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Identification of disulfidptosis-
related subgroups and
prognostic signatures in
lung adenocarcinoma using
machine learning and
experimental validation
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Chengliang Yuan1* and Yi Zhang4*

1Department of Laboratory Medicine, Deyang People’s Hospital, Deyang, Sichuan, China,
2Department of Laboratory Medicine, Chengdu Women’s and Children’s Central Hospital, Chengdu,
Sichuan, China, 3Department of Ultrasound, The First People’s Hospital of Yibin, Yibin, Sichuan, China,
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Background: Disulfidptosis is a newly identified variant of cell death

characterized by disulfide accumulation, which is independent of ATP

depletion. Accordingly, the latent influence of disulfidptosis on the prognosis

of lung adenocarcinoma (LUAD) patients and the progression of tumors remains

poorly understood.

Methods: We conducted a multifaceted analysis of the transcriptional and

genetic modifications in disulfidptosis regulators (DRs) specific to LUAD,

followed by an evaluation of their expression configurations to define DR

clusters. Harnessing the differentially expressed genes (DEGs) identified from

these clusters, we formulated an optimal predictive model by amalgamating 10

distinct machine learning algorithms across 101 unique combinations to

compute the disulfidptosis score (DS). Patients were subsequently stratified

into high and low DS cohorts based on median DS values. We then performed

an exhaustive comparison between these cohorts, focusing on somatic

mutations, clinical attributes, tumor microenvironment, and treatment

responsiveness. Finally, we empirically validated the biological implications of a

critical gene, KYNU, through assays in LUAD cell lines.

Results:We identified two DR clusters and there were great differences in overall

survival (OS) and tumor microenvironment. We selected the "Least Absolute

Shrinkage and Selection Operator (LASSO) + Random Survival Forest (RFS)"

algorithm to develop a DS based on the average C-index across different

cohorts. Our model effectively stratified LUAD patients into high- and low-DS

subgroups, with this latter demonstrating superior OS, a reduced mutational

landscape, enhanced immune status, and increased sensitivity to

immunotherapy. Notably, the predictive accuracy of DS outperformed the

published LUAD signature and clinical features. Finally, we validated the DS
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expression using clinical samples and found that inhibiting KYNU suppressed

LUAD cells proliferation, invasiveness, and migration in vitro.

Conclusions: The DR-based scoring system that we developed enabled accurate

prognostic stratification of LUAD patients and provides important insights into

the molecular mechanisms and treatment strategies for LUAD.
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Introduction

Lung cancer is a global health concern and one of the foremost

sources of cancer patient morbidity and mortality, posing a grave

threat to public health (1). In 2020, an estimated 2,206,771 new

cases were diagnosed, and 1,796,144 fatalities occurred (2). Non-

small cell lung cancer (NSCLC) stands as the prevalent pathological

category among lung cancers, comprising about 85% of all cases,

whereas lung adenocarcinoma (LUAD) is the most frequently

occurring subtype of NSCLC (3). LUAD is plagued by a high

incidence of invasive behavior and metastatic spread. However,

significant advances in the treatment of LUAD have been achieved

in the past few decades. Accordingly, targeted therapies and

immunotherapies have been demonstrated to enhance the

treatment efficacy and outcomes for patients with LUAD (4).

However, the majority of patients develop drug resistance and

relapse following initial treatment, resulting in no significant

improvement in 5-year survival rates (5). Thus, to benefit more

LUAD patients, there is an urgent need to identify new therapeutic

targets and prognostic indicators for predicting survival and

guiding clinical treatment in LUAD patients.

Programmed cell death (PCD) is a cellular death process

governed by a molecular program that is controlled by particular

genes. This process is essential for the normal development of

organisms and the preservation of homeostasis (6). Exploration

and characterization of these cell death mechanisms not only

deepens our fundamental comprehension of cellular equilibrium,

but also offers valuable perspectives for the therapeutic approach to a

variety of diseases, including cancer. For instance, recent studies have

progressively highlighted the tumor-inhibiting effects of ferroptosis,

which is achieved through the deprivation of cysteine and the

generation of reactive oxygen species (ROS) by p53 (7, 8).

Moreover, the enhancement of lipid peroxidation by activated CD8

+ T cells can induce ferroptosis, which contributes to the antitumor

efficacy of immunotherapy (9). The role of autophagy in cancer can

vary, depending on the specific tumor model and tumor stage.

During the initial stages of cancer, autophagy functions as a

protective mechanism, shielding normal cells from tumorigenesis

by preventing DNA damage and mutations (10). However, in the

context of fully-formed solid tumors, autophagy shifts its role and

promotes tumor progression by promoting tumor growth, enhancing

cell survival, enhancing resistance to platinum-based chemotherapy,
02
and facilitating the formation of metastases (11). Autophagy

inhibitors, therefore, comprise one of the treatment options for

patients with advanced tumors. Recent research (Liu et al., 2023)

demonstrates that excessive accumulation of disulfide induces a

unique form of controlled cell death known as “disulfidptosis” that

is distinct from apoptosis, necrosis, autophagy, and ferroptosis (12).

SLC7A11 is an essential transport protein whose primary function is

to facilitate the cellular uptake of cysteine (13). Cysteine is a necessary

building block for the synthesis of glutathione and a crucial

component for inhibiting oxidative stress in cells and regulating

iron death pathways (14). However, it has also been shown to possess

certain cytotoxic properties (15). Gan Bo et al., discovered that under

conditions of glucose deprivation, high expression of SLC7A11 leads

to a significant consumption of NADPH within cells, abnormal

aggregation of disulfides like cysteine, inducing disulfide stress and

rapid cell death (16). This form of cell death induced by glucose

deprivation and high SLC7A11 expression in cancer cells cannot be

prevented by inhibitors of cell death that act on other cells, nor is it

caused by depletion of intracellular ATP. However, thiol-oxidizing

agents, such as Diamide, can enhance this effect. Moreover, under

glucose-deficient conditions, the number of disulfide bonds in the

actin cytoskeleton increases significantly. Therefore, this study

suggests that the induction of disulfide-dependent cell death by

GLUT inhibitors may be an effective cancer treatment strategy.

Consequently, focusing on disulfidptosis regulators (DRs) as

potential targets provides new perspectives for understanding the

complexities of the occurrence and development mechanism in

LUAD. This approach is, therefore, of significant importance in

enhancing the efficacy of treatment in patients with LUAD

patients. However, the full scope of the impact of DRs on

outcomes and treatments for LUAD patients has yet to be

comprehensively explored.

In the current study, we divided 1569 LUAD samples into two

disulfidptosis-associated subtypes according to 18 DRs and

compared survival and immune infiltration between the subtypes.

