (Figure 10A), and calibration plot 
showed a good predictive accuracy between the actual probability and 
predicted probability (Figure 10B). Furthermore, DCA confirmed that 
the model had high significance in clinical decision-making 
(Figure 10C). In summary, we used machine algorithm to establish a 
diagnostic model for AD based on the shared genes between module-
related genes in disease and module-related genes in necroptosis-
related clusters of WGCNA. The performance of the model in 
diagnosing AD was satisfactory.

Validation of the five-gene diagnostic 
model in external cohorts and its clinical 
correlation analysis

Next, GSE44770 and GSE132903 datasets were used as the 
independent validation datasets to determine the predictive 
performance of the five-gene diagnostic model. The ROC analyses 
were conducted which yielded the AUC value of 0.925  in the 
GSE44770 (Figure  11A), and the AUC value of 0.805  in the 
GSE132903 (Figure  11B). These results indicated that the 
constructed model achieved excellent discrimination performance 
and stability, demonstrating a high clinical significance. Next, 
we performed correlation analyses of the expression levels of the 
hub genes included in the diagnostic model with the age and key 
factors affecting the generation of Aβ, including Aβ 42 (Marttinen 
et al., 2019), α-, β-, and γ-secretase activity in GSE106241 dataset 
(Hur, 2022). Intriguingly, we discovered that NRN1 was negatively 
correlated with Aβ42, β-, and γ-secretase activities, suggesting it 
may be  a potential indicator for determining the severity of 
pathologic alterations in AD (Figures 11C–E). Similar observations 
were made for TAC1 (Figures  11F–H). Similarly, CACNA2D3  

FIGURE 7

Construction of co-expression network and identification of key gene associated with necroptosis using WGCNA. (A) Selection of the best soft 
threshold power β. (B) Clustering dendrogram of the co-expression network, with various colors representing disparate co-expression modules. 
(C) Correlation analysis between disparate co-expression modules and clinical traits. (D) Correlation of MM and GS in the turquoise module with C2.
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FIGURE 8

Identification and functional enrichment analysis of the key genes identified by WGCNA. (A) Analysis of the intersection between module-related genes 
associated with necroptosis clusters and module-related genes associated with AD. (B) Gene ontology (GO) functional enrichment analysis of the 
shared genes obtained in the intersection analysis. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway signaling enrichment analysis of 
the shared genes obtained in the intersection analysis.

was exclusively associated with β-secretase activity 
(Supplementary Figure  2A), whereas the expression levels of 
ACAA2 and NRN1 tended to be  higher in AD cases 
(Supplementary Figures  2B–C). In addition, we  validated the 
diagnostic model of AD in other independent cohorts, and 
confirmed its outstanding diagnostic performance in AD and close 
relationship with the pathologic hallmarks of AD.

Discussion

Since the discovery of AD by Dr. Alois Alzheimer of Germany in 
the early 20th century (Bondi et al., 2017), the ensuing century has 
witnessed unprecedented strides with regard to our understanding of 
AD at the pathological, clinical and biological levels (Scheltens et al., 
2021). Despite the typical histopathological and neuroimaging 
alterations, substantial heterogeneity has been demonstrated in the 
age of onset, clinical manifestations and pathological changes of AD 
(Duara and Barker, 2022). Furthermore, the presence of diverse 
phenotypes of AD can lead to its misdiagnosis. This is primarily due 
to the absence of typical clinical symptoms and pathological features, 
further complicating accurate identification and classification (Graff-
Radford et al., 2021). This also explains the failure of majority of drug 
candidates during development and clinical trials (van Bokhoven 
et al., 2021). Although substantial progress has been made over the 
past decades, a review of available publications suggests that there is 
need to further dissect the heterogeneity and classification of disease 
subtypes of AD (Iturria-Medina et al., 2022).

To close the gap existing in our understanding of the molecular 
mechanisms of AD, we  systematically and comprehensively 

investigated the transcriptomic profiles of necroptosis regulators 
between AD and ND samples, to identify the aberrant expression 
patterns of NRGs in AD. Our findings demonstrate the underlying 
connections of necroptosis in the pathogenesis of AD. Intriguingly, 
we  uncovered the specific immune cell landscape in the 
microenvironment of AD, and the subtypes of T cells were 
significantly varied between AD and ND individuals, implying that 
T cells play key roles in the progression of AD. Specifically, AD 
individuals exhibited high relative abundance of naive and resting 
memory CD4 T cells, whereas ND samples had markedly higher 
number of CD8+ and follicular helper T cells. Such alterations were 
also reported in animal models (Chen et al., 2023) and cerebrospinal 
fluid of AD patients (Busse et al., 2021), in which circulating T cells 
in AD patients exhibited a more activated phenotype than those of 
healthy individuals (van Olst et al., 2022). Notably, two necroptosis 
clusters of AD samples that were identified through consensus 
clustering displayed unique innate immunological milieux, especially 
for the NK cells and macrophages. In vitro studies have demonstrated 
the functions of macrophages in the brain parenchyma, viz., 
microglia, which promote early synapse loss in AD. Secreted 
phosphoprotein 1 (SPP1) produced predominantly by perivascular 
macrophages has been shown to drive microglial phagocytosis of 
synapses, thereby contributing to the development of amyloid-
induced neurodegeneration (De Schepper et al., 2023). Likewise, NK 
cells were found to contribute to neuroinflammation and 
AD-associated cognitive decline (Zhang et al., 2020), suggesting that 
targeting the innate immune cells might be novel avenues for the 
treatment of AD (Dubois et al., 2023). Such observations highlight a 
sophisticated crosstalk orchestrated by varies cellular identities in the 
microenvironment driven by innate and adaptive immunity, which 
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provide a mechanistic link between pathologic neuroimmune 
responses and disease phenotypes of AD.

Lately, machine learning-based algorithms, combing the clinical, 
digital pathology, multi-omics data, have been developed and applied 
in the diagnosis of diseases (Gao et  al., 2022), drug developments 
(Rodriguez et al., 2021), and explorations of AD mechanisms (Tandon 
et al., 2023). Such algorithms provide valuable tools for interpreting the 
heterogeneity and classifications of diseases. A large body of evidence 
suggests that machine learning-based algorithms yield higher 
accuracies and efficiencies in the diagnosis of AD, outperforming 
clinical conventional approaches, e.g., traditional physical 
examinations, neuropsychological testing, and magnetic resonance 

imaging (MRI; Qiu et al., 2022). However, previous studies on such 
area have been restricted to a single learning algorithm, and the 
robustness of previously constructed diagnostic models has been 
hampered by the small sample sizes and limited validation cohorts. In 
the current study, we constructed a diagnostic model for AD using four 
machine learning-based algorithms. Among them, XGB presented the 
most outstanding stability and accuracy compared with other machine 
learning algorithms, and the five most important variables, including 
ACAA2, BHLHB4, CACNA2D3, NRN1, and TAC1, were used as hub 
genes for further analysis. Subsequently, two independent validation 
datasets were developed to evaluate the predictive potential of the five-
gene diagnostic model, and results showed that the constructed model 

FIGURE 9

Construction of a diagnostic model for AD using different machine learning methods. (A) Cumulative residual distribution map of four machine 
learning approaches. (B) Boxplots presenting the residuals of each machine learning approaches, with red dot indicating the root mean square error 
(RMSE). (C) Top 10 variables ranked by RMSE in four machine learning approaches. (D) Receiver operating characteristic (ROC) curve of four machine 
learning approaches based on 30% of the samples in the GSE33000 dataset.
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FIGURE 10

The diagnostic model for AD constructed with the five most important variables in the Extreme Gradient Boosting (XGB) model. (A) Construction of the 
nomogram for predicting the risk of AD based on the five most important variables in the XGB model. (B) The calibration plot showing the predictive 
accuracy of the actual probability and predicted probability. (C) Decision curve analysis (DCA) showing the predictive efficiency of the constructed 
model.