We also developed a disulfidptosis score (DS) to predict overall

survival (OS) and to delineate the immunological landscape of

LUAD. As indicated by the findings, a higher DS was associated

with unfavorable prognostic outcomes and worse immunotherapy

responses in LUAD, suggesting the potential clinical utility of DS as

a tool for assessing prognosis and immunotherapy efficacy. Thus,

the current study introduces an innovative approach for assessing
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the efficacy of immunotherapy and predicting the prognosis of

LUAD patients based on DS.
Materials and methods

Data collection

The LUAD data were obtained from The Cancer Genome Atlas

(TCGA)-LUAD (https://portal.gdc.cancer.gov/), GSE31210,

GSE68465, and GSE72094 in Gene Expression Omnibus (GEO)

(https://www.ncbi.nlm.nih.gov/geo/), which included RNA

sequencing data, somatic mutation data, copy number variation

(CNV) data, and corresponding clinical information. The TCGA-

LUAD cohort, which consisted of 539 LUAD tissues and 59 cancer-

adjacent tissue samples, served as a training cohort. Meanwhile,

GSE31210, GSE68465, and GSE72094 were utilized for the

validation cohort, which consisted of 1,150 LUAD patients.

Additionally, the “sva” package was used to correct the batch

effect between the different datasets by adopting the “combat”

algorithm (17). Moreover, patients who lacked OS time were

filtered out. Finally, 1569 eligible patients were encompassed in

the study. The detailed clinical characteristics of all LUAD patients

is listed in Supplementary Table 1. Additionally, 18 DRs were

collected from the previous study (Supplementary Table 2) (12).
Consensus cluster analysis of DRs

A consensus clustering algorithm was employed to discern

optimal subtypes founded on the expression of 18 DRs using the

R package “ConsensusClusterPlus”. The number of clusters (K) and

their stability (with 1,000 repeats for mast k = 9) were determined

by the consensus clustering algorithm (18). The clustering was

based on dividing centromeres with “Euclidean” distances (the most

common and familiar distance measurement methods and

correlation of K-Means clustering). Additionally, a T-distributed

Stochastic Neighbor Embedding (tSNE) analysis was conducted to

decrease the dimensions and differentiate the subtypes of

information (tSNE can preserve local similarities between data

points and is one of the most used unsupervised clustering

visualization methods).
Differentially expressed genes and
functional annotation

DEGs among DRs subtypes were determined using the “limma”

R package with the filtering criteria of log (fold change) >1 and

False-discovery rate (FDR) <0.05 (19). To further investigate the

potential functions and enriched pathways of DEGs, functional

enrichment analyses were conducted on DEGs employing the

“clusterprofiler” R package (20).
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Generation of DS

The DS was calculated to quantify the disulfidptosis patterns of

the LUAD. Accordingly, a univariate cox regression analysis was

conducted to identify the DEGs are related to prognosis.

Subsequently, the patients were segregated into distinct gene

cluster groups according to the expression of prognostic DEGs

using the unsupervised clustering method. Based on prognostic

DEGs, the 10 machine learning algorithms, including ‘Least

Absolute Shrinkage and Selection Operator (LASSO, “glmnet”

package)’, ‘Ridge (“glmnet” package)’, ‘Elastic network (“glmnet”

package)’, ‘StepCox (“survival” package)’, ‘Survival support vector

machine (survival-SVM, “survivalsvm” package)’, ‘CoxBoost

(“CoxBoost” package)’ (21), ‘Supervised principal components,

“superpc” package’ (22), ‘partial least squares regression for

COX, “plsRcox” package’, ‘random survival forest (RSF,

“randomForestSRC” package)’, ‘generalized boosted regression

modeling, “gbm” package’ were used to constructed the models.

Briefly, 101 combinations of 10 machine learning algorithms were

used to build the models based on a leave-one-out cross-validation

(LOOCV) framework. Models with <3 genes were excluded.

Simultaneously, each patient’s linear score and concordance index

(C-index) are calculated based on various models, and the optimal

model is selected based on the average highest C-index in the

training and testing cohorts. Utilizing the optimal model, the DS for

each patient was determined. See the supplementary methods table

for details. The patients were then separated into high- and low-DS

groups using the median DS value. Subsequently, Kaplan–Meier

survival analysis was utilized to compare the OS rates of patients in

various DS groups.
Somatic mutation and CNV analysis

The “maftools” package was utilized to evaluate and

visualize the mutation type and frequency of the genes (23).

Correspondingly, the tumor mutation burden (TMB) of each

LUAD sample was calculated based on the total count of

somatic mutations per megabase (MB) in the exon coding

region of the human genome. Different mutation types were

classified as either synonymous or nonsynonymous mutations.

The nonsynonymous variants included Frame_Shift_Del,

Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, Missense,

Nonsense, Nonstop, Splice_Site, and Translation_Start_Site. The

maftools analysis focused on identifying significantly mutated

genes (P <0.05) between the two groups and assessing the

interaction effect of gene mutations. Only genes with mutations

occurring 30 times or more in at least one group were considered

for both analyses. GISTIC 2.0 was used to identify significant

regions within CNV data (24). To quantify and compare CNVs,

we calculated the fraction of altered genome (FGA), fraction of

genome gained (FGG), and fraction of genome lost (FGL) for each

sample. FGA reveals the proportion of genomic segments that
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have been altered. FGG/FGL considers specifically the genomic

segments that have undergone gain or loss, respectively.
Tumor microenvironment landscape and
hallmark pathway analyses

TME at LUAD were evaluated under four aspects. First, the

immune score, stromal score, ESTIMATE score, and tumor purity

were calculated using the ESTIMATE algorithm (25). Secondly,

three algorithms, Single Sample Gene Set Enrichment Analysis

(ssGSEA), Tumor Immune Estimation Resource (TIMER, https://

cistrome.shinyapps.io/timer/), and “MCPcounter” were used to

quantify the relative infiltration of immune cells in the entire

cohort (26–28). Thirdly, the seven steps of cancer immunity cycle

were analyzed using the Tracking Tumor Immunophenotype (TIP)

website (http://biocc.hrbmu.edu.cn/TIP/) (29). In the fourth step,

35 inhibitory immune checkpoints were extracted from a prior

study. Subsequently, Gene Set Enrichment Analysis (GSEA) was

utilized to identify underlying mechanisms in hallmark gene sets

with the recommended criteria (FDR <0.25 and NES >1), in order

to determine the underlying hallmark pathways associated with DS

(30). Meanwhile, “Gene Set Variation Analysis” (GSVA) package

was applied to the two DS groups with an adjusted p value <0.01

(31). The “h.all.v7.4.symbols.gmt” hallmark gene sets from the

MSigDB database were employed for GSVA implementation.
Assessment of immunotherapy
and chemotherapy

To explore the predictive value of DS in LUAD patients after

immunotherapy, we compared the immunedysfunction and exclusion

(TIDE, http://tide.dfci.harvard.edu/) score; additionally, the submap

algorithm was applied to compare the efficacy of immunotherapy

among various DS subtypes (32, 33). In addition, four

immunotherapy-treated cohorts, IMvigor210, GSE35640, GSE79671,

and GSE173839, were collected to investigate the immunotherapy

response ability of DS. The sensitivity of tumor cell lines to potential

drugs was obtained from the Cancer Therapeutics Response Portal

(CTRP, https://portals.broadinstitute.org/ctrp) and Profiling Relative

Inhibition Simultaneously in Mixtures (PRISM, https://depmap.org/

portal/prism/). The more sensitive a cell line is to a potential drug, the

lower its area under the curve (AUC).
Single-cell RNA-sequencing analysis

ScRNA-seq data was downloaded from GSE131907.