FIGURE 11

Validation of the five-gene diagnostic model in external cohorts and its correlation with clinical features. (A) ROC analyses evaluating the predictive 
potential of the five-gene diagnostic model using GSE44770 as the independent validation dataset. (B) ROC analyses exploring the predictive potential 
of the five-gene diagnostic model using GSE132903 as the external validation dataset. (C–E) Association of NRN1 with Aβ 42 levels, β-, and γ-secretase 
activities. (F–H) Association of TAC1 with β-, γ-, α-secretase activities.

achieved excellent discrimination performance and stability, suggesting 
that it may be valuable in clinical settings. This also illustrated the 
significance of such hub genes in the development of AD.

The CACNA2D3 gene encodes the α-2δ subunit of the voltage-
dependent calcium ion channel, and is known to contribute to late-
onset AD following genomic imbalance (Villela et al., 2016). Besides, 
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TAC1 encodes preprotachykinin-1 and is convergently enriched in 
central nervous system. Its aberrant expression in AD patients and 
APP/PS1 mice has been documented in previous studies (Liu et al., 
2021). Elsewhere, it was identified as a hub gene in patients with 
vascular dementia (Shu et al., 2022). There is evidence that NRN1 can 
exert neurotrophic effects to participate in synaptic maintenance and 
neuronal survival (Sato et al., 2012), with some data suggesting that 
it may be closely associated with synaptic maturation, long-lasting 
stability, and activity-related plasticity (Picard et  al., 2014; 
Subramanian et al., 2019). Of particular interest, a recent study by 
Hurst et al., demonstrated the underlying connections of NRN1 with 
the cognitive resilience in AD, and revealed its key role in facilitating 
dendritic spine resilience against Aβ in cultured neurons (Hurst et al., 
2023). Notably, we observed that NRN1 and TAC1 were influenced 
by Aβ 42, β-, and γ-secretase activities, demonstrating that they are 
potential indicators for assessing the severity of pathologic alterations 
of AD. This further highlighted that such genes may influence the 
pathological phenotypes of AD. Besides the above genes, the ACAA2 
gene encodes an enzyme of the thiolase family, which is an essential 
factor involved in β oxidation of lipid acids (Lei et al., 2022), while 
BHLHB4 is a transcription factor that regulates rod bipolar cell 
maturation (Bramblett et al., 2004). Currently, no study has explored 
the association of such two genes with AD.

Despite the important findings of this study, there are several 
limitations that need to be  considered. First, it should 
be acknowledged that the disease cohorts investigated in this study 
were primarily derived from public database. Therefore, the reliability 
of the diagnostic models should be validated using external datasets. 
Further, in vivo and in vitro data are needed to elucidate the detailed 
mechanism of the identified hub genes in the pathophysiology of AD.

Conclusion

Collectively, our study presents the expression profiles of NRGs 
in AD and normal individuals, and further reveals the distinct 
necroptosis clusters identified using consensus clustering in diseased 
samples, each with unique immune profiles. Moreover, a five-gene 
XGB-based diagnostic model for AD was constructed, which 
performed well in the training and independent validation datasets. 
Our work provides a novel diagnostic model that may serve as a 
framework to study disease heterogeneity and the mechanism 
underlying neuronal loss in AD.
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SUPPLEMENTARY TABLE S1

Specific gene lists for intersectional analysis of the key genes obtained 
in WGCNA

SUPPLEMENTARY FIGURE 1

The immune landscape of AD samples of the two necroptosis clusters 
determined using the CIBERSORT algorithm. (A) Heatmap showing the 
relative proportions of infiltrating immune cells of two necroptosis clusters. 
(B) Barplot showing the differential analysis of various infiltrating immune 
cells between two necroptosis clusters. *p < 0.05, **p < 0.01.

SUPPLEMENTARY FIGURE 2

Clinical correlation analysis for the hub genes included in the diagnostic 
model. (A) Association of CACNA2D3 with β-secretase activity. (B-C) 
Association of ACAA2 and NRN1 with age.
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