Subsequently, the “Seurat” R package was utilized to measure the

gene expression levels by processing the raw data from each sample

(34). Cells with fewer than 200 detected genes were removed.

Accordingly, the top 2000 highly variable genes were selected for

subsequent clustering analysis. Following this, single cells were

classified into distinct subgroups via the application of the
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FindNeighbors and FindClusters functions (dim = 15 and

resolution =0.2). In addition, the tSNE was constructed utilizing

the top 15 primary components. Subsequently, immune cells and

tumor cells were identified using the “single R” and “copyKAT”

packages (35, 36). Pseudotime trajectory analysis is a method used

to study the temporal order of cells during development,

differentiation, or other biological processes. Its goal is to reduce

the dimensionality of single-cell data from high-dimensional to

one-dimensional, thus representing the temporal changes of cells in

a pseudotime manner. This aids in understanding the timeline of

processes like differentiation, development, and transformation in

tumor cells. Hence, the cell trajectory cancer cell populations were

ordered in pseudotime using the “Monocle” package (37).
Cell culture and transfection

Two human LUAD cells (PC-9 and H838) as well as a normal

bronchial epithelial cell (BEAS-2B) were obtained from the

American Type Culture Collection (Manassas, VA, USA). The

PC-9 and H838 cells were grown in RPMI 1640 supplemented

with 10% FBS and 1% penicillin-streptomycin, while BEAS-2B cells

were grown in DMEM supplemented with 10% FBS and 1%

penicillin-streptomycin in humidified air at 37°C and 5% CO2

(This condition simulates the physiological environment in the

human body, aiding in maintaining normal cellular growth,

metabolism, and function). To construct KYNU knockdown and

negative control (NC) cell lines, H838 and PC-9 cells were seeded in

6-well plates at a density of 5 × 104 cells/well and transfected with 50

nM siRNAs-KYNU and siRNA negative control (siRNA-NC) using

lipofectamine 3000 (This reagent possesses high efficiency, broad

spectrum, and low toxicity) following the manufacturer’s guidelines

(Hanheng, Shanghai, China). After 48 h of transfection, subsequent

experiments were conducted (Typically, after 48 hours of

transfecting siRNA, the target gene’s expression is effectively

disrupted in the vast majority of cases, while cells continue to

maintain a relatively healthy and appropriate growth state). The

siRNA sequences are provided in Supplementary Table 3.
Tissue microarray and
immunohistochemistry

For this study, a total of 15 TM tissue samples (HLugA030PG04-

1) were utilized, including 15 LUAD and 15 adjacent non-tumor

tissues. All the tissues were procured from Shanghai Outdo Biotech

Co., Ltd. (Shanghai, China). TM was stained using IHC with KYNU.

In brief, the antibodies were diluted to the suitable concentration and

incubated overnight with the sections at 4°C. The avidin–biotin and

streptavidin complex were then incubated with the biotinylated goat

anti-rabbit IgG secondary antibody for 0.5 h. The cell nuclei were

counterstained blue with Hematoxylin. Each specimen was graded

based on the intensity (0: absent, 1: mild, 2: moderate, and 3:

pronounced) and the proportion of positively stained cells (0: 0%,

1: 1%–25%, 2: 26%–50%, 3: 51%–75%, and 4: 76%–100%). The final
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IHC scores were then calculated as the product of the intensity score

and the percentage score (38).
RNA-isolation and real-time reverse
transcription polymerase chain reaction

RNA extraction was performed employing RNA extraction kit

(AG, Changsha, China) in accordance with the manufacturer’s

instructions. The complementary DNA (cDNA) was synthesized

from total RNA for each sample by using a reverse transcription

kit (Promega, Madison, Wisconsin). Subsequently, the mRNA

expression was quantitatively analyzed via RT-PCR (Roche Light

Cycler® 480II System). The relative gene expression was normalized

to b-actin, acting as the control gene. The primer sequences for the

genes are outlined in Supplementary Table 4. The fold change of the

target gene was computed utilizing the 2−DDCt method.
Proliferation assay

Cells in logarithmic phase were seeded into 96-well plates at

density of 2,000 cells per 100 µl. They were then cultured for 0, 24,

48, 72, and 96 h. At the end of the incubation cycle, CCK-8 reagent

(Saiku, Shanghai, China) was added to each well for 2 h at 37°C.

Subsequently, the absorbance values of each well were measured at

450 nm. For colony formation assay, 500 cells were seeded into each

well of a 12-well plate and incubated. After 10 days, the cells were

stained with crystal violet solution, and fixed with 4%

paraformaldehyde for 0.5 h. Finally, colonies consisting of more

than 50 cells were counted.
Frontiers in Immunology 05
Migration and invasion assay

The transwell experiment was executed using a transwell

chamber (Transwell, Corning Costar, USA). For migration assays, a

total of 4 × 104 cells were resuspended in 200 ml serum-free medium

and placed to the upper chamber. The lower chamber was filled with

700 ml of medium containing 10% FBS. After 18 h, cells that migrated

through the membrane were fixed and stained with hematoxylin.

Following a 24 h-incubation period, cells that traversed the

membrane were fixed with 4% paraformaldehyde for 30 minutes

and stained with a crystal violet solution for 15 min. Subsequently,

they were observed with a microscope, and five random fields of view

were selected to count the cells. The protocol for the invasion assay

was similar to the migration assay, with the exception that the upper

chambers were coated with 70 ml of diluted Matrigel. In addition, the

wound healing assay was utilized to examine cell migration. Serum-

starved LUAD cells (2 × 105) were seeded in 6 well plates and then

transfected with siRNA-NC or siRNA-KYNU. Upon reaching >95%

cell confluence, a sterile 20 ml pipette tip was used to create a scratch

in the monolayer of cells. After a PBS wash, the cells were incubated

for 0 and 24 h in the corresponding basic culture medium. The

monolayer cells were examined microscopically, and the gap distance

was measured quantitatively to ascertain LUAD cell migration.
Statistical analysis

All statistical analyses and representations were conducted

using R (version 4.2.1) and GraphPad Prism (version 9.00). The

Chi-squared test was used to compare the proportion of individuals

within two groups. Additionally, continuous variables in two or
B

C D E

A

FIGURE 1

The genomic features and expression of DRs in LUAD. (A) The differential expression of DRs between tumor and normal samples. (B) Mutation
landscape of DRs in TCGA-LUAD. (C) The CNV mutation frequency of DRs. (D) Chromosome position and alteration of DRs. (E) Molecular
interaction network map of DRs Negative correlations are illustrated in green, while positive correlations are denoted in pink. ns, not significant,
*P < 0.05, **P < 0.01, ***P < 0.001.
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more groups were compared using Wilcoxon rank-sum test or

Kruskal–Walli’s test. For correlation analysis, the Pearson

correlation test was employed. A p-value less than 0.05 was

deemed statistically significant.
Results

Genetic and transcriptional alterations of
DRs in LUAD

Gene expression analysis using bulk RNA-seq demonstrated

that the majority of DRs displayed relative higher expression levels

in LUAD tissues compared to para-carcinoma tissues (Figure 1A).

As depicted in Figure 1B, 104 of 616 (16.88%) LUAD samples

possessed genetic mutations. A total of 13 of 18 DRs were found to

be mutated, with CNOT1 exhibiting the highest rate of mutation.

Among them, missense mutations were found to be the most

frequent (Figure 1B). In order to unmask the genetic

modifications in DRs, we presented an overview of the frequency

of somatic and copy number mutations with malignancies.

Moreover, analysis of these 18 DRs revealed that CNV alterations

were common. NDUFS2, NUBPL, PPM1F, EPAS1, and LRPPRC

displayed widespread CNV amplification, whereas CCNC,

NDUFA11, OXSM, and GYS1 showed widespread CNV deletions

(Figure 1C). Figure 1D depicts the locations of CNV alterations in

LUAD DRs. The correlation network composed of 18 DRs is

illustrated in Figure 1E (correlation coefficient >0.4; the positive

correlation is represented by the red line, negative correlation is

represented by the blue line).
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Identification of DRs subtypes in the
LUAD cohort

In order to delve further into understanding the DRs’

expression pattern in the oncogenesis of LUAD, 1569 patients

from 4 independent LUAD cohorts were included. Accordingly,

we performed unsupervised clustering and classification on the

combined LUAD cohort based on DRs. Our results showed that k =

2 was the optimal choice (Figures S1). In addition, the tSNE results

revealed significant differences between the two clusters in terms of

DRs expression (Figure 2A). Moreover, the Kaplan–Meier survival

analysis demonstrated that the DRcluster A had a greater survival

advantage than DRcluster B (Figure 2B). In addition, the

clinicopathological characteristics of the various DR clusters also

revealed significant differences (Figure 2C). To further explore the

biological behavioral difference between these two clusters, we also

conducted a GSVA enrichment analysis (Figure 2D). The results

demonstrated that DRcluster A was primarily enriched for

carcinogenic pathways like focal adhesion, EMC receptor

interaction, and others. Moreover, Figure 2E data also revealed

significant differences in the relative expression of immune

infiltration cells across two DRclusters.
Identification of genes subtypes and
establishment of DS

A total of 51 DEGs were identified from two DRclusters using

the “limma” package. These DRs subtypes-related genes were

significantly enriched in cellular metabolism (Figures 3A, B).
B C

D E

A

FIGURE 2

The construction of DRclusters. (A) tSNE plot of two DRclusters. (B) Kaplan-Meier survival analysis between two DRclusters. (C) Heatmaps of the
distribution of DRs in the two DRclusters. (D) GSEA analysis indicating significant enrichment of pathways in the two DRclusters. (E) The proportion
of 24 kinds of immune cells in two DRclusters. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001.
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B

C

D E

F G

A

FIGURE 4

Construction of prognostic signature based on DEGs. (A) A total of 101 kinds of prediction models via a leave-one-out cross-validation framework
and further calculated the C-index of each model. (B) Cvfit and lambda curves of LASSO regression applied with minimum criteria. (C) The number
of trees determined by minimum error and importance of the four most valuable genes based on the RSF algorithm. (D-G) Kaplan-Meier survival
curves of OS for high- and low-DS groups of patients in the TCGA, GSE31210, GSE68465, GSE72094 cohorts, respectively.
B C

D E F

A

FIGURE 3

Identification of DRs gene clusters based on DEGs in DRclusters. (A, B) GO and KEGG enrichment analyses of DEGs among two DRclusters
(C) Differences in the expression of DRs among the two genecluster (D) tSNE plot of two geneclusters. (E) Kaplan-Meier survival analysis between
two geneclusters. (F) The proportion of 24 kinds of immune cells in two geneclusters. *p < 0.05; ***p < 0.001; ns, not significant.
Frontiers in Immunology frontiersin.org07

https://doi.org/10.3389/fimmu.2023.1233260
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1233260
Subsequently, we conducted a univariate Cox regression analysis for

DEGs and identified 39 DEGs with prognostic importance for

LUAD. To further investigate the heterogeneity of DRs subtypes,

we performed unsupervised clustering on 39 DEGs. The 1569

patients with LUAD were also separated into two gene clusters,

designated geneCluster A and B (Figure S2). Similar to DRcluster,

these genes accurately differentiate LUAD patients, with distinct

clusters of genes exhibiting variations in DRs, survival rates, and

immune cell infiltration (Figures 3C–F). Following this, the

LOOCV framework was used to fit 101 prediction models to both

training and testing sets. The C-index for each model was

calculated, and based on the model with the highest average C-

index (0.713), “Lasso+RSF” was deemed the optimal model

(Figures 4A–C, Supplementary Table 5). A DS was calculated for

each patient based on the expression of 7 genes (KRT6A, NEIL3,

KYNU, ABCC2, SFTPC, CPS1, and INSL4) weighted by their

regression coefficients in the model, and patients were divided to

high- or low‐DS groups based on the median cutoff point of DS

(Supplementary Table 6). As evident from the K–M survival

analysis, OS rates were significantly diminished in the high-DS

group compared to the low-DS group (Figures 4D–G). Moreover,

the relationship between different types of patients and their

prognoses was analyzed (Figure 5), with results suggesting that a

low DS was related to a better prognosis in all patient categories.
Evaluation of the DS

A time-dependent receiver operating characteristic (ROC)

curve was employed to assess the validity of DS, as the AUC

value for TCGA (0.93–0.96), GSE31210 (0.68–0.79), GSE68465
Frontiers in Immunology 08
(0.63–0.66), GSE72094 (0.63–0.72), and meta-cohort (0.71–0.78)

(Figures 6A–E). In addition, the C-index of clinical factors in

patients with LUAD was determined (Figures 6F–J). Notably, the

DS had a higher predictive efficacy than the vast majority of clinical

indicators. Subsequently, both DS and clinical indicators were

subjected to univariate and multivariate Cox analyses. In all

cohorts, the DS was determined to be an independent indicator

of OS prognosis (Tables 1–4). In order to determine the prognostic

efficacy of DS, we combined 56 previously published LUAD

prognostic models and conducted a comparative analysis of each

model’s C-index. These models were developed using a variety of

biologically relevant features, including autophagy, EMT,

ferroptosis, hypoxia, necroptosis, glycolysis, and m6A

methylation. Accordingly, DS was found to exhibit superior

performance relative to the vast majority of models across all

cohorts (Figure 7, Supplementary Table 7). Cumulatively, these

results, therefore, demonstrate that the DS would be a valuable

LUAD prognostic model.
Comparison of the mutations and CNV
between DS groups

Using the “maftool” package, a comparison was made between

the distribution differences of somatic mutations observed in high-

and low-DS groups. (Figures 8A, B). Comparing the frequency of

mutants between the high- and low-DS groups, more somatic

mutations, both synonymous and nonsynonymous, were observed

in the high-DS group (Figures 8C–E). In addition, maftools analysis

results showed that 17 genes mutated more frequently in LUAD

patients in the high-DS group, including KEAP1, STK11,
B C

D E
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FIGURE 5

Correlation analysis of DS. (A) Alluvial diagram of clusters distributions in groups with different DS and survival outcomes (B) Expression of DRs
between high- and low-DS groups. (C) Differences in DS between DRclusters. (D) Differences in DS between gene clusters. (E) The circular pie chart
for the proportion difference of clinical indices. *P < 0.05, ***P < 0.001.
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SMARCA4, TTN, NCKAP5, COL5A2, ANKRD30A, TEX15,

PCDH15, GRIN2B, AHNAK, FAT4, FMN2, FAT1, ZNF804B,

DOCK2 and COL22A1 (Figure 8F), and there was extensive co-

mutation between these genes (Figure 8G). This is consistent with

the mutation analysis described above; accordingly, TMB was found

to be higher in the high-DS group compared to the low-DS group

(Figure 8H). Subsequently, LUAD patients were classified into two
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mutation groups based on their TMB score. When combining DS

and TMB, we discovered that patients with low TMB from the high-

DS group had the worst prognosis (Figure 8I). Subsequently, we

used the GISTIC 2.0 software to decipher the amplification and

deletion of CNA on chromosome. Compared to the high-DS group,

the low-DS group had a greater burden of amplification and

deletion at both the arm and focal levels (Figure 8J). However, no
TABLE 1 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for TCGA cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

Stage 1.977(1.586-2.463) < 0.001 1.239(0.863-1.779) 0.245

M 1.727(1.18-2.527) 0.005 0.969(0.611-1.537) 0.895

N 1.942(1.575-2.394) < 0.001 1.23(0.923-1.64) 0.157

T 1.816(1.386-2.38) < 0.001 1.267(0.895-1.793) 0.183

Age 1.038(0.822-1.31) 0.754 NA NA

Sex 1.041(0.847-1.28) 0.7 NA NA

DS 0.118(0.084-0.165) < 0.001 0.136(0.092-0.202) < 0.001
fro
Significant value is given in bold.
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FIGURE 6

Evaluation of the DS. (A-E) Time-dependent ROC curves presented with the 1-5 year AUC in TCGA, GSE31210, GSE68465, GSE72094 and meta-
cohort. (F) The C-index of the CDS for the TCGA, GSE31210, GSE68465, GSE72094 cohorts. (G-J) The C-index of the DS and other clinical factors
in the TCGA, GSE31210, GSE68465, GSE72094 cohorts. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.
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significant disparities were observed between the high- and low-DS

groups in terms of FGA, FGG, and FGL (Figure 8K). These results

indicate a certain degree of correlation between DS and mutations.
TME analysis

In order to evaluate the discriminative potential of the DS

subgroup for the TME and its applicability in immunotherapy, we

simultaneously evaluated the abundance of immune cell infiltration

across multiple samples using four distinct algorithms. Unsurprisingly,

as the DS increased, the number of immune cells declined (Figure 9A).

Apparently, the activation of key steps in the cancer immunity cycle,

such as step 3 (priming_and_activation) and step 4 (CD4 T cell

recruiting, Dendritic cell recruiting, Macrophage recruiting,

Monocyte recruiting, and T cell recruiting) appeared to be

significantly higher in the low-DS group than in the high-DS group

(Figure 9B). Subsequently, the expression profile of immune

checkpoints in the two DS groups were further evaluated.

Accordingly, the analysis revealed that the low-DS group

demonstrated elevated expression levels of immune checkpoints,

including HHLA2 and CD48 (Figure 9C). Given the observed

upregulation of immune-related characteristics in the group with low

DS, its underlying biological mechanisms were investigated further. As

evident from the findings, DS exhibited correlations with multiple

metabolic pathways (Figure 9D). In addition, DS demonstrated a

strong correlation with numerous immunotherapeutic strategies

(Figure 9D). To investigate the cancer signaling pathways associated

with DS, GSVA analysis was performed on high- and low-DS groups.

Using a predetermined threshold, we discovered that 16 signature
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pathways were significantly upregulated in the high-DS group

compared to the low-DS group (Figure 9E). GSEA validated that 12

of these pathways were upregulated in high-DS patients, themajority of

which are known to be carcinogenic (Figures 9F–I).
Assessment of immunotherapy
and chemotherapy

The potential of an immunotherapy response was subsequently

predicted for each immune cluster utilizing the TIDE algorithm and

submap analysis. Accordingly, lower TIDE scores were observed in

the low-DS group, implying a higher sensitivity to immunotherapy

in these patients (Figure 10A). Moreover, the submap results

indicated that the group with a low DS level was more sensitive

to CTLA4 inhibitors (Figure 10B). Although we evaluated an

individual’s immunotherapy efficacy using two algorithms, it

remains critical to directly compare the curative efficacy of

immunotherapy cohorts across various DS groups. As a result,

four immunotherapy cohorts were included for further analysis. In

the IMvigor210 cohort, patients with DR/PR had significantly

longer OS compared to patients with SD/PD, whereas the

influence of DS on patient prognosis was minimal (Figure 10C).

However, patients who responded better to immunotherapy had

lower DS levels across all cohorts (Figures 10D–G). Although there

were no significant differences in patient survival and DS between

the two groups for some cohorts, the propensity for these results

was consistent for the other cohorts. In addition, these results

demonstrate that the DS was able to predict the efficacy of ICBs

and can provide direction for the deployment of immunotherapy.
TABLE 2 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for GSE68465 cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

N 2.029(1.689-2.438) < 0.001 1.92(1.578-2.335) < 0.001

T 2.062(1.587-2.68) < 0.001 1.851(1.403-2.442) < 0.001

Gender 1.262(1.051-1.516) 0.013 1.236(1.018-1.5) 0.032

Chemotherapy 1.412(1.15-1.734) < 0.001 1.279(1.032-1.586) 0.024

DS 0.767(0.639-0.92) 0.004 0.819(0.678-0.989) 0.038
fro
Significant value is given in bold.
TABLE 3 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for GSE31210 cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

Smoking 1.417(0.882-2.277) 0.15 NA NA

Gender 1.344(0.839-2.152) 0.219 NA NA

Age 1.263(0.777-2.052) 0.346 NA NA

Stage 2.774(1.732-4.441) < 0.001 2.305(1.417-3.75) < 0.001

DS 0.4(0.229-0.7) 0.001 0.495(0.278-0.881) 0.017
Significant value is given in bold.
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Thus, to pinpoint candidate drugs that may exhibit heightened

sensitivity in LUAD patients, we conducted drug response

predictions using CTRP- and PRISM-derived data. Finally, the

cross-correlation of the two pharmacogenomics databases allowed

us to predict four drugs or compounds (including SB−743921,

ispinesib, cabazitaxel, and gemcitabine) with therapeutic potential

in patients (Figures 10H, I).
Single-cell sequencing analysis

To analyze the expression of DS in TME, we used the LUAD

single-cell dataset GSE131907 from the GEO database. All the cells
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were partitioned into 16 clusters using the k-nearest neighbor

(KNN) clustering algorithm (Figure 11A). Subsequently, using the

“single R” and “copycat” packages to annotate all cells, we were able

to identify 9 distinct cellular subtypes, including B cells, endothelial

cells, epithelial cells, cancer cells, macrophage cells, monocyte cells,

smooth muscle cells, NK cells, and T cells (Figure 11B). Most of

these cells are important components of the TME mentioned in the

above results. Subsequently, we investigated the single-cell

transcriptome localization of 7 genes in DS (Figure 11C).

Concurrently, the DS for each cell was calculated, which showed

that cells with a high DS predominately resided in the region of

cancer cells (Figure 11D). Additionally, the temporal sequence of

cancer cellular differentiation was revealed by the analysis of the
TABLE 4 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for GSE72094 cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

STK11 1.028(0.72-1.469) 0.879 NA NA

KRAS 0.767(0.588-0.999) 0.049 0.911(0.693-1.198) 0.506

Age 1.258(0.836-1.894) 0.27 NA NA

Gender 0.733(0.564-0.952) 0.02 0.746(0.569-0.979) 0.035

Stage 1.969(1.477-2.625) < 0.001 1.956(1.459-2.623) < 0.001

Smoking 1.248(0.694-2.245) 0.459 NA NA

TP53 0.861(0.645-1.151) 0.313 NA NA

EGFR 2.58(1.274-5.226) 0.008 2.025(0.986-4.159) 0.055

DS 0.549(0.416-0.724) < 0.001 0.619(0.465-0.825) 0.001
fro
Significant value is given in bold.
FIGURE 7

C-index analysis between the DS and 56 published signatures in TCGA, GSE31210, GSE68465, GSE72094 and meta-cohort. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001; ns, not significant.
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pseudotime trajectory. Accordingly, low DS cancer cells appear at

an earlier pseudotime than high DS cancer cells, which are

primarily found in the earliest stages of differentiation

(Figures 11E–H).
KYNU evaluation in the LUAD cells

The qRT-PCR experiments were performed on LUAD cell lines

to confirm the expression levels of DS genes in LUAD. Our finding

discovered that ABCC2, NEIL3, KYNU, and CPS1 exhibited

elevated expression in LUAD cell lines, while KRT6A and SFTPC

were found to be underexpressed (Figure 12A). In addition, KYNU

exhibited the most significant correlation between high expression

and unfavorable poor patient prognosis. No reports have

documented the role of KYNU in LUAD to date. As a result of

these considerations, KYNU was selected as the focus of further

experiments. Correspondingly, IHC staining analysis showed that

the protein level of KYNU expression was elevated in LUAD tumor
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tissues relative to paracancerous tissues (Figure 12B). Subsequently,

we investigated the function of KYNU in PC-9 and H838 LUAD cell

lines through a series of cell-based experiments. Initially, the effect

of the siRNA was confirmed via RT-qPCR (Figure 13A). As

demonstrated by CCK-8 and clone formation assays, KYNU

knockdown inhibits LUAD cell growth and their clone formation

capacity (Figures 13B, C). In addition, wound healing and transwell

assays confirmed that KYNU knockdown inhibited the cell

migration and invasion capabilities of LUAD cells (Figures 13D,

E). The precision of these findings corroborated that the expression

of KYNU mirrored the variations anticipated through

bioinformatic prediction.
Discussion

LUAD persistently remains the principal contributor to cancer-

related deaths among all cancer types and poses a substantial threat

to global health (39). Prior research has revealed that the onset and
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FIGURE 8

Integrated comparisons of somatic mutation and CNVs between high- and low-DS groups in the TCGA cohort. (A, B) Visual summary showing
common genetic alterations in the high and low-DS groups. (C-E) Association between all mutation counts, synonymous mutation counts,
nonsynonymous mutation counts, and DS and their distribution in the DS groups. (F) Forest plot of gene mutations in the patients. (G) Interaction
effect of genes mutating differentially in patients. (H) Tumor mutation burden between high- and low-DS groups. (I) Comprehensive survival analysis
based on DS and TMB. (J) Gene fragments profiles with amplification (red) and deletion (green) among the DS groups. (K) Comparison of the
fraction of the genome altered, lost, and gained between the DS groups. *P < 0.05, **P < 0.01, ***P < 0.001.
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progression of LUAD involve complex biological mechanisms, such

as a multitude of genetic and epigenetic modifications (40, 41).

Numerous staging systems have been proposed and utilized for

clinical determinations to predict patient prognoses; however, these

systems predominantly rely on clinicopathological features,
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ignoring the critical influence of complex molecular pathogenic

processes in the oncogenesis and progression of LUAD (42, 43). As

a result, there have been negligible improvements in patient

outcomes. Consequently, the identification of superior predictive

biomarkers for treatment responsiveness and patient outcomes
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FIGURE 9

Analysis of the TME in different DS groups. (A) Differences in immune infiltration status between two DS groups were evaluated by four algorithms.
(B) The differences of cancer immunity cycle were showed in boxplot between two DS groups. (C) The differences of immune checkpoint related
genes were showed in boxplot between two DS groups. (D) The correlations between the TIIClnc signature score and metabolic immune-related
pathways, immune-related pathways based on GSVA of GO and KEGG terms were displayed in butterfly plot. (E) The difference in the hallmark gene
sets between different DS groups based on GSVA. (F-I) The GSEA results for the 12 overlapping upregulated hallmark pathways in terms of the high-
DS group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.
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FIGURE 10

Prediction of immunotherapy and chemotherapy response. (A) A violin diagram illustrates the variance in TIDE scores among patients with diverse
DS. (B) A comprehensive submap analysis of the meta-cohort and melanoma patients, inclusive of intricate immunotherapeutic data. (C) A Kaplan-
Meier plot delineates the survival rates for patients categorized into high- and low-DS groups within the IMvigor cohort. (D-G) A box diagram
depicts the disparity in DS among patients exhibiting immunotherapy responses in the IMvigor210, GSE35640, GSE79671, and GSE173839 cohorts.
(H, I) The findings from the correlation study and differential drug response analysis of CTRP-derived pharmaceuticals and PRISM-derived
pharmaceuticals are presented. ***P < 0.001.
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could be advantageous in optimizing individualized therapeutic

strategies and prognostic management for those afflicted with

LUAD. Atypical accumulation of intracellular disulfides induces

disulfide stress, which results in cellular toxicity and ultimately

induces cell death (16, 44). Disulfide bonds are the most important

redox-reactive covalent bonds between two cysteine residues within

proteins. These bonds are regarded as cellular redox regulators and

are intimately linked to the formation of disulfides. Recent studies

have revealed that neoplastic cells may also experience disturbances

in disulfide metabolism as a result of oxidative stress, a process that

can potentially inhibit the proliferation of tumor cells and induce

their apoptosis (45, 46). In addition, the disulfides inherent to

neoplastic cells may act as conduits, modulating the responsiveness

to chemotherapeutic agents and immunotherapy, and possibly

serving as prognostic markers (47–79). This suggests that the

application of disulfidptosis-focused translational medicine holds

considerable promise as a candidate for clinical implementation

across an array of human malignancies. Several DRs have been

implicated in pathological and physiological processes of a variety

of tumor. To counterbalance the oxidative stress induced by their

heightened metabolic rate, tumor cells can upregulate the

expression of the catalytic subunit SLC7A11 of the Xc−system,

thereby maintaining high levels of glutathione (50). In addition, the

overexpression of SLC7A11 in glioma cells improves their

resistance to oxidative stress and decreases their sensitivity to

temozolomide (51). In this regard, SLC3A2 is significantly
Frontiers in Immunology 14
upregulated in several types of malignant tumor cells, including

those of the lung, breast, and prostate (52, 53). Furthermore,

SLC3A2 is also an independent prognostic indicator for thymic

epithelial tumors and NSCLC (54). Consequently, the

overexpression of SLC3A2 contributes to radiotherapy resistance

in tumors, indicating that SLC3A2 could surface as a promising

clinical prospect in cancer treatment (55). Moreover, models

composed of DRs have been established in certain tumor types,

demonstrating their potential predictive value for patient prognosis

and treatment efficacy (56, 57). These findings indicate that DRs

have significant potential for elucidating the molecular mechanisms

underlying LUAD and identifying novel biomarkers. Nonetheless,

there is a dearth of pertinent research on how DRs influence

prognosis, immune infiltration, and clinical response in LUAD.

In this study, we first analyzed the characteristics of DRs in

LUAD, including extensive genetic and transcriptional level

alterations. The majority of these genes are upregulated in LUAD

patients and are associated with a poorer prognosis, suggesting a

plausible role for DRs in the pathogenesis of LUAD. Using

unsupervised clustering techniques on DRs transcriptomic

expression data, we then divided LUAD patients from four

distinct cohorts into two subgroups, designated DRcluster A and

DRcluster B. In DRcluster B, the majority of DRs were significantly

upregulated, indicating relatively active disulfidptosis. Compared to

patients in DRcluster A, DRcluster B was associated with an

increase in the number of immune cells that infiltrated the
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FIGURE 11

Exploration of DS in LUAD scRNA-seq data. (A) t-SNE plot colored by 16 cell subpopulations. (B) t-SNE plot of the distribution of 9 cell types.
(C, D) Evaluation of DS gene expression and DS in scRNA-seq data in scRNA-seq data. (E-H) Pseudotime trajectory analysis in LUAD cells (Cells are
colored based on states, pseudotime, cluster and DS groups.
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affected tissue. Significant infiltration levels of effector immune cells

are critical for a successful immunotherapeutic response. Typically,

a higher CD8+ T cell infiltration rate is indicative of a better

prognosis for survival. As evidence, a higher concentration of

cytotoxic CD8+ T cells permeating the tumor has been linked to

superior outcomes for patients with NSCLC (58). This is consistent

with our prognosis and analysis results of immune infiltration. As a

result, we proceeded to identify 86 DEGs that distinguished the two

DRclusters, and based on these DEGs, we formed a pair of gene

clusters. Intriguingly, we discovered statistically significant

differences in OS, DRs, and TME between gene clusters, revealing

a strong correlation between DRclusters and gene clusters. In light

of the lack of DRclusters for clinical application and the paucity of

biomarkers for prognosis tracking, we developed a robust and

effective model by transforming 10 machine learning algorithms

into more than 101 combinations and selecting the best performing

algorithm determined by the mean C-index across four LUAD

cohorts (59). This facilitated the creation of a robust and efficient

DR-based prognostic model, suitable for appraising the prognosis of

LUAD patients. Ultimately, the combination of LASSO and RSF

was deemed the superior model for constructing the DS. Survival

analysis utilizing the median value of the DS revealed its association

with LUAD prognosis, and concordant results were obtained from

three independent cohorts. The AUC at various time points and the

C-index suggest that the DS has exceptional clinical efficacy,
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surpassing the performance of a substantial number of other

clinical attributes. Significantly, when compared to the 56

previously reported molecular signatures for LUAD, the

predictive performance of the DS is consistently superior in

nearly all cohorts examined.

The composition of ourDS comprises 7 genes, includingKRT6A,

NEIL3, KYNU, ABCC2, SFTPC, CPS1, and INSL4. In addition, qRT-

PCR analysis revealed that LUAD and human bronchial epithelial

cell expression of the majority of genes differed significantly.

Numerous identified genes exhibit a strong correlation with the

onset and advancement of LC. For instance, overexpression of

KRT6A in NSCLC is associated with poor prognosis (60). KRT6A,

acting downstream of LSD1, upregulates G6PD and the pentose

phosphate pathway flux via the MYC signaling cascade, thereby

promoting NSCLC growth and invasion (61). The upregulation of

NEIL3 expression in NSCLC tissues and cell lines correlates with

clinical progression and a poor prognosis. By partially activating the

PI3K/AKT/mTOR signaling pathway, NEIL3 contributes to the

progression of NSCLC (62). A recent study demonstrated that

SFTPC expression is suppressed in human LUAD tissues and cell

lines, and its overexpression inhibits LCcell proliferation in vitro and

in vivo (63). INSL4, via autocrine or paracrine effects, promotes the

proliferation and invasion of NSCLC by enhancing the MAPK and

AKT signaling pathways. Moreover, INSL4 serves as a detrimental

prognostic indicator for patients suffering from NSCLC. Among the
B

A

FIGURE 12

Validation of expression levels of DS genes. (A) DS genes expression in LUAD and normal cell lines. (B) Protein expression levels of KYNU were
assessed by IHC. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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7 genes, IHC confirmed the elevated expression of KYNU in LUAD

tissue samples, and the association between high KYNU expressions

was notably associated with a shorter OS in the cohort. Moreover,

cellular experiments suggest that the knockdown of KYNU can curb

the proliferation, invasion, and migration capabilities of LUAD cells,

suggesting its oncogenic role in LUAD.

TMB has recently emerged as a promising prognostic

biomarker for numerous tumor types. A higher TMB is

frequently associated with improved survival outcomes (9). For

instance, a study of NSCLC patients revealed that those with

elevated TMB levels experienced prolonged OS when subjected to

PD-1/PD-L1 antibody therapy (64). In this study, LUAD patients

with an escalated DS had elevated TMB. This could be the result of

patient heterogeneity or a small sample size. Recently, the

proliferation and efficacy of targeted immunotherapies have

begun to transform the landscape of cancer treatment (65, 66).

Given the complex interaction between the tumor immune

microenvironment and host immune responses, there is an urgent

need for predictive biomarkers that facilitate individualized therapy.

Increased concentrations of CD8+ T cells in the tumor
Frontiers in Immunology 16
microenvironment correlate with an improved prognosis and

increased survival rates among patients with NSCLC (67).

Furthermore, the existence of dysfunctional CD8+ T cells within

lung tumors and malignant pleural effusions has been documented,

thereby diminishing their capacity to mount an effective antitumor

response (68). In preclinical studies, NK cell-based therapies have

demonstrated the ability to prevent the development of pulmonary

metastases (69). Several studies demonstrate that extracorporeal

stimulation of autologous Natural Killer (NK) cells with

Interleukin-2 (IL-2) in conjunction with adoptive transfer and

subcutaneous IL-2 infusions increased overall survival (OS) in a

subset of patients with advanced cancers (70). Within the

pulmonary environment, neoplasm-associated B lymphocytes can

differentiate into plasma cells, thereby producing tumor-specific

antibodies capable of recognizing and reacting to tumor-associated

antigens (71). Accordingly, the presence of both follicular B cells

and tumor-infiltrating plasma cells has been positively correlated

with increased longevity in patients with NSCLC, highlighting the

protective contribution of plasma cells and antibodies in combating

tumor proliferation (72). Moreover, single-cell sequencing analysis
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FIGURE 13

(A) The effect of siRNA to knockdown KYNU in LUAD cell lines was measured by RT–qPCR. (B, C) The CCK-8 and clone formation assays showed
that knockdown of KYNU inhibited the proliferation of LUAD cells. (D, E) The wound healing and transwell assays showed that knockdown of KYNU
inhibited the migration and invasion of LUAD cells. *P < 0.05; **P < 0.01; ***P < 0.001.
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results indicate that high DS cells are primarily located in the tumor

cell and B cell regions, suggesting a possible interaction between

them. Consistent with previous findings, LUAD patients with a low

DS demonstrated a high level of immune cell infiltration, including

CD8 cells, NK cells, B cells, dendritic cells, mast cells, and central

memory T cells, all of which play crucial roles in either bolster or

counter tumor immunity during immunotherapy. Tumor cells

characterized by reduced differentiation levels frequently

demonstrate accelerated growth rates and heightened

invasiveness, often correlating with unfavorable prognoses (73).

Pseudotime analysis outcomes revealed a spatial disposition

wherein tumor cells exhibiting diminished CDS levels occupied

the initial phase of the differentiation trajectory. Conversely, those

with elevated CDS levels were situated at the concluding stage of

differentiation. Consequently, it becomes evident that CDS levels

could potentially be linked to the extent of differentiation as well as

invasiveness in tumor cells. In accordance with the tumor

immunoediting hypothesis, the high-DS group exhibited greater

immunosuppression but decreased immunoreactivity compared to

the low-DS group (74). Disparities in the immune infiltrating

microenvironment could potentially contribute to cancer

progression and result in a poorer prognosis. Elevated IDO1

exp r e s s i on con t r i bu t e s t o th e dev e l opmen t o f an

immunosuppressive TME by promoting T cell and NK cell

inactivation and activating and expanding Tregs and DCs (75,

76). The role of IDO1-mediated tryptophan (TRP) metabolism in

resistance to therapies targeting CTLA-4 or PD-1 demonstrates its

potential as a promising target to augment existing immunotherapy

approaches (77). CD40 is an essential co-stimulatory protein

involved in the pro-inflammatory immune activation of antigen-

presenting cells like dendritic cells and immunosuppressive

macrophages within the cancer landscape (78, 79). Earlier

investigations demonstrate that CD40 stimulation, in addition to

activating tumor-associated immunosuppressive macrophages and

T cells and inhibiting tumor progression (80, 81), also remodels the

TME and heightens the tumor’s responsiveness to checkpoint

blockade therapies in various types of cancer (82, 83). The

findings of the current study show that the expression of IDO1

was downregulated in the low-DS group relative to the high-DS

group, while CD40 expression was upregulated. In addition,

differences in the expression of other immune checkpoints

between the two groups suggested immunotherapy would have

divergent effects (84). To determine the degree of immunotherapy

response in LUAD patients, we evaluated the TIDE and submap

algorithms to discovered that low-DS individuals identified by the

model may be suitable candidates for immune checkpoint blockade

therapies targeting CTLA-4 and PD-1. The scores based on

immunotherapy algorithm scores are merely a reflection of

theoretical hypotheses and cannot represent the actual efficacy

within actual cohorts. For a more comprehensive analysis of the

predictive efficacy of DS in immunotherapy, we thus incorporated

multiple immunotherapy cohorts. Thus, in predicting therapeutic

responses within immunotherapy cohorts, DS exhibits a trend that

is consistent with immunotherapy algorithms, as indicated by our

findings. These results suggest that a lower DS score may be a potent

indicator of immunotherapy response in patients with LUAD.
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The efficacy of pharmaceutical interventions is closely correlated

with drug sensitivity and individual variation, indicating that

personalized therapies based on specific subtypes could reduce the

prevalence of ineffective therapies among LUAD patients. An analysis

of drug sensitivity differences among LUAD patients with varying DS

revealed 4 pharmaceuticals with significantly divergent sensitivities.

Subsequent sensitivity projections demonstrated that SB-743921,

cabazitaxel, gemcitabine, and ispinesib could potentially serve as

superior therapeutic options for individuals with a high DS.

Through signaling pathways such as G2M_CHECKPOINT,

DNA_REPAIR, and PI3K_AKT_MTOR_SIGNALING, some of

these pharmaceuticals exert their antitumor effects, as revealed by

our enrichment analyses. Cabazitaxel functions by closely interacting

with microtubule proteins, resulting in the inhibition of their

depolymerization and consequently the inhibition of cellular mitosis.

This mechanism induces cell cycle cessation, resulting in the

programmed death or apoptosis of neoplastic cells (85). Recent

research revealed that cabazitaxel can induce G2/M phase block and

autophagy in LUAD cells by inhibiting the PI3K-AKT-mTOR

pathway, indicating its potential as a chemotherapy drug for LUAD

patients (86). Gemcitabine is a pyrimidine nucleoside analogue

antimetabolite that can inhibit the synthesis and repair of DNA,

thereby inducing cellular autophagy and apoptosis (87). When used

as a stand-alone treatment, gemcitabine has consistently demonstrated

response rates greater than 20% while maintaining a favorable

tolerability profile. Moreover, its therapeutic efficacy can be

augmented through combination regimens with platinum-based

compounds such as cisplatin, thereby synergistically enhancing its

overall efficacy (88, 89).

Despite the use of potent open-source data to elucidate two

distinct characteristics of LUAD disulfidptosis subtypes and to

develop a robust DS evaluation model, this investigation is

limited by certain factors. First, this study relies on patient data

obtained from publicly available retrospective cohorts and lacks the

prospective real-world data required to validate the clinical

applicability of the proposed scoring system. In addition, due to

financial and resource limitations, we conducted preliminary in

vitro experiments to investigate the functionality of KYNU in

LUAD. The further experimentation and investigation are

required for a more complete comprehension of the molecular

mechanisms. This study focuses on bioinformatics analysis and

preliminary functional investigations to identify possible

biomarkers. These limitations will be addressed in future research.
Conclusions

In conclusion, this study identified disulfidptosis-related

subgroups and developed a DS for evaluating the prognosis,

immune infiltration, mutations, and treatment sensitivity of LUAD

patients. Studying disparities in disulfidptosis patterns has deepened

our comprehension of both tumor heterogeneity and the intricate

complexities within the TME. We have also constructed and validated

a DS that accurately predicts patient prognosis and treatment efficacy

assessment, offering a potentially powerful new tool for clinical

decision-making, patient outcomes, and individualized treatment
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strategies. Besides, this study has contributed to advancing the

understanding of molecular complexity in LUAD and provides

directions and potential avenues for future LUAD research.
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